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REFINEMENTS OF THE SHAFER–FINK

INEQUALITY OF ARBITRARY UNIFORM PRECISION

JACOPO D’AURIZIO

(Communicated by I. Perić)

Abstract. A method of producing refinements of the Shafer-Fink ([5]) inequality
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Other algebraic approximations for the arctangent functions are, rather informally, presented.

1. Refinements of the Shafer-Fink inequality with arbitrary uniform precision

THEOREM 1. (Shafer, Fink) For any positive real number x ,

3x
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√

1+ x2
< arctanx <

πx
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√

1+ x2

holds.

Proof. Following the lines of ([6]), we consider the substitution x = tanθ , that
gives the following, equivalent form of the inequality:

∀θ ∈ I = (0,π/2), θ (cosθ +2)−π sinθ < 0 < θ (cosθ +2)−3sinθ .

If now we set

fK(θ ) = (cosθ +2)−K
sinθ

θ
we have:

θ 2 d fK
dθ

= (K−θ 2)sinθ −Kθ cosθ .
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Since for any θ ∈ I we have:

θ
tanθ

< 1− θ 2

3
< 1− θ 2

π
,

f3(θ ) ed fπ(θ ) are both non-decreasing on I , in virtue of d fK
dθ � 0; moreover, f ′K(0) =

0 and f ′K cannot be zero on I . Since:

f3(0) = 0, fπ (π/2) = 0,

the claim follows. �
We give now a different proof of this inequality, that relies on the bisection formula

for the cotangent function and the associated Weierstrass product.
From the logarithmic derivative of the Weierstrass product for the sine function we

know that for any x ∈ [0,π/2]

f (x) = xcotx = 1−2
+∞

∑
k=1

ζ (2k)
π2k x2k

holds. Since f (x) is an even function, there exists a suitable linear combination g1(x)
of f (x) and f (x/2) that satisfies:

g1(x) = A0 f (x)+A1 f (x/2) = 1− ∑
k�2

C(1)
k x2k.

With the choices A0 = − 1
3 , A1 = 4

3 the previous identity holds, and, for any k � 2:

C(1)
k =

(
A0 +

A1

4k

)
ζ (2k)
π2k

< 0,

so g1(x) is an increasing and convex function over I = [0,π/2] . From that,

∀x ∈ I,

(
−1

3
xcotx+

2
3
xcot

x
2

)
∈ [g1(0),g1(π/2)] = [1,π/3]

follows. If now we consider the bisection formula for the cotangent function:

cot
x
2

= cotx+
√

1+ cot2 x, tan
x
2

=
1+

√
1+ tan2 x
tanx

we have a different proof of the Shafer-Fink inequality.
We consider now g2(x) as a linear combination of f (x), f (x/2) and f (x/4) such

that:
g2(x) = A0 f (x)+A1 f (x/2)+A2 f (x/4) = 1− ∑

k�3

C(2)
k x2k.

From the annihilation of the coefficient of x2 in the RHS we deduce the constraint
A0 +A1 · 1

4 +A2 · 1
16 = 0, and from the annihilation of the coefficient of x4 we deduce
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the constraint A0 + A1 · 1
16 + A2 · 1

256 = 0. If we take p2(x) = A0 + A1x + A2x2 , such
constraints translate into p2(1/4) = p2(1/16) = 0, from which:

p2(x) = K2

(
x− 1

4

)(
x− 1

16

)
,

with K2 = (1−1/4)−1 · (1−1/16)−1 in order to grant A0 +A1 +A2 = p2(1) = 1.

Since C(2)
k = ζ (2k)

π2k p2(4−k) , all the non-zero coefficients of the Taylor series of
g2(x) , except (at most) the first one, have the same sign, so g2(x) is a monotonic
function over I . In particular:

∀x ∈ I,
π(3+8

√
2)

45
= g2(π/2) � g2(x) =

1
45

( f (x)−20 f (x/2)+64 f (x/4))

=
x
45

(cotx−10cot(x/2)+16cot(x/4)) � 1,

from which we get:

π(3+8
√

2) � x(cotx−10cot(x/2)+16cot(x/4)) � 45.

By using twice the bisection formula for the cotangent, we have the following strength-
ening of the Shafer-Fink inequality:

THEOREM 2. For any positive real number x

π(3+8
√

2) · f (x) < arctanx < 45 · f (x)

holds, where:

f (x) =
x

7+6
√

1+ x2 +16
√

2
√

1+ x2 +
√

1+ x2
.

The same approach leads to an arbitrary strengthening of the Shafer-Fink inequal-
ity:

THEOREM 3. For any positive real number x and for any positive natural number
n, once defined:

f (x) = xcotx = 1−2
+∞

∑
k=1

ζ (2k)
π2k x2k,

pn(x) =
n

∏
k=1

(4kx−1)
(4k −1)

= A0 +A1x+ . . .+Anx
n,

gn(x) =
n

∑
k=0

Ak f (2−kx) = x
n

∑
k=0

Ak

2k cot(2−kx),

e j(x1, . . . ,xk) = ∑
1�i1<...<i j�k

xi1 · . . . · xi j ,
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L0(x) = 1, Ln+1(x) = Ln(x)+
√

x2 +Ln(x)2,

we have:
Klow ·an(x) < arctan(x) < Khigh ·an(x),

where Klow = min(gn(0),gn(π/2)) , Khigh = max(gn(0),gn(π/2)) and:

an(x) =

x ·
n

∏
k=1

(4k −1)

n

∑
j=0

(−1)n− j ·Lj(x) ·2 j · e j(1,4, . . . ,4n−1)
.

Moreover, Khigh−Klow < 1
4n .

Proof. By taking

pn(x) =
n

∏
k=1

(4kx−1)
(4k −1)

= A0 +A1x+ . . .+Anx
n

we have pn(1) = 1 and pn(4− j) = 0 for every j ∈ {1, . . . ,n} .
In particular, the Taylor series of

gn(x) =
n

∑
k=0

Ak f (2−kx) = x
n

∑
k=0

Ak

2k
cot(2−kx).

is equal to:

1−2
+∞

∑
k=1

ζ (2k)pn(4−k)
π2k x2k = 1−2 ∑

k>n

C(k)
n x2k,

and all the C(k)
n with k > n have the same sign, so gn(x) is monotonic over [0,π/2] ,

with gn(0) = 1. Moreover, for any m > n we have the crude bound:

∣∣pn(4−m)
∣∣= n

∏
k=1

∣∣∣∣4−k −4−m

1−4−k

∣∣∣∣< n

∏
k=1

1
4k −1

� 1
3
,

hence:

Khigh−Klow = |gn(π/2)−gn(0)| < 2
3 ∑

k>n

ζ (2k)
4k <

10
9 ∑

k>n

1
4k =

10
27

· 1
4n ,

and gn(x) is very close to gn(0) = 1 for any x ∈ [0,π/2] : it follows that gn(arccoty)
is very close to 1 for any y � 0. By the cotangent bisection formulas, we have:

gn(arccoty) = arccoty ·
n

∑
k=0

Ak

2k ·Rk(y) ∈
[
Klow,Khigh

]
,
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where R0(y) = y and Rk+1(y) = Rk(y)+
√

1+Rk(y)2 . By taking y = 1/x we have:

arctan(x) ·
n

∑
k=0

Ak

2k ·Rk(1/x) ∈ [Klow,Khigh
]
,

so arctanx is very close to:
x

n

∑
k=0

Ak

2k · x ·Rk(1/x)
,

and if we set Lk(x) = x · Rk(1/x) , we immediately have L0(x) = 1 and Lk+1(x) =
Lk(x)+

√
x2 +Lk(x)2 . Since:

Ak = en−k
(
4−1, . . . ,4−n) · n

∏
k=1

4k

4k −1
,

Ak = (−1)n−k ek (4, . . . ,4n)
n

∏
h=1

1
4h−1

= 4k(−1)n−k ek
(
1, . . . ,4n−1) n

∏
h=1

1
4h−1

,

the claim follows. It is worth mentioning that

k > j =⇒ 1−4 j−k < exp(−4 j−k),

so k > n implies:

n

∏
j=1

(
1−4 j−k

)
� exp

(
−

n

∑
j=1

1
4k− j

)
= exp

(
−4

3
· 4n−1

4k

)
< e−1/3 <

3
4

and:

∣∣∣∣gn(π/2)−gn(0)
∣∣∣∣ · n

∏
k=1

(4k −1) = 2 ∑
k>n

ζ (2k)∏n
j=1(1−4 j−k)
4k

<
5
2 ∑

k>n

1
4k =

5
6
· 1
4n ,

so, rewriting the LHS of the last inequality and exploiting cot
(

π
2k+1

)
= Rk−1(1) ,

∣∣∣∣ n

∏
k=1

(4k −1)− π
2

n

∑
k=1

(−1)n−k ·2k · ek(1, . . . ,4n−1) ·Rk−1(1)
∣∣∣∣< 1

4n

follows. �
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2. Other approximations

We give now another upper bound for the arctangent function that does not be-
long to the last family of inequalities, but that strenghtens the inequality arctanx <

πx

1+2
√

1+x2
, too.

THEOREM 4. For any positive real number x

arctanx <
πx

4
π +

√
2
√

1+ x2 + x
√

1+ x2

holds.

Proof. By using the substitution x = tanθ , it is sufficient to prove that for any
θ ∈ I = [0,π/2] we have:

θ � π sinθ
4
π cosθ +

√
2+2sinθ

,

that is also equivalent, up to the change of variable θ = π/2−φ , to the inequality:

π
2
−φ � π cosφ

4
π sinφ +2cos(φ/2)

,

or the inequality:
cosφ
1− 2φ

π
� cos(φ/2)

(
4
π

sin(φ/2)+1

)
.

In order to prove the latter it is sufficient to prove:

cosφ
1− 2φ

π
� cos(φ/2)

(
1+

2φ
π

)
,

or:
cosφ

1− 4φ2

π2

� cos(φ/2).

By considering the Weierstrass product for the cosine function we may rewrite the last
line in the form:

+∞

∏
k=1

(
1− 4x2

(2k+1)2π2

)
�

+∞

∏
k=1

(
1− x2

(2k−1)2π2

)
.

By considering the Taylor series of the logarithm of both sides, we simply have to
prove:

∀m ∈ N0, (4m −1)ζ (2m)−4m− (1−4−m)ζ (2m) � 0,
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that is a consequence of:

∀m ∈ N0, ζ (2m) � 4m +1
4m−1

,

implied by:
∀m ∈ N0, (4m −1)(ζ (2m)−1) � 2.

An upper bound for the LHS is the series:

1+
+∞

∑
k=1

(
4

(2k+1)2

)m

,

whose value decreases as m increases; so we have:

(4m −1)(ζ (2m)−1) � 1+
+∞

∑
k=1

4
(2k+1)2 = 3ζ (2)−3,

and the RHS is less than 2 since π2 < 10 holds. �
Now we make a step back into the general setting of double inequalities for the

arctangent function, showing that any uniform algebraic approximation for the arctan-
gent function over the interval [0,1] gives a uniform algebraic approximation for the
arctangent function over the whole real line.

LEMMA 1. If f (u),g(u) are a couple of real functions such that, for any u ∈
[0,1] ,

f (u) � arctanu � g(u)

holds, then:

2 · f

(
x

1+
√

1+ x2

)
� arctanx � 2 ·g

(
x

1+
√

1+ x2

)

holds for any x ∈ R
+ .

Proof. In virtue of the angle bisector theorem,

arctant = 2arctan

(
t

1+
√

1+ t2

)

for any t � 0, so if the first inequality holds for any θ = arctanu in the range [0,π/4] ,
the second inequality holds for any θ = arctanx in the range [0,π/2] . �

The last lemma gives a third way to prove the Shafer-Fink inequality. By direct
inspection of the Taylor series of arctanu

u , it is easy to show that (3 + u2) arctan u
u is an

increasing function over [0,1] , so:

3u
3+u2 � arctanu � πu

3+u2 ,

and it is sufficient to use the substitution u = x

1+
√

1+x2
to give another proof of the

Shafer-Fink inequality.
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LEMMA 2. If an approximation f (u) of the arctangent function satisfies:

‖ f (u)− arctan(u)‖R+ = sup
u∈R+

| f (u)− arctan(u)| = C∞,

then ∥∥∥∥2 · f

(
u

1+
√

1+u2

)
− arctan(u)

∥∥∥∥
R+

= 2 · ‖ f (u)− arctan(u)‖(0,1) = 2 ·C1,

and, for any t ∈ (0,1) ,∥∥∥∥2 · f

(
u

1+
√

1+u2

)
− arctan(u)

∥∥∥∥
(0,t)

= 2 · ‖ f (u)− arctan(u)‖(
0, 2t

1−t2

).

This simple consequence of the previous lemma tell us the fact that any algebraic ap-
proximation of the arctangent function in a right neighbourhood of zero can be “lifted”
to an algebraic approximation over the whole R

+ , through the iteration of the map

f (u) −→ 2 · f

(
u

1+
√

1+u2

)
.

For example, if we consider the Lagrange interpolation polynomial for the arctangent
function with respect to the points (0, tan(π/8) =

√
2−1, tan(π/4) = 1)

p(x) =
π
4
· x(x−√

2+1)
2−√

2
+

π
8
· x(x−1)
(
√

2−1)(
√

2−2)
,

we have

‖p(x)− arctanx‖(0,1) <
1

230
,

so, by considering 2 · p
(

x

1+
√

1+x2

)
:

THEOREM 5. For any non negative real number x , the absolute difference be-
tween arctan(x) and

πx
((

4+
√

2
)(

1+
√

1+ x2
)
−√

2x
)

8
(
1+

√
1+ x2

)2

is less than 1
115 .

Following [1], another way to produce really effective approximation is to use the
Chebyshev expansion for the arctangent function:
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LEMMA 3. The sequence of functions:

fn(x) = 2
n

∑
k=0

(−1)k

(2k+1)(1+
√

2)2k+1
T2k+1(x),

where Tk(x) is the k -th Chebyshev polynomial of the first kind, gives a uniform approx-
imation of the arctangent function over the interval [0,1]:

‖arctanx− fn(x)‖[0,1] �
1

(1+
√

2)2n+3
.

Moreover,

arctan(mx) = 2
+∞

∑
k=0

(−1)k

(2k+1)

(
m

1+
√

1+m2

)2k+1

T2k+1(x)

holds for any x ∈ (−1,1) and for any m ∈ N0 .

THEOREM 6. For any n ∈ N0 and for any x ∈ R∣∣∣∣∣ arctanx−4
n

∑
k=0

(−1)k

(2k+1)(1+
√

2)2k+1
T2k+1

(
x

1+
√

1+ x2

)∣∣∣∣∣� 1(
3+2

√
2
)n .

Still following [1], another way is to use the continued fraction representation for
the arctangent funtion:

arctanz =
z

1+ z2

3+ 4z2

5+ 9z2

7+ 16z2

9+ 25z2
11+...

,

from which we get a sequence of approximations for arctanx over [0,1] :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1(x) =
x

1+ x2/3
,

K2(x) =
x

1+ x2/(3+4x2/5)
=

x(15+4x2)
15+9x2 ,

K3(x) =
x

1+ x2/(3+4x2/(5+9x2/7))
=

5x
(
21+11x2

)
105+90x2 +9x4

. . .

that satisfy:

‖arctanx−Kn(x)‖[0,1] �
1

2 ·4n ,

so: ∥∥∥∥arctanx−Kn

(
x

1+
√

1+ x2

)∥∥∥∥
R

� 1
4n ,
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with an error term that is roughly the same achieved by an(x) , defined as in Theorem
(3).

Following the spirit of [2], by using the Taylor series for the arctangent function
with respect to the point x = 1 one has:

arctanx =
π
4
−

+∞

∑
j=0

(
− (1− x)4

4

) j

·
(

(1− x)
2(4 j +1)

+
(1− x)2

2(4 j +2)
+

(1− x)3

4(4 j +3)

)
,

or:

arctan

(
1− x
1+ x

)
=

+∞

∑
j=0

(
− (1− x)4

4

) j

·
(

(1− x)
2(4 j +1)

+
(1− x)2

2(4 j +2)
+

(1− x)3

4(4 j +3)

)
.

By plugging in x = 2/3 we have:

arctan
1
5

=
+∞

∑
j=0

(
− 1

324

) j

·
(

1
6(4 j +1)

+
1

18(4 j +2)
+

1
108(4 j +3)

)
,

and by plugging in x = 119/120 we have:

arctan
1

239
=

+∞

∑
j=0

(
− 1

829440000

) j

·
(

1
240(4 j+1)

+
1

28800(4 j+2)
+

1
6912000(4 j+3)

)
.

The Machin Formula
π
4

= 4arctan
1
5

+ arctan
1

239

give us the possibility to exhibit a good approximation for π :

π = 8
+∞

∑
j=0

(
− 1

324

) j

·
(

1
3(4 j +1)

+
1

9(4 j +2)
+

1
54(4 j +3)

)
+

+
+∞

∑
j=0

(
− 1

829440000

) j

·
(

1
60(4 j +1)

+
1

7200(4 j +2)
+

1
1728000(4 j +3)

)
.

In the same fashion, we have that:

arctan
1

2z−1
=

+∞

∑
j=0

(
− 1

4z4

) j

·
(

1
2z(4 j +1)

+
1

2z2(4 j +2)
+

1
4z3(4 j +3)

)

holds for any z � 1, and the truncated series gives a better and better approximation as
z goes to infinity. By a change of variable, the same is true for:

arctan
1
t

=
+∞

∑
j=0

(
− 4

(t +1)4

) j

·
(

1
(t +1)(4 j +1)

+
2

(t +1)2(4 j +2)
+

2
(t +1)3(4 j +3)

)
,
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and:

arctanu =
+∞

∑
j=0

(
− 4u4

(u+1)4

) j

·
(

u
(u+1)(4 j+1)

+
2u2

(u+1)2(4 j+2)
+

2u3

(u+1)3(4 j+3)

)

holds for any u ∈ [0,1] . By taking:

sn(u) =
n

∑
j=0

(
− 4u4

(u+1)4

) j

·
(

u
(u+1)(4 j+1)

+
2u2

(u+1)2(4 j+2)
+

2u3

(u+1)3(4 j+3)

)

we have that:

|arctanu− sn(u)| �
(√

2u
u+1

)4n

for any u ∈ [0,1] , with sn being an upper bound for arctanu over [0,1] for any even n
and a lower bound for any odd n . If we consider:

tn(u)=
π
4
−sn

(
1−u
1+u

)
=

π
4
−

n

∑
j=0

(
− (1−u)4

4

) j

·
(

1−u
2(4 j+1)

+
(1−u)2

2(4 j+2)
+

(1−u)3

4(4 j+3)

)
,

then tn is a lower/upper bound for the arctangent function over [0,1] if and only if sn

is a lower/upper bound, and:

|arctanu− tn(u)| �
(

1−u√
2

)4n

holds. Any convex combination of sn and tn is still a lower/upper bound - by taking:

wn(u) =
u4n+4 · tn(u)+ (1−u)4n+4 · sn(u)

u4n+4 +(1−u)4n+4

we can perform a reduction of the uniform error, since:

|wn(u)− arctanu| � 1
20n

and the error function goes very fast to zero when u approaches 0 or 1. This gives that

wn

(
u

1+
√

1+u2

)

is an especially good lower/upper bound for the arctangent function when u is close to
0 or much bigger than 1, achieving about the same uniform error term with respect to
the generalized Shafer-Fink inequality or the continued fraction expansion.

As a final remark it is worth mentioning that all the given inequalities give bounds
for inverse sine function, too, since for any x ∈ (−1,1) :

arcsin(x) = arctan

(
x√

1− x2

)
.
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