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LIOUVILLE TYPE THEOREM FOR HIGHER ORDER

HARDY–HÉNON SYSTEM OF INEQUALITIES

LI-HUA MIN

(Communicated by J. Pečarić)

Abstract. In this paper, we prove some new Liouville type theorems for fourth order and more
general higher order Hardy-Hénon systems of inequalities. The test function method is applied
to show the nonexistence of nontrivial nonnegative global solutions, which improve and extend
some recent results.

1. Introduction

This paper is devoted to the study of nonnegative solutions for a fourth order
parabolic system of inequalities with the biharmonic operator as leading principal part{

ut +�2u � |x|avp,

vt +�2v � |x|buq,
(1)

and the following more general higher order systems of inequalities{
ut +L[u] � |x|avp,

vt +M[v] � |x|buq,
(2)

where p,q > 1, a,b ∈ R, L = L(x,t,Dx), M = M(x,t,Dx) are differential operators of
order l, h(l, h � 4) respectively,

L[u] � − ∑
|α |=l

Dα (aα(x,t,u)u) , M[u] � − ∑
|β |=h

Dβ (bβ (x, t,u)u
)
,

and aα(x, t,u), bβ (x,t,u) are bounded functions. We are mainly concerned with the
Liouville type theorems, i.e. the nonexistence of nontrivial nonnegative solutions.
Below we refer to such solutions as entire solutions, that is, solutions defined for all
(x,t) ∈ S � R

N × (0,+∞) for N � 1.
As it is well known, Liouville-type theorems have proved very useful in many

aspects. For example, they can be efficiently used to obtain a priori bounds, singularity,
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decay estimates and blow up rates for solutions, see [20, 21, 9] and the references
therein for more detailed discussions.

We start with a short description of related elliptic system of the form{
(−�)mu = |x|avp,

(−�)mv = |x|buq.
(3)

The most studied case is when m = 1, especially for a = b = 0. In the single equation
case (i.e. a = b, p = q, u = v),

−�u = |x|aup (4)

is traditionally called the Hénon (resp. Hardy, or Lane-Emden) equation for a > 0
(resp. a < 0, a = 0). The case a = 0 has been very widely studied, see for example
[11]. We now briefly recall the known results about a �= 0. It is known that Equation
(4) has no positive solutions on any domain containing the origin whenever a � −2
[11, 5]. For the case of a > −2, Bidaut-Véron and Giacomini [2] showed that (4) has
no positive classical radial solution on R

N if p < N+2+2a
N−2 for N � 3. Actually, as a

direct consequence of Theorem 1.7 in [2], the conclusion can be proved for general
solutions (non-radial solutions) provided a � 0 and N � 3. Recently, Phan and Souplet
[19] showed that the Liouville property also holds when a > 0 and N = 3 in the case
of bounded solutions. The case of a > 0 and N � 4 is still open.

For the second order system, we first recall the following famous conjecture:

m = 1,
N +a
p+1

+
N +b
q+1

> N−2 ⇒

system (3) has no positive solutions in R
N .

When a = b = 0, this conjecture was proved to be true for radial solutions in any
dimension [16]. Partial results are known for non-radial case, we refer to [16, 17] for
N = 1, 2 and [20] for N = 3. Recently, Souplet [22] fully solved the Lane-Emden
conjecture in N = 4 and established a new region of non-existence for N � 5.

Comparing to the Lane-Emden case, less is known about a �= 0 or b �= 0. Some
special cases such as radial solutions, supersolutions have been discussed. In [2],
Bidaut-Véron and Giacomini proved that there is no positive radial classical solution
to system (3) in R

N for N � 3, a,b > −2 if and only if N+a
p+1 + N+b

q+1 > N − 2. The
nonexistence of supersolutions can be obtained in [17] and [1]: If pq � 1, or pq > 1
and

max

{
2(p+1)+a+bp

pq−1
,
2(q+1)+b+aq

pq−1

}
� N−2,

the system (3) admits no positive supersolutions in R
N for N � 3 and a,b > −2. It

should be noticed that, almost at the same time, Fazly, Ghoussoub in [8] and Phan in
[18] showed that there is no positive bounded solution to system (3) for N+a

p+1 + N+b
q+1 >

N − 2 in R
3 provided a,b > −2. We stress the fact that the conclusion remains true

for higher dimension N � 4 if stronger condition holds, see [17, 18] for more details.
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On the other hand, (non) existence of positive solutions for the system (3) in a bounded
domain were discussed, for example, in [18, 3].

In terms of fourth order Equation (i.e. m = 1, a = 0 and p = 1)

�2u = |x|buq, (5)

the case b = 0 has studied by many authors (see for examples, [23]), while the case
b �= 0 is less completely understood. Fazly and Ghoussoub [8] first considered the
fourth order Hénon-Lane-Emden equation (5), and proved that (5) has no positive finite
Morse index solutions if 1 < q < N+4+2b

N−4 for N � 5. When b > 0 and N = 5, the
conclusion for the case of positive bounded classical solution was established by Cowan
in [4].

We now come to the higher order elliptic system (3) (m � 2) and the coupled
parabolic system {

ut +(−�)mu = |x|avp,

vt +(−�)mv = |x|buq.
(6)

To the best of our knowledge, the known Liouville type results of solutions for both
systems are for the case a = b = 0 only. We refer readers to [24] and the references
therein for the elliptic case. Concerning the initial value problem of parabolic equations

ut +(−�)mu = |x|aup,

it is well known that the critical Fujita exponent is pc = 1 + 2m
N . In fact, for p > pc,

equation admits a class of small global solutions. For 1 < p � pc, if bounded integrable
initial data u0 �≡ 0 and

∫
RN u0(x)dx � 0, then the solution blows up at a finite time T > 0

in L∞(RN) in the sense that

‖u(·, t)‖∞ > [D(p−1)](T − t)−
1

p−1 → ∞, as t → T−,

where D = D(m,N) is a constant [10].
Without taking their traces on the hyperplane t = 0 into account, the global nonex-

istence results for the corresponding (second and higher order) inequality problem with
1 < p � pc were also obtained in [13] and [6]. For the Cauchy problem of system
(6), the following results are essentially known [7, 17]: For m � 1, p > 1 and q > 1,
if N

2m � max{ p+1
pq−1 ,

q+1
pq−1}, then every solution of (6) with initial data having positive

average value does not exist globally in time; if N
2m > max{ p+1

pq−1 ,
q+1
pq−1} , then globally

solutions of (6) with small initial data exist.
Let us next turn to the inequality problem (1). The case of a = b = 0 has been

studied. Most recently, Jiang and Zheng [12] used the completely similar ideas and
techniques in [13] to show that if N

4 � max( p+1
pq−1 ,

q+1
pq−1), the inequality system (1)

with a = b = 0 does not admit nontrivial nonnegative global solutions in S without
considering their initial traces.

The purposes of this paper are mainly to extend and improve the result to the case
of a, b �= 0, and then establish a similar Liouville type theorem for more general higher
order inequality system (2). It is well known that higher-order equations are different



1430 LI-HUA MIN

from second-order equations mainly in the lack of maximum principles, which makes
necessary the development of new analytical tools and different theoretic techniques.
For instance, entropy and entropy dissipation methods have been demonstrated to be
efficient for the understanding of the structure of equations and the qualitative behavior
of their solutions, see [15, 14] and the references therein. In this note, we apply the
“(rescaled) test function method” (cf. e.g. [17]) to get the Liouville type theorems for
higher order parabolic Hardy-Hénon inequality system (1) and (2), without taking into
account their traces on the hyperplane t = 0. We remark that the problems considered
in [6] do not cover our case, due to singularity and degeneracy occur in right hand terms
of our problem.

This paper is organized as follows. In Section 2, our main results of this paper are
presented. We establish a new Liouville-type theorem for problem (1) in Theorem 1.
Theorem 2 focuses on the nonexistence of solutions which are bounded below by a
positive constant on S. Moreover, we also prove the Liouville properties of solutions
to more general higher order inequality system (2), this result is given in Theorem 3.
Section 3 are devoted to the proofs of our main results. In the following sections, we
denote by C positive generic constants, which may change from line to line even if in
the same inequality.

2. Preliminaries and Main results

In this section, the main results of this paper are described. We first consider the
problem (1) and start with our precise definition of solutions.

DEFINITION 1. We say a pair of functions (u,v) is a (weak) solution of (1) if
u, v ∈ L1

loc(S) and the following are satisfied:

i) |x|avp ∈ L1
loc(S) and |x|buq ∈ L1

loc(S);

ii) for any positive function φ ∈C∞
0 (S), there hold

∫∫
S

(−uφt +u�2φ)dxdt �
∫∫

S

|x|avpφ dxdt (7)

and ∫∫
S

(−vφt + v�2φ)dxdt �
∫∫

S

|x|buqφ dxdt. (8)

We will show the following Liouville-type theorem.

THEOREM 1. If max{ a
p−1 , b

q−1}< N � max
{

4(p+1)+(a+bp)
pq−1 , 4(q+1)+(b+aq)

pq−1

}
, then

any nonnegative global solution (u,v) of system (1) is trivial, i.e. u = v = 0 a.e. on S .

In addition to Theorem 1, we also prove that for p,q > 1 satisfying weak assump-
tions inequality system (1) has no solutions bounded below by a positive constant on
S. We need the following definition.
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DEFINITION 2. We say a pair of functions (u,v) is to be bounded below by a
positive constant on S , if there exists a positive constant C such that u,v � C a.e. on
S.

Then we have

THEOREM 2. Assume (a+4)q+(4+b)> 0 , (b+4)p+(4+a)> 0 for p,q > 1.
Then (1) admits no solutions which are bounded below by a positive constant on S.

We remark that if a = b = 0, the assumption in Theorem 2 is trivial. Our next
result of this paper handles the Liouville properties of solutions to more general higher
order inequality system. Similarly, we consider solutions of system (2) in the following
sense.

DEFINITION 3. We say a pair of functions (u,v) is a solution of (2) if u, v ∈
L1

loc(S) and the following are satisfied:

i) |x|avp ∈ L1
loc(S) and |x|buq ∈ L1

loc(S);
ii) for any positive function φ ∈C∞

0 (S), there hold

∫∫
S

(−uφt −uL∗[φ ])dxdt �
∫∫

S

|x|avpφ dxdt (9)

and ∫∫
S

(−vφt − vM∗[φ ])dxdt �
∫∫

S

|x|buqφ dxdt, (10)

where

L∗[φ ] � ∑
|α |=l

aα(x,t,u)(−D)α φ , M∗[φ ] � ∑
|β |=h

bβ (x,t,v)(−D)β φ .

Now we present a Liouville type theorem for system (2).

THEOREM 3. Suppose (u,v) is a nonnegative global solution of system (2), then
u = v = 0 a.e. on S, provided N > max{ a

p−1 ,
b

q−1} and (p,q) ∈ Γ1 ∪Γ2 for

Γ1 =
{

(p,q)|N � max

{
min{l,h}(p+1)+a+bp

pq−1
,
min{l,h}(q+1)+aq+b

pq−1

}}
,

Γ2 =
{

(p,q)|N +max{l,h} � max

{
p(b+h)+a+ l pq

pq−1
,
q(a+ l)+b+hpq

pq−1

}}
.

REMARK 1. As we noted above, the results obtained are new and they generalize
and improve recent non-existence results [12]. It is easy to see that our conclusion
especially for a = b = 0 agrees with that in [12]. Furthermore, if l = h = 4 in Theorem
3, simple calculations show that Γ2 ⊂ Γ1 and in this case, the result is consistent with
that in Theorem 1.
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REMARK 2. As an application of the above Liouville theorems, we can obtain the
universal estimates for the following elliptic system

�2u = |x|avp, �2v = |x|buq in Ω, (11)

where Ω = {x∈ R
N : 0 < |x|< ρ} (ρ > 0) and p, q > 1, a, b∈ R . Based on Theorem

1, using doubling lemma in [20] and proceeding very similarly as the proof of Theorem
1.3 in [18], we have: if N > max{ a

p−1 ,
b

q−1} and

N � max

{
4(p+1)+ (a+bp)

pq−1
,
4(q+1)+ (b+aq)

pq−1
,
4(p+1)
pq−1

,
4(q+1)
pq−1

}
,

there exists C > 0 depending only on a, b, p, q and N, such that any positive classical
solution (u, v) of (11) satisfies

u(x) � C|x|
a+4+(b+4)p

1−pq , v(x) � C|x|
b+4+(a+4)q

1−pq , for any 0 < |x| < ρ/2.

3. The proofs of Theorems

In this section, we address the proofs of our results. The main method is the test
function method. In what follows, we denote P(R) � {(x, t) ∈ S : |x|4 + t < R} for any
fixed R > 0.

3.1. Proof of Theorem 1

The proof of Theorem 1 is heavily inspired by ideals of Kartsatos and Kurta in
[13], which are also used in [12] to prove the Liouville type theorem for the case of
a = b = 0.

Suppose the hypotheses of Theorem 1 are satisfied and (u,v) is a nonnegative
solution to (1). For 0 < R < +∞, let ξ : R

N ×R
+ → [0,1] be a C∞ function, which

equals to 1 on P(R/2) and 0 outside P(R). Furthermore, for 0 < τ < +∞, set η :
[0,+∞) → [0,1] be a C∞ function such that the derivative η ′ � 0 and

{
η(t) = 0, if t ∈ [0,τ],
η(t) = 1, if t ∈ [2τ,+∞).

Let φ(x, t) = ξ s(x,t)η2(t) with s > 4 to be determined and substitute φ(x,t) into
(7), we deduce

−s
∫∫

P(R)
uξ s−1ξtη2 dxdt +

(
−2
∫∫

P(R)
uξ sηη ′ dxdt

)

+
∫∫

P(R)
u(�2ξ s)η2 dxdt �

∫∫
P(R)

|x|avpξ sη2 dxdt. (12)
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Since η ′(t) � 0 for all t > 0, the second integral on the left-hand side of (12) is
nonpositive. So

s
∫∫

P(R)
uξ s−1|ξt |η2 dxdt +

∫∫
P(R)

u|�2ξ s|η2 dxdt

�
∫∫

P(R)
|x|avpξ sη2 dxdt. (13)

Notice that

�2ξ s =s(s−1)(s−2)(s−3)ξ s−4|∇ξ |4 +4s(s−1)(s−2)ξ s−3∇ξ ·∇2ξ ·∇T ξ

+2s(s−1)(s−2)ξ s−3|∇ξ |2�ξ +2s(s−1)ξ s−2
n

∑
i, j=1

(
∂ 2ξ

∂xi∂x j

)2

+4s(s−1)ξ s−2∇ξ ∇�ξ + s(s−1)ξ s−2(�ξ )2 + sξ s−1�2ξ ,

where ∇2ξ denotes the Hessian matrix of ξ .
It follows easily from (13) and Hölder’s inequality that,

(∫∫
P(R)\P( R

2 )
|x|buqξ sη2 dxdt

) 1
q

⎡
⎣(∫∫

P(R)
|x|− b

q−1 |ξt |
q

q−1 ξ s− q
q−1 η2 dxdt

) q−1
q

+
(∫∫

P(R)
|x|− b

q−1 |∇ξ | 4q
q−1 ξ s− 4q

q−1 η2 dxdt

) q−1
q

+
(∫∫

P(R)
|x|− b

q−1 (∇ξ ·∇2ξ ·∇T ξ )
q

q−1 ξ s− 3q
q−1 η2 dxdt

) q−1
q

+
(∫∫

P(R)
|x|− b

q−1 (|∇ξ |2�ξ )
q

q−1 ξ s− 3q
q−1 η2 dxdt

) q−1
q

+

⎛
⎝∫∫

P(R)
|x|− b

q−1

(
n

∑
i, j=1

(
∂ 2ξ

∂xi∂x j

)2
) q

q−1

ξ s− 2q
q−1 η2 dxdt

⎞
⎠

q−1
q

+
(∫∫

P(R)
|x|− b

q−1 (|∇ξ ||∇�ξ |) q
q−1 ξ s− 2q

q−1 η2 dxdt

) q−1
q

+
(∫∫

P(R)
|x|− b

q−1 |�ξ | 2q
q−1 ξ s− 2q

q−1 η2 dxdt

) q−1
q

+
(∫∫

P(R)
|x|− b

q−1 |�2ξ | q
q−1 ξ s− q

q−1 η2 dxdt

) q−1
q

⎤
⎦

� C
∫∫

P(R)
|x|avpξ sη2 dxdt. (14)
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Now we let ξ (x,t) = ψ( |x|
4+t
R ) in (14), where ψ : [0,+∞) → [0,1] is a monoton-

ically decreasing C∞ function satisfying ψ = 1 on [0,1/2] and ψ = 0 on [1,+∞).
According to the definition of ξ , we have

|ξt | � CR−1, |ξ ( j)
x | � CR− j

4 for 1 � j � 4.

On the other hand, simple calculations show that for N > b
q−1 , there holds

∫∫
{|x|4+t<R}

|x|− b
q−1 dxdt � CR

N+4
4 − b

4(q−1) ,

here C is a positive constant which depends on N, b, q only. Hence, noting that s >
4q

q−1 , we conclude from (14) that

(∫∫
P(R)\P( R

2 )
|x|buqξ sη2 dxdt

) 1
q
(

R
− q

q−1+ N+4
4 − b

4(q−1)

) q−1
q

� C
∫∫

P(R)
|x|avpξ sη2 dxdt. (15)

Similarly, for N > a
p−1 , we can get

(∫∫
P(R)\P( R

2 )
|x|avpξ sη2 dxdt

) 1
p
(

R
− p

p−1+ N+4
4 − a

4(p−1)

) p−1
p

� C
∫∫

P(R)
|x|buqξ sη2 dxdt. (16)

Integrating (15) with (16), we arrive at

C
∫∫

P(R)
|x|avpξ sη2 dxdt

�
(∫∫

P(R)\P( R
2 )
|x|avpξ sη2 dxdt

) 1
pq

R

(
N+4

4 − q
q−1− b

4(q−1)

)
q−1
q +

(
N+4

4 − p
p−1− a

4(p−1)

)
p−1
pq

=
(∫∫

P(R)\P( R
2 )
|x|avpξ sη2 dxdt

) 1
pq

R
N(pq−1)−4(p+1)−(a+bp)

4pq (17)

and

C
∫∫

P(R)
|x|buqξ sη2 dxdt �

(∫∫
P(R)\P( R

2 )
|x|buqξ sη2 dxdt

) 1
pq

R
N(pq−1)−4(q+1)−(b+aq)

4pq .

(18)
Hence, from (17), we obtain

CR
4(p+1)+(a+bp)−N(pq−1)

4pq

(∫∫
P(R)

|x|avpξ sη2 dxdt

)1− 1
pq

� 1,
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and so

CR
4(p+1)+(a+bp)−N(pq−1)

4pq

(∫∫
P( R

2 )
|x|avpη2 dxdt

)1− 1
pq

� 1. (19)

In a similar way, we have

CR
4(q+1)+(b+aq)−N(pq−1)

4pq

(∫∫
P( R

2 )
|x|buqη2 dxdt

)1− 1
pq

� 1. (20)

Next we consider the following four possibilities.

Case 1. N < 4(p+1)+(a+bp)
pq−1 .

Let R → ∞ in (19), we deduce∫∫
S

|x|avpη2 dxdt = 0.

Since the function η(t) ≡ 1 on [2τ,∞) and τ is arbitrary, we obtain v(x,t) = 0 a.e. on
S. u(x, t) = 0 a.e. on S then follows from (16).

Case 2. N < 4(q+1)+(b+aq)
pq−1 .

Let R → ∞ in (20), we get ∫∫
S

|x|buqη2 dxdt = 0.

According to the definition of η(t), we have u(x,t) = 0 a.e. on S, and consequently,
v(x,t) = 0 a.e. on S by (15).

Case 3. N = 4(p+1)+(a+bp)
pq−1 .

In this case, (19) implies
∫∫

S
|x|avpη2 dxdt is bounded. So for any sequence rk →

∞, ∫∫
P(rk)\P(rk/2)

|x|avpη2 dxdt → 0

holds. Combining with (17), we infer

lim
rk→∞

∫∫
P(rk/2)

|x|avpη2 dxdt = 0,

which in turn leads that ∫∫
S

|x|avpη2 dxdt = 0.

So as we discussed in Case 1, u(x,t) = v(x,t) = 0 a.e. on S.

Case 4. N = 4(q+1)+(b+aq)
pq−1 .

Similarly to Case 3, there holds∫∫
S

|x|buqη2 dxdt = 0.

Hence we deduce u(x,t) = v(x,t) = 0 a.e. on S as in Case 2 and complete the proof of
Theorem 1. �
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3.2. Proof of Theorem 2

The proof is by contradiction. Let (a+4)q+(4+b)> 0, (b+4)p+(4+a)> 0
for p, q > 1.

Suppose inequality system (1) admits a solution (u,v) such that u,v � C > 0 on
S. Then let ξ , η , ψ as in the proof of Theorem 1, we have

C
∫∫

P(R)
|x|avpξ sη2 dxdt �

(∫∫
P(R)\P( R

2 )
|x|avpξ sη2 dxdt

) 1
pq

R
N(pq−1)−4(p+1)−(a+bp)

4pq

(21)
and

C
∫∫

P(R)
|x|buqξ sη2 dxdt �

(∫∫
P(R)\P( R

2 )
|x|buqξ sη2 dxdt

) 1
pq

R
N(pq−1)−4(q+1)−(b+aq)

4pq .

(22)
Therefore, ∫∫

P( R
2 ) |x|avpη2 dxdt � CR

N(pq−1)−4(p+1)−(a+bp)
4(pq−1) ,

∫∫
P( R

2 ) |x|buqη2 dxdt � CR
N(pq−1)−4(q+1)−(b+aq)

4(pq−1) .

Now we pass to the limit as τ → 0 to get that

∫∫
P( R

2 ) |x|avp dxdt � CR
N
4 − 4(p+1)+(a+bp)

4(pq−1) ,

∫∫
P( R

2 ) |x|buq dxdt � CR
N
4 − 4(q+1)+(b+aq)

4(pq−1) .

(23)

Next we proceed by estimating the integral
∫∫

P( R
2 ) |x|a dxdt. If a � 0, then

∫∫
P( R

2 )
|x|a dxdt � (

R
2

)
a
4

∫∫
P( R

2 )
dxdt � CR

a+N+4
4 ,

where C depends on N only. If a > 0, it is easy to show that for N +a > 0, which is
trivial, there also holds ∫∫

P( R
2 )
|x|a dxdt � CR

a+N+4
4

for C depends on N and a. By the assumption u,v �C, we then deduce from (23) that

R
p[(a+4)q+(4+b)]

4(pq−1) � C, R
q[(b+4)p+(4+a)]

4(pq−1) � C,

for any p, q > 1 and R > 0. Let R tends to infinity, we have thus shown that the
assumption leads to a contradiction, which proves the theorem. �
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3.3. Proof of Theorem 3

Suppose (u,v) is a nonnegative global solution of system (2). Take φ ∈C∞
0 (R), φ �

0, φ(s) = 1 for s � 1, and φ(s) = 0 for s � 2. We may further assume that

|φ ′(s)| � Cφ
1
p (s), |φ ′(s)| � Cφ

1
q (s),

|φ (h)(s)| � Cφ
1
p (s), |φ (l)(s)| � Cφ

1
q (s).

(24)

In fact, such a function exists, for example, one can choose φ(s) = (2− s)ρ with ρ >

max{ hp
p−1 ,

lq
q−1} for 3/2 < s < 2. We remark here that such a test function was first

used in [6].
Let us introduce

ψR(x,t) = φ

(
|x|2 + t2/σ

R2

)

for R > 0 and σ > 0 to be determined below. Then we set φ = ψR(x,t) in (9) and (10)
to obtain that ∫∫

S
|x|avpψR dxdt �

∫∫
S
(−u ∂ψR

∂ t −uL∗[ψR])dxdt,∫∫
S
|x|buqψR dxdt �

∫∫
S
(−v ∂ψR

∂ t − vM∗[ψR])dxdt.
(25)

Denote by I1, I2 the left hand sides of the above two inequalities respectively, we
now in a position to estimate the integrals on the right hand sides. Notice that for
N > b

q−1 , there holds

∫∫
{|x|2+t2/σ <2R2}

|x|− b
q−1 dxdt � CRN+σ− b

q−1 ,

and supp ∂ψR
∂ t ⊆ {(x,t) ∈ S : |x|2 + t2/σ < 2R2}, then applying (24) and Young’s in-

equality, we deduce that

∫∫
S

−u
∂ψR

∂ t
dxdt = −C

∫∫
supp ∂ ψR

∂ t

φ ′R−2t
2−σ

σ udxdt

� CR−σ
∫∫

supp ∂ ψR
∂ t

ψ1/q
R udxdt

� C

(∫∫
supp ∂ ψR

∂ t

|x|buqψR dxdt

) 1
q
(∫∫

supp ∂ ψR
∂ t

R− σq
q−1 |x|− b

q−1 dxdt

) q−1
q

� CI1/q
2

(
R− σq

q−1− b
q−1 +N+σ

) q−1
q

,

and, similarly, also

−
∫∫

S

uL∗[ψR]dxdt � CI1/q
2 R−l− b

q + (N+σ)(q−1)
q .
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Therefore, it follows from (25) that

I1 � CI1/q
2 R− b

q + (N+σ)(q−1)
q

(
R−σ +R−l

)
� CI1/q

2 R
(N+σ)(q−1)−b

q −min{σ , l}. (26)

In a similar way, for N > a
p−1 ,

I2 � CI1/p
1 R

(N+σ)(p−1)−a
p −min{σ ,h} (27)

holds.
Set λ � (N+σ)(q−1)−b

q −min{σ , l} and ω � (N+σ)(p−1)−a
p −min{σ , h}, then com-

bining (26) and (27), we get that

I1 � CR
p(λq+ω)

pq−1 , I2 � CR
q(pω+λ)

pq−1 . (28)

Next, taking σ = min{l, h}, it is easy to show that λq+ ω � 0 is equivalent to

N � min{l,h}(p+1)+(a+bp)
pq−1 , and

ω p+ λ � 0 ⇔ N � min{l, h}(q+1)+ (aq+b)
pq−1

.

If σ = max{l, h}, simple calculations give that

λq+ ω � 0 ⇔ N +max{l, h} � l + p(b+h)+a+l
pq−1 ,

ω p+ λ � 0 ⇔ N +max{l, h} � h+ q(a+l)+b+h
pq−1 .

(29)

Hence, as is discussed in the last part of Section 3.1, we learn from (28) that
u = v = 0 a.e. on S whenever (p,q) ∈ Γ1 ∪Γ2 by letting R → +∞. �
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