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MONOTONE MAPS ON DIAGONALIZABLE MATRICES

MIKHAIL A. EFIMOV AND ALEXANDER E. GUTERMAN

(Communicated by S. Puntanen)

Abstract. We characterize injective maps preserving
�
� -order and maps strongly preserving

�
< -order on the set of diagonalizable matrices.

1. Introduction

Let Mn(F) denote the space of square matrices of order n with entries from a field
F . In this work we always assume that F is an arbitrary algebraically closed field. Let
rk denote the rank of a matrix.

DEFINITION 1.1. A matrix A ∈ Mn(F) has index l ( IndA = l ) if rkAl = rkAl+1

and l is the smallest nonnegative integer with this property.

Equivalently it is possible to introduce index via the images of powers of A ,
namely, IndA = l iff l is minimal such that ImAl ⊆ ImAl+1 . Note that the other
inclusion holds automatically. Let I1n(F) denote the subset of matrices from Mn(F) ,
which has index 1, i.e.,

I1n(F) = {A ∈ Mn(F)| rk(A) = rk(A2)}.

We observe that by the definition the set of matrices of index 1 contains the set
of idempotents, however, the set of index 1 matrices is much larger. In particular, it
contains all diagonalizable matrices. Also it contains all Jordan blocks with a non-zero
eigenvalue.

THEOREM 1.2. Let A ∈ Mn(F) . Then the system

AXA = A, XAX = X , AX = XA

has a solution X if and only if IndA= 1 and the solution is unique (see [10, 19, 20, 25]).
It is called the group inverse of A, and is denoted A� .
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So, the set I1n(F) is precisely the set of matrices having a group inverse. More
details on the properties of group inverses can be found in [2, 11, 24]. The classical
approach to introduce many partial orders on matrices is based on the notion of gener-
alized inverses, see [21] for details on matrix partial orders and their applications. In
particular by means of the group inverse it is possible to introduce the following order
relation on matrices:

DEFINITION 1.3. [20] Let A,B ∈ Mn(F) . Then A
�
� B if and only if A = B or

IndA = 1 and AA� = BA� = A�B . Moreover if A
�
� B and A �= B then A

�
< B .

Another important relation on matrices is the orthogonality (see [27]).

DEFINITION 1.4. [27] Let A,B ∈ Mn(F) . The matrices A and B are called pair-
wise orthogonal, denoted by A ⊥ B , if AB = BA = 0.

DEFINITION 1.5. [9] The map T : I1n(F) → I1n(F) is 0-additive, if for any matri-
ces A,B ∈ I1n(F) with A ⊥ B we have:

(i) T (A) ⊥ T (B) ; (ii) T (A+B) = T (A)+T(B) .

The following decomposition of an arbitrary matrix A∈Mn(F) exists and is unique
(see [2, Chapter 4.8]):

DEFINITION 1.6. [2] A core-nilpotent decomposition of a matrix A ∈ Mn(F) is
the following sum A = CA + NA , such that CA ⊥ NA , IndCA = 1, NA is a nilpotent
matrix.

Below we provide the definitions of the matrix partial orders which will be useful
for our further considerations.

DEFINITION 1.7. [15, 22] We say that A�B for an arbitrary pair of matrices A
and B if and only if rk(B−A) = rkB− rkA .

DEFINITION 1.8. [16] Let A,B ∈ Mn(F) . Then A
cn
� B if and only if CA

�
� CB

and NA�NB . If A
cn
� B and A �= B then A

cn
< B .

LEMMA 1.9. [16] Let A,B ∈ Mn(F) . The condition A
�
� B implies that A�B.

The class of monotone matrix transformations is introduced via matrix partial or-
derings in a standard way. Let � be a certain partial order relation on Mn(F) .

DEFINITION 1.10. Let M ⊆ Mn(F) . The map T : M → M is called monotone
with respect to � -order, if for arbitrary two matrices A,B ∈ M it follows that A � B
implies T (A) � T (B) .
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DEFINITION 1.11. Let M ⊆ Mn(F) . The map T : M → M is called strongly
monotone with respect to � -order, if for arbitrary two matrices A,B ∈ M conditions
A � B and T (A) � T (B) are equivalent.

Monotone transformations were under intensive investigations during the recent
decades, see for example [1, 3, 4, 5, 6, 7, 8, 13, 14, 17, 18, 23, 27] and references
therein. In particular, monotone transformations defined via group inverse were also
previously studied. In the paper [3] the characterization of linear bijective maps for

matrices over an arbitrary field which are monotone with respect to
�
� - and

cn
� -orders

was obtained. In the paper [8] the approach to remove the bijectivity assumption was
discovered. In [7] additive transformations which are monotone with respect to these
orders are investigated. In [9] the authors introduced and studied spectral orthogonal
matrix decompositions and showed that these decompositions can serve as an efficient
tool to characterize monotone matrix transformations. The present work is devoted to

the investigations of injective monotone with respect to
�
� -order matrix transformations

on the set of diagonalizable matrices over algebraically closed fields.
Let Dn(F) ⊆ Mn(F) be the set of diagonalizable matrices. If A is a matrix, and

f is a field endomorphism, then Af = [ai j] f = [ f (ai j)] is a matrix obtained from A by
applying f entrywise, At = [ai j]t = [a ji] is the transpose of A . The main results of the
paper can be formulated as follows:

THEOREM 1.12. Let F be an arbitrary algebraically closed field. Assume n � 3
and consider an injective map T : Dn(F) → Dn(F) which is monotone with respect to
�
� -order. Then there exist a matrix P ∈ GLn(F) , a nonzero endomorphism f : F → F ,
and an injective map σ : F → F satisfying the condition σ(0) = 0 such that

T (A) = ∑
λ∈F

σ(λ )P−1(S2
A(λ )) f P for all A ∈ Dn(F)

or
T (A) = ∑

λ∈F

σ(λ )P−1[(S2
A(λ )) f ]tP for all A ∈ Dn(F),

here spectral orthogonal matrix decomposition Si
A(λ ) ∈ Mn(F) , i = 1,2,3 is defined

below, see Definition 2.3.

THEOREM 1.13. Let F be an arbitrary algebraically closed field, let n � 3 , and

let the map T : Dn(F) → Dn(F) be strongly monotone with respect to
�
<-order. Then

T is injective and there is P ∈ GLn(F) , a nonzero endomorphism f : F → F , and an
injective map σ : F → F satisfying σ(0) = 0 such that

T (A) = ∑
λ∈F

σ(λ )P−1(S2
A(λ )) f P for all A ∈ Dn(F)

or
T (A) = ∑

λ∈F

σ(λ )P−1[(S2
A(λ )) f ]tP for all A ∈ Dn(F).
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REMARK 1.14. 1. We note that on the set of matrices of index one, in particular,

on its subset of diagonalizable matrices,
�
� - and

cn
� -orders are equivalent, so we do not

need to consider
cn
� -order separately in this work.

2. Observe that no linearity or additivity is assumed in Theorems 1.12 and 1.13.

2. Preliminaries

The notion of spectrally orthogonal matrix decompositions are introduced and in-
vestigated in our paper [9]. It will be essentially used in this paper, so we provide below
its definition and basic properties. Firstly we need the following counting functions.

DEFINITION 2.1. A function kA : F×N → Z+ is defined as follows: for λ ∈ F

and r ∈ N the value kA(λ ,r) equals to the number of Jordan blocks of A of the size r ,
corresponding to the eigenvalue λ . If there are no Jordan blocks of A with λ of the
size r then kA(λ ,r) = 0.

DEFINITION 2.2. A function KA : F→Z+ determines the total number of Jordan
blocks of A , corresponding to the eigenvalue λ ,

KA(λ ) =
∞

∑
r=1

kA(λ ,r).

Let Spec(A) denotes the spectrum, i.e., the set of eigenvalues, of a matrix A .
Observe that Spec(A) = {λ ∈ F | KA(λ ) > 0} .

Now we are ready to define spectrally orthogonal matrix decompositions.

DEFINITION 2.3. Let F be a field, A∈Mn(F) , A =CA +NA be the core-nilpotent
decomposition of A . The maps Si : F×Mn(F)→Mn(F) , i = 1,2,3 are called spectrally
orthogonal decompositions of A if S1

A(0) = NA and for any λ �= 0 the matrix S1
A(λ ) =

Xλ is such that Xλ
�
� A , KXλ (λ ) = KA(λ ) and KXλ (μ) = 0 for all μ ∈ F\ {0,λ} .

S2
A(λ ) = S1

A+I(λ +1)−S1
A(λ ) for all λ ∈ F;

S3
A(λ ) = S1

A(λ )−λS2
A(λ ) for all λ ∈ F.

The correctness of this definition is proved in [9, Lemma 2.14]. For convenience
we denote Si(λ ,A) = Si

A(λ ) , i = 1,2,3. If A∈Mn(F) is fixed, it is possible to consider
Si

A as maps F → Mn(F) , i = 1,2,3. Below we list the most important properties of
these maps:

THEOREM 2.4. [9, Theorems 2.17, 2.19–2.20] Let A ∈ Mn(F) .
1. If λ /∈ Spec(A) ⊆ F then Si

A(λ ) = 0 for i = 1,2,3 .
2. rk(S2

A(λ )) = degχA
(z−λ ) is the multiplicity of λ in the characteristic polyno-

mial χA .
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3. Si
A(λ ) ⊥ S j

A(μ) for all λ �= μ , i, j = 1,2,3 .
4. Si

A(λ )S2
A(λ ) = S2

A(λ )Si
A(λ ) = Si

A(λ ) for all λ ∈ F , i = 1,2,3 .
5. The matrix S2

A(λ ) is idempotent for all λ ∈ F .
6. The matrix S3

A(λ ) is nilpotent for all λ ∈ F .
7. A = ∑

λ∈F

S1
A(λ ) = ∑

λ∈F

(λS2
A(λ )+S3

A(λ )) , I = ∑
λ∈F

S2
A(λ ) .

8. For any polynomial f ∈ F[t] it holds that

f (A) = ∑
λ∈F

( f (λ )S2
A(λ )+

f ′(λ )
1!

S3
A(λ )+ . . .+

f (n−1)(λ )
(n−1)!

(S3
A(λ ))n−1).

9. F[A] = { f (A)} f∈F[t] = 〈{S2
A(λ ),S3

A(λ ), . . . ,(S3
A(λ ))n−1}λ∈F〉 , and nonzero ma-

trices from the system {S2
A(λ ),S3

A(λ ), . . . ,(S3
A(λ ))n−1}λ∈F are linearly independent.

10. If λ ∈ F then Si
A(λ ) ∈ Mn(F) , i = 1,2,3 .

11. If A commutes with some B ∈ Mn(F) , then Si
A(λ ) commutes with B for all

λ ∈ F and i = 1,2,3 .
12. If IndA = 1 and A is orthogonal to some B ∈ Mn(F) then

a) all matrices Si
A(λ ) are orthogonal to B,

b) Si
A+B(λ ) = Si

A(λ )+Si
B(λ ) for λ �= 0 and i = 1,2,3 .

c) Si
A(λ ) ⊥ S j

B(μ) for all λ ,μ ∈ F\ {0} , i, j = 1,2,3 .

13. If A
�
�C for some C ∈ Mn(F) , then for all Λ ⊆ F\ {0} we have ∑

λ∈Λ
Si

A(λ )
�
�

∑
λ∈Λ

Si
C(λ ) , i = 1,2 . In particular, Si

A(λ )
�
� Si

C(λ ) for λ �= 0 and i = 1,2 .

3. Monotone transformations on diagonalizable matrices

DEFINITION 3.1. We say that a matrix A∈Mn(F) is diagonalizable if there exists
P ∈ GLn(F) such that P−1AP is diagonal.

Denote by Ei j the matrix with 1 at the (i, j)-position and 0 elsewhere, by Ok

the k× k zero matrix. In this section we characterize injective monotone and strongly
monotone maps on diagonalizable matrices.

Proof of Theorem 1.12. We divide the proof into several steps.
Step 1. Let us show that T preserves rank.
Assume A ∈ Dn(F) and rkA = k . Then there are matrices A0,A1, . . . ,An ∈ Dn(F)

such that A0
�
< A1

�
< · · · �

< An and Ak = A . Indeed since A is diagonalizable then
there exists Q ∈ GLn(F) such that A = Qdiag(λ1, . . . ,λk,0, . . . ,0)Q−1 . Set λs = 1 if
k < s � n . Then set A0 = 0 and for each s , 1 � s � n , consider the matrices As =

Qdiag(λ1, . . . ,λs,0, . . . ,0)Q−1 ∈ Mn(F) . Then for 0 � s � n we have A0
�
< A1

�
< · · · �

<
An and Ak = A .

Thus for any A ∈ Dn(F) with rkA = k we have

A0
�
< A1

�
< · · · �

< An, Ak = A.
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Since T is injective and monotone we have

T (A0)
�
< T (A1)

�
< · · · �

< T (An).

Note that if A and B are such that A
�
< B , then A<B , hence 0 < rk(B−A) =

rkB− rkA , and thus, 1 � rkB− rkA .
Denote di = rkT (Ai) for i = 0, . . . ,n . Then we have

1 � d1−d0, . . . , 1 � dk −dk−1, 1 � dk+1−dk, . . . , 1 � dn−dn−1.

Adding the k first inequalities we get k � dk −d0 . Hence k � k+d0 � dk . Adding the
n− k last inequalities we get n− k � dn − dk . Hence dk � k− n+ dn � k . Therefore
dk = k . Thus T preserves rank.

Step 2. For any λ ∈ F we show that there exists μ ∈ F such that T (λ I) = μI .
1. If λ = 0 then μ = 0 from the rank preserving condition.
2. Let us consider now λ �= 0. Assume in the contrary that T (λ I) is not a scalar

matrix. Consider the set

Γ = {X ∈ Dn(F)|X
�
� λ I and there is no ν ∈ F such that T (X)

�
� νI}.

Since T preserves rank and T (λ I) is not scalar we have λ I ∈ Γ .

3. Denote m = min
X∈Γ

rkX and show that m > 1. Since T (0) = 0
�
� I , then 0 /∈ Γ ,

and m > 0. Moreover for an arbitrary rank 1 matrix X ∈ Dn(F) we have T (X) ∈
Dn(F) and rkT (X) = 1, i.e. there exist α ∈ F and Q1 ∈ GLn(F) such that T (X) =

αQ−1
1 E11Q1

�
� αI . Hence X /∈ Γ and m > 1.

4. Let us show that m �= 2. Indeed if X
�
� λ I and rkX = 2 then there exists

Q2 ∈ GLn(F) such that X = Q−1
2

[(
λ 0
0 λ

)
⊕On−2

]
Q2 . Thus there exist at least 3

different matrices Y1 , Y2 , Y3 ∈ Dn(F) which have rank 1 and satisfy the condition

Yj

�
� X for j = 1,2,3. Indeed let α1,α2,α3 be some distinct elements of F (they exist

since F is algebraically closed, hence, infinite). Set Yj = Q−1
2

[(
λ α j

0 0

)
⊕On−2

]
Q2 if

j = 1,2,3.

Then T (Yj)
�
� T (X) if j = 1,2,3. Moreover by the injectivity of T the matrices

T (Y1) , T (Y2) and T (Y3) are distinct. If T (X) have distinct nonzero eigenvalues then

by [9, Lemma 2.11] there exist at most two matrices Y of rank 1 such that Y
�
� T (X) .

Thus nonzero eigenvalues of T (X) must be equal. This shows that there exists ν ∈ F

such that T (X)
�
� νI . Hence X /∈ Γ . Thus m � 3.

5. Let A ∈ Γ and rkA = m . Since A is diagonalizable, there exists a matrix

B ∈ Dn(F) such that B
�
� A and rkB = m−1. By the definition of m we have B /∈ Γ .
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Thus there exists β �= 0 such that T (B)
�
� β I . Since T (B)

�
� T (A) and rkT (B) = rkB =

m− 1 then β is an eigenvalue of T (A) of the multiplicity at least m− 1. Moreover

since rkT (A) = rkA = m and there is no ν such that T (A)
�
� νI then the multiplicity

of β is m− 1. Hence rkS1
T(A)(β ) = m− 1 and the multiplicity of the other nonzero

eigenvalue is 1.

6. For an arbitrary matrix X ∈Dn(F) satisfying X
�
� A and rkX = m−1 we have

that X /∈ Γ . Hence T (X)
�
� γI for a certain element γ ∈ F . It follows that T (X) =

S1
T(X)(γ) and rkS1

T (X)(γ) = m−1 � 2 since m � 3.

We have T (X)
�
� T (A) and by [9, Theorem 2.20, item 3] it follows that

S1
T(X)(γ)

�
� S1

T(A)(γ).

Therefore, γ can not be an eigenvalue of multiplicity 1 of T (A) . Hence γ = β .

7. By items 5 and 6 it follows that T (X)= S1
T(X)(β )

�
� S1

T(A)(β ) and also rkT (X)=
m− 1 = rkS1

T(A)(β ) . Thus T (X) = S1
T(A)(β ) for any diagonalizable X of rank m−

1 such that X
�
� A . This contradicts the injectivity of T since there exist at least

two diagonalizable matrices X1 and X2 such that Xj

�
� A and rkXj = m− 1, j =

1,2. In particular it is possible to take X1 = Q3 diag(α1, . . . ,αm−1,0, . . . ,0)Q−1
3 , X2 =

Q3 diag(0,α2, . . . ,αm,0, . . . ,0)Q−1
3 , where Q3 is such that Q3AQ−1

3 is diagonal with
α1, . . . ,αm on the diagonal.

The obtained contradiction shows that for any λ ∈ F there exists μ = μ(λ ) ∈ F

such that the equality T (λ I) = μ(λ )I holds.

Step 3. Let us show that the map T is 0-additive.
1. Define a map σ : F → F such that T (λ I) = σ(λ )I for all λ ∈ F . It follows by

Step 2 that such σ exists, it is injective and σ(0) = 0.
2. Assume A ∈ Dn(F) . Let us prove that T (S1

A(λ1)) ⊥ T (S1
A(λ2)) for λ1 �= λ2

and T (A) = ∑
λ∈F

T (S1
A(λ )) . Indeed S1

A(λ )
�
� A for all λ ∈ F\ {0} by the definition of

S1
A(λ ) . Since A is diagonalizable it follows that S1

A(0) = 0. Then S1
A(λ )

�
� A for all

λ ∈ F .

3. T is monotone with respect to
�
�-order. Therefore we have T (S1

A(λ ))
�
� T (A)

for all λ ∈ F . Moreover S1
A(λ )

�
� λ I and T (S1

A(λ ))
�
� T (λ I) = σ(λ )I . Then

T (S1
A(λ )) = S1

T (S1
A(λ ))(σ(λ ))

�
� S1

T(A)(σ(λ ))

for all λ ∈ F . Since the function σ is injective, by [9, Theorem 2.17, item 3] we have
S1

T(A)(σ(λ1)) ⊥ S1
T(A)(σ(λ2)) if λ1 �= λ2 thus T (S1

A(λ1)) ⊥ T (S1
A(λ2)) if λ1 �= λ2 due
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to [9, Lemma 2.5]. Moreover by [9, Lemma 2.22] we have ∑
λ∈F

T (S1
A(λ ))

�
� T (A) and

T (A) = ∑
λ∈F

T (S1
A(λ )) since ranks are equal.

4. Let X ,Y ∈ Dn(F) , X ⊥ Y and X = S1
X(λ ) , Y = S1

Y (λ ) for a certain λ ∈
F\{0} . By the condition F is algebraically closed, hence, it is infinite, thus there exist
α,β ∈F such that 0,α,β ,λ are pairwise distinct elements in F . Denote X ′ = αS2

X (λ ) ,
Y ′ = βS2

X(0) . Then X ⊥ Y ′ , X ′ ⊥ Y , X ′ ⊥ Y ′ and rkX ′ + rkY ′ = n . From the above
discussion we have T (X) ⊥ T (Y ′) , T (X ′) ⊥ T (Y ) , T (X ′) ⊥ T (Y ′) and rkT (X ′) +
rkT (Y ′) = n . Similarly to the proof of [9, Lemma 6.1] we have the relations T (X) ⊥
T (Y ) , T (X)+T(Y ) = T (X +Y) .

5. Let A,B ∈ Dn(F) , A ⊥ B are fixed arbitrary matrices. Then

T (A) = ∑
λ∈F

T (S1
A(λ )) ⊥ ∑

λ∈F

T (S1
B(λ )) = T (B)

by the above and since S1
A(λ1) ⊥ S1

B(λ2) for all λ1,λ2 ∈ F . Moreover

T (A+B) = ∑
λ∈F

T (S1
A+B(λ )) = ∑

λ∈F

T (S1
A(λ )+S1

B(λ ))

= ∑
λ∈F

T (S1
A(λ ))+ ∑

λ∈F

T (S1
B(λ )) = T (A)+T (B),

and the map T is 0-additive.

Step 4. The final form of T .
1. Consider T1 : Dn(F)→Dn(F) defined by T1(A)= (σ(1))−1T (A) . It is straight-

forward to check that T1 is monotone with respect to
�
� -order, T1 is 0-additive, and T1

satisfies T1(λ I) = σ1(λ )I for all λ ∈ F where σ1(λ ) = (σ(1))−1σ(λ ) for all λ ∈ F .
Moreover σ1(0) = 0 and σ1(1) = 1.

2. Assume A ∈ Mn(F) is an idempotent of rank 1. Then A
�
� I and T1(A)

�
�

T1(I) = I , rkT1(A) = 1. Therefore T1(A) is also idempotent of rank 1. Hence by
Theorem 2.3 from [26] there are a matrix P ∈ GLn(F) and a nonzero endomorphism
f of the field F such that either T1(A) = P−1Af P for any rank one idempotent A
or T1(A) = P−1(Af )tP for any rank one idempotent A . We remark that in [26] this
result was obtained only for the case F = C . However the same proof is applicable
over an arbitrary algebraically closed field. Indeed, the nonsurjective analog of the
main theorem of projective geometry, which is the key tool in obtaining the above
characterization, is proved in [12] even for an arbitrary skewfield the other arguments
from the proof are directly applicable not only for the field C but for any field.

3. Thus either T1(A) = P−1Af P or T1(A) = P−1(Af )tP on the set of idempotents
of rank 1. After the composition of T1 with similarity and transposition (if necessary)
we obtain a 0-additive map T2 : Dn(F) → Dn(F) satisfying the conditions T2(A) = Af

for all idempotents of rank 1 and T2(λ I) = σ1(λ )I .
4. By 0-additivity of T2 we have T2(A) = Af for all idempotents since any idem-

potent is a sum of pairwise orthogonal rank 1 idempotents.
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5. For any B ∈ Dn(F) such that rkB = 1 it holds that B = S1
B(λ ) for a certain

λ �= 0. Then B ⊥ S2
B(0) and

T2(B) ⊥ T2(S2
B(0)) = (S2

B(0)) f .

Moreover rkT2(B)+ rk(S2
B(0)) f = n . However

1
σ1(λ )

T2(B)+ (S2
B(0)) f = I = (S2

B(0)+S2
B(λ )) f ,

thus T2(B) = σ1(λ )(S2
B(λ )) f .

6. Hence T2(A) = ∑
λ∈F

σ1(λ )(S2
A(λ )) f for all A ∈ Dn(F) . However σ(λ ) =

σ(1)σ1(λ ) hence
T (A) = ∑

λ∈F

σ(λ )P−1(S2
A(λ )) f P

for all A ∈ Dn(F) or
T (A) = ∑

λ∈F

σ(λ )P−1((S2
A(λ )) f )tP

for all A ∈ Dn(F) , which is our statement. �

Proof of Theorem 1.13. Similarly to item 1 of Theorem 1.12 we show that map T
preserves rank. Let X ,Y ∈ Dn(F) are such that T (X) = T (Y ) . Then rkX = rkY = r .
There are two possible cases:

1) r > 1. Let nonzero matrices X1 , X2 be such that X1 ⊥ X2 , X = X1 +X2 . Then

Xi
�
< X , T (Xi)

�
< T (X) = T (Y ) , Xi

�
<Y for i = 1,2. Therefore X = X1 +X2

�
�Y by [9,

Lemma 2.22] and X = Y .

2) r = 1. Denote by λ a nonzero eigenvalue of a matrix X . We have X
�
< λ I

therefore Y
�
< λ I , λ ∈ Spec(Y ) . Let μ ∈ F \ {0,λ} , A = X + μS2

X(0) . Then X
�
< A

and Y
�
< A ,

Y = S1
Y (λ )

�
� S1

A(λ ) = X , X = Y.

Thus the map T is injective and has the required form by Theorem 1.12. �

The following proposition provides the uniqueness conditions for the aforesaid
form of T .

PROPOSITION 3.2. Let Tj(A) = ∑
λ∈F

σ j(λ )P−1
j [(S2

A(λ )) f j ]t j Pj , j = 1,2 , where

each t j is either identity map or the transposition, Pj ∈ GLn(F) , f1, f2 are field en-
domorphisms of F not both equal to zero, σ j : F → F are some maps. Assume that
T1(A) = T2(A) for all A ∈ Dn(F) . Then σ1 ≡ σ2 . Assume in addition that σ1 �= const
then f1 ≡ f2 , t1 = t2 and there exists α �= 0 such that P2 = αP1 .
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Proof. For all λ ∈ F we have

T1(λ I) = σ1(λ )I = σ2(λ )I = T2(λ I),

thus σ1 ≡ σ2 . Set σ(λ ) = σ1(λ )− σ1(0) , T (A) = T1(A)−σ1(0)I . Thus T (A) =
∑

λ∈F

σ(λ )P−1
j [(S2

A(λ )) f j ]t j Pj for j = 1,2. If σ1 �= const then σ �= const and there

exists such μ ∈ F that σ(μ) �= σ(0) = 0. For any idempotent matrix A we have

T (μA) = σ(μ)P−1
1 (Af1)t1P1 = σ(μ)P−1

2 (Af2)t2P2.

Denote Q = P2P
−1
1 we obtain (Af1)t1 = Q−1(Af2)t2Q . Set A = Eii thus Eii = Q−1EiiQ .

Therefore Q = diag(α1, . . . ,αn) . Let A = E11 + λEi1 , i > 1. Since (Af1)t1 =
Q−1(Af2)t2Q and E11 = Q−1E11Q then f1(λ )(Ei1)t1 = f2(λ )Q−1(Ei1)t2Q . Thus t1 =
t2 . If t1 is an identity map then f1(λ )Ei1 = f2(λ )α−1

i α1Ei1 . If t1 denotes the transpo-
sition then f1(λ )E1i = f2(λ )α−1

1 αiE1i . In both cases we set λ = 1 and obtain αi = α1

for all i > 1 therefore f1 ≡ f2 . Thus Q is a scalar matrix and there exists α �= 0 such
that P2 = αP1 . �

4. Examples

Below we provide several examples showing that the assumptions of Theorems
1.12 and 1.13 are indispensable.

Our first two examples show that despite of the fact that monotone transforma-
tions on Dn(F) have some standard form, on the whole matrix space Mn(F) they are
uncontrollable.

EXAMPLE 4.1. Let T1 : Mn(F)→Mn(F) be defined by T1(A) = 0 if Ind(A) > 1,

and T1(A) = A if Ind(A) = 1. Then T1 is monotone with respect to the
�
� -order.

However, T1 is not of the form described in Theorem 1.12. Indeed, all transformations
of the form described in Theorem 1.12 are injective, but T1 is not.

Even under the conditions that T is bijective and strongly monotone on the whole
Mn(F) it can be of the form which is different from the one described in Theorem 1.12,
as the following example show.

EXAMPLE 4.2. Let T2 : Mn(F) → Mn(F) be defined as

T2(A) = ∑
λ∈F

(λS2
A(λ )−S3

A(λ )).

Here in the spectral-orthogonal decomposition of A via S2 and S3 we changed plus to
minus. Then

(1) T2 is bijective,

(2) T2 is strongly monotone with respect to the
�
�-order,
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however it is straightforward to see that on the whole Mn(F) the map T2 is not of the
form described in Theorem 1.12. Note that on Dn(F) the map T2 is identity.

Let us check the conditions (1) and (2).
Indeed T2(T2(A)) = A for all A ∈ Mn(F) . This implies bijectivity.

T is strongly monotone with respect to the
�
� -order, since S2

T2(A)(λ ) = S2
A(λ ) and

S3
T2(A)(λ ) = −S3

A(λ ) for all A ∈ Mn(F) .
Also T2(E12) = −E12 , thus T2 is not identity map on the whole Mn(F) .

The following example shows that even on the set of diagonalizable matrices there

are “wild” maps which are monotone with respect to the
�
< -order. Certainly, such maps

are neither injective nor strongly monotone.

EXAMPLE 4.3. Let T3 : Dn(F)→Dn(F) be such that for each A∈Dn(F) , rkA =

k , we define T3(A) = E11+ . . .+Ekk . Then T3 is monotone with respect to the
�
< -order,

T3 is not injective, T3 is not strongly monotone with respect to the
�
< -order, and T3 is

not of the form described in Theorem 1.12.

In our next paper we further emphasize our results in the case of injective continu-
ous maps over the field of complex numbers. It will be shown that such maps have to be
either linear or conjugate-linear. Also an example will be given showing that without
these conditions non-additive monotone maps really exist.
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