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WIENER TYPE THEOREMS FOR FOURIER–VILENIKIN SERIES

WITH NONNEGATIVE COEFFICIENTS AND SOLID SPACES

S. S. VOLOSIVETS

(Communicated by J. Marshall Ash)

Abstract. In the present paper we show that Lp -integrability near zero of a function on Vilenkin
group G with nonnegative Fourier-Vilenkin coefficients implies Lp -integrability on G , if p is
even integer. This is an analog of N. Wiener-S. Wainger result. A refinement of Hausdorff-
Young-F. Riesz inequality is obtained and several examples concerning embeddings of solid
function spaces on G are given.

1. Introduction

Let {ϕk}∞
k=0 be an arbitrary orthonormal system on [a,b] such that |ϕn(x)| � M

for all n ∈ Z+ and x ∈ [a,b] . Since Lp[a,b] ⊂ L1[a,b] for p � 1, we define the n -th
Fourier coefficient of a function f ∈ Lp[a,b] , 1 � p � ∞ , by

( f ,ϕk) = (b−a)−1
∫ b

a
f (t)ϕk(t)dt.

The following theorems are well known (see [3, Chap. II, §3] and [19, Chap. XII, (2.3)
and (3.19)]).

THEOREM A. (F. Hausdorff – W. H. Young – F. Riesz) Let 1 < p < ∞ and
1/p+1/p′ = 1 .

(i) If 1 < p � 2 and f ∈ Lp[a,b] , then(
∞

∑
n=0

|( f ,ϕn)|p′
)1/p′

� M2/p−1‖ f‖Lp[a,b].

(ii) If 2 � p < ∞ and {cn}∞
n=0 is a sequence in C such that

∞
∑

n=0
|cn|p′ < ∞ , then

there exists f ∈ Lp[a,b] such that ( f ,ϕk) = ck , k ∈ Z+ , and

‖ f‖Lp[a,b] � M2/p−1

(
∞

∑
n=0

|( f ,ϕn)|p′
)1/p′

.
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THEOREM B. (G. Hardy – J. E. Littlewood – R. Paley) (i) If 1 < p � 2 and
f ∈ Lp[a,b] , then (

∞

∑
n=0

|( f ,ϕn)|p(n+1)p−2

)1/p

� C‖ f‖Lp[a,b].

(ii) If 2 � p < ∞ and {cn}∞
n=0 is a sequence in C such that

∞
∑

n=0
|cn|p(n+1)p−2 <

∞ , then there exists f ∈ Lp[a,b] such that ( f ,ϕk) = ck , k ∈ Z+ , and

‖ f‖Lp[a,b] � C

(
∞

∑
n=0

|( f ,ϕn)|p(n+1)p−2

)1/p

.

Let T be the interval [−π ,π ] . In this section we denote the complex trigonometric
Fourier coefficients of f ∈ L1(T) by f̂ (n) . For p > 1 let

Lp
loc+(T) =

{
f ∈L1(T) : f̂ (n)� 0, n∈Z, and

∫ δ

−δ
| f (x)|p dx < ∞ for some δ > 0

}
.

N. Wiener proved a theorem concerning power series with positive coefficients
(see [5] or [17]) which is equivalent to the following proposition.

THEOREM C. If f ∈ L2
loc+(T) , then f ∈ L2(T) .

S. Wainger [17] noted that Theorem C is also valid for p = 2n , n ∈ N , but it is
false for all 1 < p < 2. H. S. Shapiro [13] established a general result providing that
for p > 2, p �= 2n , n ∈ N , the property f ∈ Lp

loc+(T) does not imply f ∈ Lp(T) . J. M.
Ash, M. Rains and S. Vagi [1] obtained an extension of Theorem A (i) for the case of
trigonometric system.

THEOREM D. If 1 < p � 2 and f ∈ Lp
loc+(T) , then ∑

n∈Z

| f̂ (n)|p′ < ∞ .

Recently, J. M. Ash, S. Tikhonov and J. Tung [2] considered so called solid spaces
X(T) with the following property: if f ∈ X(T) have Fourier series ∑n∈Z cneinx and
|dn| � |cn| for all n ∈ Z+ , then g(x) with Fourier series ∑n∈Z dneinx belongs to X(T) .
Earlier, a similar property with condition |dn|� cn was called the upper majorant prop-
erty (see [4] or [8]). G.Bachelis [4] gave many conditions equivalent to the upper
majorant property. The main positive result in [2] is

THEOREM E. If Lp(T) ⊂ X(T) , 1 < p < ∞ , and X(T) is a solid space, then
Lp

loc+(T) ⊂ X(T) .

Theorem E is a generalization of Theorem D. Also, [2] contains several coun-
terexamples concerning embeddings between Lp

loc+(T) , Lp(T) , l p′(T) := { f ∈ L1(T) :

∑
n∈Z

| f̂ (n)|p′ < ∞} and HLp(T) := { f ∈ L1(T) : ∑
n∈Z

| f̂ (n)|p(|n|+1)p−2 < ∞} . The aim

of the present paper is to obtain results similar to Theorems C-E and to refine Theorems
A and B for the character system of Vilenkin group of bounded type.
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2. Definitions

Let P = {pn}n∈N ⊂ N and 2 � pn � N for all n ∈ N , m0 := 1, mn = p1 . . . pn

for n ∈ N . For all k ∈ N we denote by Z(pk) the discrete cyclic group of order pk

with elements 0,1, . . . , pk − 1. The complete direct product of Z(pk) will be denoted
by G = G(P) , where G is a compact abelian group with addition + and with Haar
measure dx ( |G| , the measure of G, is equal to 1.) Elements of G has the form x =
(x1,x2, . . .) , where xi ∈ Z(pi) , i ∈ N . If Gn = {x ∈ G : x1 = x2 = . . . = xn = 0} , then
Gn is a subgroup of G = G0 whose Haar measure is equal to 1/mn . It is well known
that {Gn}∞

n=0 is a base of topology in G and that characters of G form a complete
orthonormal system Ĝ = {χn(x)}n∈Z+ in L1(G) . Moreover, if rk(x) := exp(2π ixk/pk)
for x ∈ G and

n =
∞

∑
k=1

nkmk−1, nk ∈ Z(pk), k ∈ N, (1)

then χn(x) =
∞
∏
k=1

rnk
k (x) . Let us note that χ0(x)≡ 1 on G . If f ∈ L1(G) , then its Fourier

coefficients and partial Fourier sums are

f̂ (k) =
∫

G
f (x)χk(x)dx, k ∈ Z+, Sn( f )(x) =

n−1

∑
k=0

f̂ (k)χk(x), n ∈ N. (2)

Further we use notation f̂ (k) in the sense of (2). Let Dn :=
n−1
∑

k=0
χk , n∈N , and Δk( f ) :=

mk−1
∑

i=mk−1

f̂ (i)χi , k ∈ N , Δ0( f ) := f̂ (0) . It is well known that Dmn = mnXGn , where XE is

the indicator of E (see [7, §1.5]). If n,r ∈ Z+ are represented in the form (1), then by
definition

n⊕ r = s =
∞

∑
k=1

skmk−1, sk ∈ Z(pk), sk = nk + rk (mod pk).

The set Z+ with operation ⊕ is a group. The inverse operation 	 is defined simi-
larly. It is easy to see that χnχr = χn⊕r , χnχr = χn	r for all n,r ∈ Z+ . Since χn are
characters of G , we obtain χn(x+ y) = χn(x)χn(y) and χn(x− y) = χn(x)χn(y) for all

n ∈ Z+ , x,y ∈ G . If f ∈ L1(G) and g =
n−1
∑
i=0

aiχi is a polynomial with respect to the

system {χi}∞
i=0 , then

f̂ g(k) =
n−1

∑
i=0

ai

∫
G

f (x)χk(x)χi(x)dx =
n−1

∑
i=0

ai f̂ (k	 i) = ∑
i⊕ j=k

ai f̂ ( j), (3)

where ai = 0 for i � n . Main properties of {χi}∞
i=0 may be found in [14] and [7, §1.5].

A pseudomeasure on G is a linear continuous functional on A(G) = { f ∈ L1(G) :
∞
∑
i=0

| f̂ (i)| < ∞} . If F is a pseudomeasure (F ∈ PM(G)), then it may be considered
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as a formal series
∞
∑
i=0

aiχi , such that sup
i∈Z+

|ai| < ∞ and for g ∈ A(G) we have F(g) =

∞
∑
i=0

aiĝ(i) . In particular, F̂(n) = F(χn) = an , n ∈ Z+ .

The space Lp(G) consists of measurable complex-valued functions f with finite
norm ‖ f‖p = (

∫
G | f (x)|p dx)1/p for 1 � p < ∞ and ‖ f‖∞ = esssup{| f (x)| : x ∈ G} .

If f ∈ Lp(Gn)∩ L1(G) for some n ∈ N and f̂ (k) � 0 for all k ∈ Z+ , then we write
f ∈ Lp

loc+(G) . Let Pn = { f ∈ L1(G) : f̂ (k) = 0,k � n} and En( f )p = inf{‖ f − tn‖p :
tn ∈ Pn} , n ∈ N . If 1 � p,r � ∞ , α > 0, then the Besov space Bα

p,r consists of all
f ∈ Lp[0,1) with the property

‖ f‖Bα
pr

= ‖ f‖p +

(
∞

∑
k=0

mαr
k Er

mk
( f )p

)1/r

< ∞

for 1 � r < ∞ and ‖ f‖Bα
p,∞ = ‖ f‖p + sup

k∈Z+

mα
k Emk ( f )p < ∞ for r = ∞ . We say f ∈

(Bα
p,r)loc , if fDmn ∈ Bα

p,r for some n ∈ N .
If the values A and B depend on a parameter, then the expression A � B means

that C1A � B � C2A for some constants C2 � C1 > 0 which are not depended on the
parameter.

3. Auxiliary propositions

The following counterpart of famous Littlewood-Paley theorem [19, Chap. XV,
(2.1)] is valid only for bounded {pi}∞

i=1 and is due to C.Watari [18].

LEMMA 1. (i) Let f ∈ Lp(G) , 1 < p < ∞ , and Q( f ) =
(

∞
∑

k=0
|Δk( f )|2

)1/2

. Then

‖ f‖p � ‖Q( f )‖p .

(ii) If for p ∈ (1,∞) and the series
∞
∑
i=0

aiχi the inequality

Ip :=

∥∥∥∥∥∥∥
⎛⎝ ∞

∑
k=1

∣∣∣∣∣ mk−1

∑
i=mk−1

aiχi

∣∣∣∣∣
2

+ |a0|2
⎞⎠1/2

∥∥∥∥∥∥∥
p

< ∞

holds, then there exists f ∈ Lp(G) with f̂ (k) = ak , k ∈ Z+ , and ‖ f‖p � CIp .

Lemma 2 is a variant of Minkowski inequality (see [6]).

LEMMA 2. Let g = {gk}∞
k=1 , where gk ∈ Lp(G) , k ∈ N , 1 � p,q < ∞ and

‖g‖Lp(lq) =

∥∥∥∥∥∥
(

∞

∑
k=1

|gk|q
)1/q

∥∥∥∥∥∥
p

, ‖g‖lq(Lp) =

(
∞

∑
k=1

‖gk‖q
p

)1/q

.
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Then the inequality ‖g‖Lp(l2) � ‖g‖l2(Lp) is valid for 1 < p � 2 . If p � 2 , then we have
‖g‖Lp(l2) � ‖g‖l2(Lp) .

Lemma 3 is the particular case of Theorem 9 in [15].

LEMMA 3. Let 1 < p < ∞ , {an}∞
n=0 ↓ 0 . Then S(x) =

∞
∑

n=0
anχn(x) belongs to

Lp(G) if and only if
∞
∑

n=0
ap

n(n+1)p−2 < ∞ .

Lemma 4 follows from lemma 1.

LEMMA 4. Let 1 < p < ∞ , {ai}∞
i=0 ⊂ C . Then S(x) =

∞
∑
i=0

aiχmi(x) belongs to

Lp(G) if and only if
∞
∑
i=0

|ai|2 < ∞ .

Proof. If S ∈ Lp(G) , then |Δk(S)| = |ak−1| , k ∈ N , and Δ0(S) = 0. By Lemma

1 (i) we obtain
∞
∑
i=0

|ai|2 < ∞ . The converse assertion easily follows from Lemma 1

(ii). �

Lemma 5 is known (see, for example, Lemma 11 in [16]).

LEMMA 5. Let 1 � p,r � ∞ , α > 0 . The norms ‖ f‖Bα
pr

and

‖ f‖(1)
Bα

pr
= ‖ f‖p +

(
∞

∑
k=0

mαr
k ‖Smk+1( f )−Smk( f )‖p

)1/r

for 1 � r < ∞

(or ‖ f‖(1)
Bα

p,∞
= ‖ f‖p + sup

k∈Z+

mα
k ‖Smk+1( f )−Smk( f )‖p for r = ∞) are equivalent.

4. Main results

Theorem 1 is an analogue of C. N. Kellogg’s result [10], who used in its proof
Hp -multiplier results of J. H. Hedlund [9].

THEOREM 1. (i) If 1 < p � 2 , f ∈ Lp(G) , 1/p+1/p′ = 1 , then⎛⎝| f̂ (0)|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

| f̂ (i)|p′
)2/p′

⎞⎠1/2

� C1(p)‖ f‖p.

(ii) If p � 2 , a = {ai}∞
i=0 ⊂ C and

‖a‖p′,2 :=

⎛⎝|a0|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

|ai|p′
)2/p′

⎞⎠1/2

< ∞,

then there exists f ∈ Lp(G) with f̂ (k) = ak , k ∈ Z+ , and ‖ f‖p � C2(p)‖a‖p′,2 .
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Both inequalities of Theorem 1 are sharpenings of corresponding inequalities from
Theorem A for the case of Fourier-Vilenkin systems of bounded type.

Proof. (i) Using Lemmas 1 (i), 2 and Theorem A(i) for {χi}∞
i=0 , we obtain

‖ f‖p � C1

∥∥∥∥∥∥
(

∞

∑
k=0

|Δk( f )|2
)1/2

∥∥∥∥∥∥
p

� C1

(
| f̂ (0)|2 +

∞

∑
k=1

‖Δk( f )‖2
p

)1/2

� C1

⎛⎝| f̂ (0)|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

| f̂ (i)|p′
)2/p′

⎞⎠1/2

.

Applying inequality p′ � 2 and Jensen inequality, we see that⎛⎝| f̂ (0)|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

| f̂ (i)|p′
)2/p′

⎞⎠1/2

�
(
| f̂ (0)|p′ +

∞

∑
k=1

mk−1

∑
i=mk−1

| f̂ (i)|p′
)1/p′

=

(
∞

∑
k=0

| f̂ (i)|p′
)1/p′

and the statement of Theorem 1 (i) is a sharpening of Theorem A (i) for the case of
Fourier-Vilenkin systems of bounded type.

(ii) Due to Lemmas 1 (ii), 2 and Theorem A (ii) we have

‖ f‖p � C2

∥∥∥∥∥∥
(

∞

∑
k=0

|Δk( f )|2
)1/2

∥∥∥∥∥∥
p

� C2

(
| f̂ (0)|2 +

∞

∑
k=1

‖Δk( f )‖2
p

)1/2

� C2

⎡⎣| f̂ (0)|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

| f̂ (i)|p′
)2/p′

⎤⎦1/2

.

Using inequality p′ � 2 and Jensen inequality we conclude that⎛⎝| f̂ (0)|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

| f̂ (i)|p′
)2/p′

⎞⎠1/2

�
(
| f̂ (0)|p′ +

∞

∑
i=1

| f̂ (i)|p′
)1/p′

and the statement of Theorem 1 (ii) is a sharpening of Theorem A (ii) for the case of
Fourier-Vilenkin systems of bounded type. Theorem is proved. �

Using Theorem B for the system {χi}∞
i=0 we can similarly establish the following

theorem.
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THEOREM 2. (i) If 1 < p � 2 , f ∈ Lp(G) , then⎛⎝| f̂ (0)|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

| f̂ (i)|pip−2

)2/p
⎞⎠1/2

� C1(p)‖ f‖p.

(ii) If p � 2 , a = {ai}∞
i=0 ⊂ C and

‖a‖hlp,2 :=

⎛⎝|a0|2 +
∞

∑
k=1

(
mk−1

∑
i=mk−1

|ai|pip−2

)2/p
⎞⎠1/2

< ∞,

then there exists f ∈ Lp(G) with f̂ (k) = ak , k ∈ Z+ , and ‖ f‖p � C2(p)‖a‖hlp,2 .

Theorem 3 is an analogue of Theorem E for Vilenkin groups. The notion of solid
space X(G) is introduced similarly to that of X(T) .

THEOREM 3. If 1 < p < ∞ , Lp(G) ⊂ X(G) and X(G) is a solid space, then
Lp

loc+(G) ⊂ X(G) .

Proof. Let f ∈ Lp
loc+(G) , then fDmn = mn fXGn ∈ Lp(G) for some n ∈ N . Since

Dmn =
mn−1

∑
i=0

χi and D̂mn(0) = 1, by (3) we have

f̂ Dmn(k) =
mn−1

∑
j=0

f̂ (k	 j)D̂mn( j) � f̂ (k) � 0, k ∈ Z+. (4)

Thus, fDmn ∈X(G) and f ∈X(G) , since X(G) is a solid space. Theorem is proved. �

DEFINITION 1. If f ∈ L1(G) , 1 < p < ∞ , and for f̂ = { f̂ (i)}∞
i=0 we have ‖f̂‖p,2 <

∞ (‖f̂‖hlp,2 < ∞), then it is said that f belongs to l p,2(G) (HLp,2(G)). Similarly, if

‖f̂‖p :=
(

∞
∑
i=0

| f̂ (i)|p
)1/p

< ∞ (‖f̂‖hlp :=
(

∞
∑
i=0

| f̂ (i)|p(i+1)p−2

)1/p

< ∞), then it is

said that f belongs to l p(G) (HLp(G)). If it is necessary, the condition f ∈ L1(G)
may be substituted by f ∈ PM(G) .

COROLLARY 1. If 1 < p � 2 , then Lp
loc+(G)⊂ l p′,2(G)⊂ l p′(G) and Lp

loc+(G)⊂
HLp,2(G) ⊂ HLp(G) .

Proof. It is clear that l p′,2(G) , HLp,2(G) , l p′(G) , HLp(G) are solid spaces. By
Theorems 1 and 2 we see that Lp(G) , 1 < p � 2, is contained in all these spaces. Right
embeddings are also established in the proof of Theorem 1 and Theorem 2. In virtue of
Theorem 3 we obtain the assertion of Corollary 1.

REMARK 1. A dual proposition to Theorem 3 (if 1 < p < ∞ , X(G) ⊂ Lp(G) ,
then X+(G) = { f ∈ X(G) : f̂ (i) � 0, i ∈ Z+} ⊂ Lp

loc+(G)) is trivial.
Theorem 4 extends Theorem C and Wainger’s positive statement from [17] onto

Vilenkin groups.
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THEOREM 4. If p = 2m, m ∈ N , then Lp
loc+(G) ⊂ Lp(G) .

Proof. Let p = 2m , m ∈ N , and f ∈ L2
loc+(G) . From (4) and Parseval identity it

follows that

m2
n

∫
Gn

| f (x)|2 dx = ‖ fDmn‖2
2 =

∞

∑
k=0

| f̂ Dmn (k)|2 �
∞

∑
k=0

| f̂ (k)|2 = ‖ f‖2
2,

if f ∈ L2(Gn) . Thus, we obtain inequality ‖ f‖2 � |Gn|−1
(∫

Gn
| f (x)|2 dx

)1/2
, where

|Gn| is the Haar measure of Gn . If p = 2m , m ∈ N , then f ∈ Lp
loc+(G) implies f m ∈

L2
loc+(G) . Indeed, the condition f ∈ L2m(Gn) , n ∈ Z+ , means that | f m|2 ∈ L1(Gn) .

For arbitrary g,h ∈ L2(G) and S j(g) =
j−1
∑
i=0

ĝ(i)χi we obtain by Cauchy-Bunyakovsky-

Schwarz inequality and (3) that gh ∈ L1(G) , lim
j→∞

‖h(g−S j(g))‖1 = 0 and

ĥg(k) = lim
j→∞

Ŝ j(g)h(k) = lim
j→∞

j−1

∑
i=0

ĝ(i)ĥ(k	 i) =
∞

∑
i=0

ĝ(i)ĥ(k	 i).

Hence, if f̂ (k) � 0, k ∈ Z+ , then f i also have non-negative Fourier-Vilenkin co-
efficients for all i ∈ N and f m ∈ L2

loc+(G) . By just proved assertion we find that
f m ∈ L2(G) and f ∈ L2m(G) = Lp(G) . Theorem is proved. �

Theorems 5 and 6 are close to Theorems 4 and 7 from [2], where the spaces
HLp(T) and l p′(T) are considered.

THEOREM 5. (i) There exist f0 ∈ HLp,2(G) \ l p′,2(G) for 1 < p < 2 and g0 ∈
l p′,2(G)\HLp,2(G) for 2 < p < ∞ .

(ii) For 2 < p < ∞ there exists f ∈ Lp
loc+(G)\ (HLp,2(G)∪ l p′(G)) .

Proof. (i) Let us consider fα =
∞
∑
i=1

i−α χmi with α > 1/2. Then by Lemma 4 we

have fα ∈ Lp(G) for all 1 < p < ∞ . Since(
mk−1

∑
i=mk−1

| f̂α (i)|p′
)2/p′

= (k−1)−2α , k � 2,

and (
mk−1

∑
i=mk−1

| f̂α (i)|pip−2

)2/p

= (k−1)−2αm2−4/p
k−1 , k � 2,

we find that fα ∈ l p′,2(G) \HLp,2(G) for p > 2 and α > 1/2. If 0 < α < 1/2, then
we can consider fα as pseudomeasure (see Definition 1) and for 1 < p < 2 we obtain
that fα ∈ HLp,2(G)\ l p′,2(G) .
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(ii) Using fα from (i) with α ∈ (1/2,1/p′) again, we see that fα ∈ Lp
loc+(G) by

Lemma 4, fα /∈ HLp,2(G) by (i) and

∞

∑
i=m1

| f̂α (i)|p′ =
∞

∑
k=1

k−α p′ = ∞.

Theorem is proved. �

THEOREM 6. For 1 < p < 2 there exists f0 ∈ l p′,2(G) \ Lp(G) . Also, we have
f0 ∈ l p′,2(G)\HLp(G) .

Proof. Let us consider fα =
∞
∑
i=2

i−1/p′(ln i)−α χi , α > 0. Since i−1/p′ ln−α i ↓ 0,

then by Lemma 3 we have fα ∈ Lp(G) if and only if
∞
∑
i=2

i1−p(ln i)−α pip−2 < ∞ . Hence,

for α = 1/p we have f1/p /∈Lp(G) and f1/p /∈HLp(G) , while f1/p ∈Lr(G) , r∈ (1, p) .
Since for k � 2(

mk−1

∑
i=mk−1

| f̂1/p(i)|p
′
)2/p′

�
(

mk−1

∑
i=mk−1

i−1(ln i)−p′/p

)2/p′

� C1

(
k−p′/p

mk−1

∑
i=mk−1

i−1

)2/p′

� C2k
−2/p, (5)

we see that f1/p ∈ l p′,2(G) . In the last inequality of (5) we use the boundedness of
{pi}∞

i=1 . Theorem is proved. �

REMARK 2. The question of validity for Vilenkin groups of S. Wainger and H. S.
Shapiro results noted after Theorem C in Introduction remains open.

Now we give an analogue of Paley theorem [12], concerning the case p = ∞ .

THEOREM 7. If f ∈L∞
loc+ , then its Fourier series

∞
∑

k=0
f̂ (k)χk converges absolutely

and uniformly on G.

Proof. Under condition of Theorem 7 we have fDmn ∈ L∞(G) for some n ∈ N .
Using (4), we obtain for arbitrary j ∈ N

mj−1

∑
k=0

f̂ (k) �
mj−1

∑
k=0

f̂ Dmn(k) = Smj ( fDmn)(0) = ‖Smj( fDmn)‖∞ � ‖ fDmn‖∞ < ∞.

Since n is independent of j and f̂ (k) � 0, we conclude that
∞
∑

k=0
| f̂ (k)| < ∞ . Here we

use the following properties: 1) for ak � 0 and x ∈ G∣∣∣∣∣n−1

∑
k=0

akχk(x)

∣∣∣∣∣� n−1

∑
k=0

akχk(0) =
n−1

∑
k=0

ak and

∥∥∥∥∥n−1

∑
k=0

akχk(x)

∥∥∥∥∥
∞

=
n−1

∑
k=0

ak;
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and 2) Smj ( f )(x) = mj
∫
x+Gj

f (t)dt for x ∈ G (see [14]). The property 2) gives in-

equality ‖Smn( f )‖∞ � ‖ f‖∞ . Theorem is proved. �

The last theorem is an analogue of Theorem 3.6 from [11], where the case p = ∞
is studied.

THEOREM 8. Let 1 � r < ∞ , α > 0 , p = 2 or p = ∞ (correspondingly, p′ = 2
or p′ = 1 ) and f ∈ Lp(G) such that f̂ (k) � 0 , k ∈ Z+ . The following three statements
are equivalent.

(a) f ∈ (Bα
pr)loc ;

(b) f ∈ Bα
pr ;

(c)

⎛⎝ ∞
∑
j=0

mαr
j

(
mj+1−1

∑
k=mj

( f̂ (k))p′
)r/p′

⎞⎠1/r

< ∞ .

Proof. Since f̂ (k) � 0, we obtain ‖Smj+1( f ) − Smj ( f )‖∞ =
mj+1−1

∑
k=mj

f̂ (k) and

‖Smj+1( f )− Smj ( f )‖2 =

(
mj+1−1

∑
k=mj

( f̂ (k))2

)1/2

. Therefore, equivalence of (b) and (c)

follows from Lemma 5. It is clear that (b) implies (a). Let (a) holds for p = ∞ and
fDmn ∈ Bα

∞,r for some n ∈ N . In virtue of (4) we have

Emj ( f )∞ =
∞

∑
k=mj

f̂ (k) �
∞

∑
k=mj

f̂Dmn (k) = Emj ( fDmn)∞

and ‖ f‖Bα
∞,r

� ‖ fDmn‖Bα
∞,r

. For p = 2 similarly we obtain

Emj ( f )2 =

(
∞

∑
k=mj

( f̂ (k))2

)1/2

�
(

∞

∑
k=mj

( f̂ Dmn(k))
2

)1/2

= Emj ( fDmn )2

and ‖ f‖Bα
2,r

� ‖ fDmn‖Bα
2,r

. Thus, (a) implies (b). Theorem is proved. �
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