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MONOTONICITY THEOREMS AND

INEQUALITIES FOR THE GAMMA FUNCTION

PÁL A. KUPÁN AND RÓBERT SZÁSZ

(Communicated by N. Elezović)

Abstract. In this paper monotonicity results concerning the gamma function are deduced. These
results lead to inequalities which improve some known bounds for the Γ function.

1. Introduction

In [7] the author proved the following double inequality:

x2 +1
x+1

� Γ(x+1) � x2 +2
x+2

, x ∈ [0,1]. (1)

The authors of [8], [9] improved this inequality proving that the function

f1 : (0,1) → R, f1(x) =
lnΓ(x+1)

ln x2+1
x+1

is strictly increasing. This result implies the inequality

(x2 +1
x+1

)2(1−γ)
� Γ(x+1) �

(x2 +1
x+1

)γ
, x ∈ [0,1]. (2)

According to the authors of the same work it can be proved that:

f6 : (0,1) → R, f6(x) =
lnΓ(x+1)

ln x2+6
x+6

is strictly decreasing. Motivated by these results they posed among others the following
open problems:

(1) Determine the largest λ > 1 so that the function

fλ : (0,1) → R, fλ (x) =
lnΓ(x+1)

ln x2+λ
x+λ
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to be strictly increasing.
(2) Determine the smallest λ < 6 so that the function

fλ : (0,1) → R, fλ (x) =
lnΓ(x+1)

ln x2+λ
x+λ

to be strictly decreasing. In the following we shall solve these open problems.

2. Preliminaries

In order to prove our main result we need the following lemmas.

LEMMA 1. [3] Let h,k : [a,b] → R be two continuous functions which are differ-
entiable on (a,b). Further let k′(x) �= 0, x ∈ (a,b). If h′/k′ is strictly increasing (resp.
decreasing) on (a,b), then the functions

x �−→ h(x)−h(a)
k(x)− k(a)

x �−→ h(x)−h(b)
k(x)− k(b)

are also strictly increasing (resp. decreasing) on (a,b).

LEMMA 2. Let λ and λ ′ be two real numbers such that: 0 < λ < λ ′. The func-
tion φ : (0,1) → R defined by

φλ ′,λ (x) =
ln(x2 + λ ′)− ln(x+ λ ′)
ln(x2 + λ )− ln(x+ λ )

is strictly increasing.

Proof. We use the previous lemma in our proof. Let h and k be defined by h(x) =
ln(x2 + λ ′)− ln(x+ λ ′) and k(x) = ln(x2 + λ )− ln(x+ λ ). We have

φλ ′,λ (x) =
h(x)−h(0)
k(x)− k(0)

=
h(x)−h(1)
k(x)− k(1)

.

Let x1 =
√

λ 2 + λ −λ be the root of k′(x) = 0, and let x2 =
√

λ ′2 + λ ′ −λ ′ be the
root of h′(x) = 0 in the interval (0,1). We have 0 < x1 < x2 < 1. We shall prove that
the function

φ∗
λ ′,λ (x) =

h′(x)
k′(x)

is strictly increasing on the intervals (0,x1) and (x2,1). It is simple to verify that the
functions

φ1 =
x2 +2λ ′x−λ ′

x2 +2λx−λ
, φ2(x) =

x2 + λ
x2 + λ ′ , φ3(x) =

x+ λ
x+ λ ′

are strictly increasing, positive functions on the intervals (0,x1) and (x2,1) and φ∗
λ ′,λ (x)=

φ1(x)φ2(x)φ3(x). Thus φ∗
λ ′,λ is strictly increasing on the intervals (0,x1) and (x2,1) ,
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because it is the product of strictly increasing positive functions. Hence, according to
Lemma 1, φλ ′,λ is also strictly increasing on (0,x1) and (x2,1). On the other hand

φ ′
λ ′,λ (x) =

x2+2λ ′x−λ ′
(x2+λ ′)(x+λ ′) ln x2+λ

x+λ − x2+2λ x−λ
(x2+λ )(x+λ ) ln x2+λ ′

x+λ ′

ln2 x2+λ
x+λ

> 0, x ∈ (x1,x2).

Consequently, the function φλ ′,λ is also strictly increasing on (x1,x2) . Since φλ ′,λ is
strictly increasing on the intervals (0,x1); (x1,x2); (x2,1) and is continuous on (0,1)
it follows that it is strictly increasing on (0,1).

LEMMA 3. The following inequalities hold:

0 �
∞

∑
n=p

x
(n+ x)n

<
1
p
, x ∈ [0,1],

0 <
∞

∑
n=p

1
(n+ x)2 <

1
p−1

. x ∈ [0,1],

0 <
∞

∑
n=p

1
(n+ x)3 <

1
2p(p−1)

, x ∈ [0,1].

Proof. The function ϕ1 : [0,1] → R, ϕ1(x) = ∑∞
n=p

x
(n+x)n is strictly increasing.

Thus, 0 = ϕ1(0) � ϕ1(x) � ϕ1(1) = 1
p , x ∈ [0,1].

In order to prove the second inequality, we observe that:

0 <
∞

∑
n=p

1
(n+ x)2 �

∞

∑
n=p

1
n2 <

∞

∑
n=p

1
n(n−1)

=
1

p−1
, x ∈ [0,1].

The proof of the third inequality is analogous to the previous one:

0 <
∞

∑
n=p

1
(n+ x)3 �

∞

∑
n=p

1
n3 <

∞

∑
n=p

1
n(n2−1)

=
1

2p(p−1)
, x ∈ [0,1].

3. Main Result

THEOREM 1. Let be λ ∈ (0,∞) a positive real number. The function

fλ : (0,1) → R, fλ (x) =
lnΓ(x+1)

ln x2+λ
x+λ

is strictly increasing if and only if λ ∈ (0,λ0), where λ0 = γ
π2
6 −2γ

.
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Proof. If fλ0
is strictly increasing on (0,1), and 0 < λ < λ0, then fλ is also

strictly increasing because fλ (x) = fλ0
(x)φλ0,λ (x), namely fλ can be written as the

product of two strictly increasing positive functions.
Thus, in order to show that fλ is a strictly increasing function on (0,1) for every

λ ∈ (0,λ0], we have to prove that fλ0
is strictly increasing on (0,1).

We use Lemma 1 again. This time let h be defined by h(x) = lnΓ(x+1) and let

k be defined by k(x) = ln x2+λ0
x+λ0

. Thus fλ (x) = h(x)−h(1)
k(x)−k(1) = h(x)−h(0)

k(x)−k(0) . We shall apply

Lemma 1 on the intervals (0,x3), and (x3,1), where x3 =
√

λ 2
0 + λ0−λ0 ≈ 0.4237...

is the root of the equation: x2 + 2λ0x−λ0 = 0. According to Lemma 1, the function
fλ0

is strictly increasing on these intervals, if

f ∗λ0
: (0,1) → R, f ∗λ0

(x) =
h′(x)
k′(x)

=

(− γ + ∑∞
n=1

x
(x+n)n

)
(x3 + λ0x2 + λ0x+ λ 2

0 )

x2 +2λ0x−λ0

is a strictly increasing function on the same intervals.
We calculate f ∗λ0

′ :

f ∗λ0

′(x) =
Sλ0

(x)
(x2 +2λ0x−λ0)2 , x ∈ (0,1),

where

Sλ0
(x) = (x3 + λ0x

2 + λ0x+ λ 2
0 )(x2 +2λ0x−λ0)

∞

∑
n=1

1
(n+ x)2 +

(γ −
∞

∑
n=1

x
(x+n)n

)(2x+2λ0)(x3 + λ0x
2 + λ0x+ λ 2

0 )−

(γ −
∞

∑
n=1

x
(x+n)n

)(x2 +2λ0x−λ0)(3x2 +2λ0x+ λ0).

In order to prove the theorem, we have to show that Sλ0
(x) > 0, x ∈ (0,1). To do this,

we discuss different cases.

Case I: x ∈ [0, 1
4 ].

Since Sλ0
(0) = λ 2

0 [γ − λ0(π2

6 − 2γ)] = 0, in order to prove the inequality Sλ0
(x) >

0, x ∈ (0, 1
4 ], we shall prove that S′λ0

(x) > 0, x ∈ (0, 1
4 ). We have

S′λ0
(x) = 2(x3 + λ0x

2 + λ0x+ λ 2
0 )(−x2−2λ0x+ λ0)

∞

∑
n=1

1
(n+ x)3 −

2(−x2−2λ0x+ λ0)(3x2 +2λ0x+ λ0)
∞

∑
n=1

1
(n+ x)2

+2(γ −
∞

∑
n=1

x
(x+n)n

)(−x2−2λ0x+ λ0)(3x+ λ0)

+2(γ −
∞

∑
n=1

x
(x+n)n

)(x3 + λ0x
2 + λ0x+ λ 2

0 ).
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We introduce the notations: u1(x)= ∑∞
n=1

1
(n+x)3 , u2(x)= x3+λ0x2+λ0x+λ 2

0 , u3(x)=

−x2−2λ0x+λ0, u4(x)= 3x2+2λ0x+λ0, u5(x)= ∑∞
n=1

1
(n+x)2 , u6(x)= γ−∑∞

n=1
x

(x+n)n ,

u7(x) = x+λ0, u8(x) = 3x+λ0. The functions u1,u3,u5,u6 are strictly decreasing and
u2,u4,u7,u8 are strictly increasing on (0,1). Furthermore, all these functions are posi-
tive on (0, 1

4) .
On the other hand, we have

S′λ0
(x) = 2u1(x)u2(x)u3(x)−2u3(x)u4(x)u5(x)+2u6(x)u3(x)u8(x)+2u6(x)u2(x).

Let tk, k = 0,10 be defined by tk = k
40 .

If x ∈ [tk−1, tk] then the monotonicity of the functions ui, i = 1,7 implies

S′λ0
(x) � αk = 2u1(tk)u2(tk−1)u3(tk)−2u3(tk−1)u4(tk)u5(tk−1)+

2u6(tk)u3(tk)u8(tk−1)+2u6(tk)u2(tk−1), k = 1,10.

Now if we verify the conditions

αk > 0, k = 1,10, (3)

then the inequality S′λ0
(x) > 0, x ∈ (0, 1

4 ) follows. Since Sλ0
(0) = 0 we obtain that

Sλ0
(x) > 0, x ∈ (0, 1

4 ].

Case II: x ∈ [ 1
4 , 42

100 ].
This time we shall prove directly that Sλ0

(x) > 0, x ∈ [ 1
4 , 42

100 ] using the previous idea.
Let vk, k = 0,10 be defined by vk = 1

4 + k
10

( 42
100 − 1

4

)
. The equality

Sλ0
(x) = 2u2(x)u6(x)u7(x)+u3(x)u4(x)u6(x)−u3(x)u2(x)u5(x) (4)

and the monotonicity of the functions ui, i = 1,7 imply the following:

Sλ0
(x) > δk = 2u2(vk−1)u6(vk)u7(vk−1)+u3(vk)u4(vk−1)u6(vk)−

u3(vk−1)u2(vk)u5(vk−1), x ∈ [vk−1,vk].

Therefore, if
δk > 0, k = 1,10, (5)

then: Sλ0
(x) > 0, x ∈ [ 1

4 , 42
100 ].

Case III: x ∈ [ 42
100 ,x3].

This case must be discussed separately, because the equation u3(x) = 0 has the root

x3 =
√

λ 2
0 + λ0−λ0 ≈ 0.4237... and u3(x) changes its sign in this point. The mono-

tonicity of the functions ui, i = 1,7 and the equality (4) imply:

Sλ0
(x) > η = 2u6(

43
100

)u7(
42
100

)u2(
42
100

)−u5(
42
100

)u3(
42
100

)u2(
43
100

),

x ∈ [
42
100

,x3].
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Thus the inequality
η > 0 (6)

implies that Sλ0
(x) > 0, x ∈ [ 42

100 ,x3].

Case IV: x ∈ (x3,x4)
(where x4 ≈ 0.461... is the root of Γ′(x+1) = 0 and x3 is the root of x2 +2λ0x−λ 2

0 =
0). In this case we have: −u3(x) > 0, u6(x) > 0, x ∈ (x3,x4) and

S′λ0
(x) = −2u3(x)

[−u1(x)u2(x)+u4(x)u5(x)
]
+2u6(x)

[
u3(x)u7(x)+u2(x)

]
.

It is easily seen that Lemma 3 implies that: −u1(x)u2(x)+u4(x)u5(x) > 0, x ∈ (x3,x4)
and u3(x)u7(x) + u2(x) > 0, x ∈ (x3,x4). Thus S′λ0

(x) > 0, x ∈ (x3,x4) and conse-
quently Sλ0

(x) is a strictly increasing function. This implies thatSλ0
(x) > 0, x ∈

(x3,x4), provided that condition (6) holds.

Case V: x ∈ [x4,
47
100 ].

We have u6(x4) = 0 where x4 ∈ ( 46
100 , 47

100), and u6(x) changes its sign in x4 . The
monotonicity of the functions ui, i = 1,7 and the equality (4) imply

Sλ0
(x) > τ = 2u6(

47
100

)u7(
47
100

)u2(
47
100

)−u5(
47
100

)u2(
46
100

)u3(
46
100

),

x ∈ [
46
100

,
47
100

].

If
τ > 0 (7)

holds, then Sλ0
(x) > 0, x ∈ [x4,

47
100 ] follows.

Case VI: x ∈ [ 47
100 ,1].

We shall prove directly that Sλ0
(x) > 0, x ∈ [ 47

100 ,1] . Let vk, k = 0,10 be defined by
vk = 47

100 + 53k
1000 , k = 0,10. If x ∈ [

vk−1,vk
]

then

Sλ0
(x) � βk = 2u2(vk)u6(vk)u7(vk)+u3(vk−1)u4(vk−1)u6(vk−1)−

u2(vk−1)u3(vk−1)u5(vk), k = 1,10.

We have to verify the conditions

βk > 0, k = 1,10, (8)

whence the inequality Sλ0
(x) > 0, x ∈ [ 47

100 ,1] follows. Consequently, if we verify the
conditions (3), (5), (6), (7), (8)

(
an operation easily done by using a computer program

)
then we obtain Sλ0

(x) > 0, x∈ (0,1) and f ∗λ0

′(x) > 0, x ∈ (0,x3)∪(x3,1). This means
that f ∗λ0

(x) is strictly increasing on (0,x3) and on (x3,1). According to Lemma 1,
fλ0

(x) is also strictly increasing on these intervals, but fλ0
(x) is continuous on (0,1)

and consequently it follows that fλ0
(x) is strictly increasing on (0,1).

If λ > λ0 then f ∗λ
′(0) < 0 and the continuity of f ∗λ

′(x) in zero implies that there is an
ε > 0 such that f ∗λ

′(x) < 0, x ∈ (0,ε). Thus f (x) will be strictly decreasing on (0,ε).
This means that λ0 is the biggest value with the given property.
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COROLLARY 1. The monotonicity of fλ0
and

lim
x→0

fλ (x) = (1− γ)(1+ λ ), lim
x→1

fλ (x) = γλ , (9)

implies the following inequalities

(
x2 + λ0

x+ λ0

)(1−γ)(1+λ0)

� Γ(x+1) �
(

x2 + λ0

x+ λ0

)γλ0

, x ∈ [0,1].

THEOREM 2. The function

fλ : (0,1) → (0,∞), fλ (x) =
lnΓ(x+1)

ln x2+λ
x+λ

is strictly decreasing if and only if λ ∈ [λ1,∞), where λ1 =
π2
6 −γ

3− π2
6 −2γ

.

Proof. According to Lemma 2, the inequality λ1 < λ implies that the function

Ψλ : (0,1)→ (0,∞),Ψλ (x) = log(x2+λ1)−log(x+λ1)
log(x2+λ )−log(x+λ ) is strictly decreasing. If fλ1

: (0,1)→
(0,∞) is strictly decreasing, then the equality fλ (x) = fλ1

(x)Ψλ (x) implies that fλ (x)
is strictly decreasing too. We shall prove in the following that

fλ1
: (0,1) → (0,∞), fλ1

(x) =
lnΓ(x+1)

ln x2+λ1
x+λ1

is strictly decreasing. The idea of the proof is similar to the one used in the previous
theorem. We use Lemma 1 again, this time on the intervals (0,x5) and (x5,1), where

x5 =
√

λ 2
1 + λ1−λ1 = 0.478... is the root of the equation x2 +2λ1x−λ1 = 0 situated

in (0,1). We shall show that

f ∗λ1
: (0,1) → R, f ∗λ1

(x) =
h′(x)
k′(x)

=

(− γ + ∑∞
n=1

x
(x+n)n

)
(x3 + λ1x2 + λ1x+ λ 2

1 )

x2 +2λ1x−λ1

is a strictly decreasing function on the same intervals.
We have:

f ∗λ1

′(x) =
Sλ1

(x)
(x2 +2λ1x−λ1)2 , x ∈ (0,1),

where

Sλ1
(x) = (x3 + λ1x

2 + λ1x+ λ 2
1 )(x2 +2λ1x−λ1)

∞

∑
n=1

1
(n+ x)2 +

(γ −
∞

∑
n=1

x
(x+n)n

)(2x+2λ1)(x3 + λ1x
2 + λ1x+ λ 2

1 )−

(γ −
∞

∑
n=1

x
(x+n)n

)(x2 +2λ1x−λ1)(3x2 +2λ1x+ λ1).
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In order to prove the theorem, we have to show that Sλ1
(x) < 0, x ∈ (0,1). We shall

achieve that in five steps.

Case I: x ∈ [ 3
4 ,1].

Since Sλ1
(1) = (1+λ1)2[π2

6 −γ−λ1(3− π2

6 −2γ)] = 0, in order to prove the inequality
Sλ1

(x) < 0, x ∈ ( 3
4 ,1), we will prove that S′λ1

(x) > 0, x ∈ ( 3
4 ,1). We have

S′λ1
(x) = 2(x3 + λ1x

2 + λ1x+ λ 2
1 )(−x2−2λ1x+ λ1)

∞

∑
n=1

1
(n+ x)3 −

2(−x2−2λ1x+ λ1)(3x2 +2λ1x+ λ1)
∞

∑
n=1

1
(n+ x)2

+2(γ −
∞

∑
n=1

x
(x+n)n

)(−x2−2λ1x+ λ1)(3x+ λ1)

+2(γ −
∞

∑
n=1

x
(x+n)n

)(x3 + λ1x
2 + λ1x+ λ 2

1 ).

We use again the notations introduced in the proof of the previous theorem: u1(x) =
∑∞

n=1
1

(n+x)3 , u5(x) = ∑∞
n=1

1
(n+x)2 , u6(x) = γ −∑∞

n=1
x

(x+n)n , and we introduce the

notations: u21(x) = x3 +λ1x2 +λ1x+λ 2
1 , u31(x) = −x2−2λ1x+λ1, u41(x) = 3x2 +

2λ1x+λ1, u71(x) = x+λ1, u81(x) = 3x+λ1. The functions u1,u31,u5,u6 are strictly
decreasing and u21,u41,u71,u81 are strictly increasing on (0,1). Using the introduced
notations S′λ1

(x) can be rewritten as follows:

S′λ1
(x) = 2u1(x)u21(x)u31(x)−2u31(x)u41(x)u5(x)+2u6(x)u31(x)u81(x)+

2u6(x)u21(x). (10)

Let xk, k = 1,10 be defined by xk = 3
4 + k

10(1− 3
4 ), k = 0,10. If x ∈ [xk−1,xk], then

the monotonicity of the functions u j imply:

S′λ1
(x) > α ′

k = 2u1(xk−1)u21(xk)u31(xk)−2u31(xk−1)u41(xk−1)u5(xk)+
2u6(xk−1)u31(xk−1)u81(xk−1)+2u6(xk)u21(xk).

Now if the conditions
α ′

k > 0, k = 1,10 (11)

hold, then the inequality S′λ1
(x) > 0, x∈ ( 3

4 ,1) follows, and this together with Sλ1
(1) =

0 imply that Sλ1
(x) < 0, x ∈ [ 3

4 ,1).

Case II: x ∈ [0.48,0.75].
Let yk, k = 0,10 be defined by yk = 0.48+ k

10(0.75−0.48), k = 0,10. If x∈ [yk−1,yk]
then the equality Sλ1

(x) = 2u21(x)u6(x)u71(x)+u31(x)u41(x)u6(x)−u31(x)u21(x)u5(x)
and the monotonicity of u j imply that

Sλ1
(x) < β ′

k = 2u21(yk−1)u6(yk−1)u71(yk−1)+u31(yk)u41(yk)u6(yk)−
u31(yk)u21(yk)u5(yk−1).
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Consequently, in order to prove the inequality Sλ1
(x) < 0, x ∈ [0.48, 3

4 ], we have to
check that:

β ′
k < 0, k = 0,10. (12)

Case III: x ∈ [0.47,0.48].
The equation x2 + 2λ1x−λ1 = 0 has the root x5 = 0.478... in (0.47,0.48) , and u31

changes its sign. If x ∈ [x5,0.48], then

Sλ1
(x) < γ ′ = 2u21(0.47)u6(0.47)u71(0.47)+u31(0.48)u41(0.48)u6(0.48)−

u31(0.48)u21(0.48)u5(0.47).

If x ∈ [0.47,x5] , then Sλ1
(x) < 0. because every term of Sλ1

(x) is negative. In order to
prove the inequality Sλ1

(x) < 0, x ∈ [0.47,0.48], we have to verify

γ ′ � 0. (13)

Case IV: x ∈ [0.46,0.47].
This time the equation u6(x) = 0 has the root x6 = 0.461... ∈ (0.46,0.47). If x ∈
[x6,0.47] , then Sλ1

(x) < 0 because every term of Sλ1
(x) is negative.

If x ∈ [0.46,x6], then:

Sλ1
(x) < δ ′ = 2u21(0.47)u6(0.46)u71(0.47)+u31(0.46)u41(0.47)u6(0.46)−

u31(0.47)u21(0.46)u5(0.47).

In order to finish the proof of this case, we have to verify that:

δ ′ < 0. (14)

Case V: x ∈ [0,0.46].
Let tk be defined by tk = 0.46

k , k = 0,100. If x ∈ [tk−1,tk] , then

Sλ1
(x) < ε ′k = 2u21(tk)u6(tk−1)u71(tk)+u31(tk−1)u41(tk)u6(tk−1)−

u31(tk)u21(tk−1)u5(tk).

If the inequalities
ε ′k < 0, k = 1,100 (15)

hold, then Sλ1
(x) < 0, x ∈ [0,0.46] follows. The conditions (11), (12), (13), (14), (15)

can be easily verified with a computer program. If λ < λ1 then f ∗λ
′(1) > 0 and the

continuity of f ∗λ
′(x) in x0 = 1 implies that there is an ε > 0 such that f ∗λ

′(x) > 0, x ∈
(1−ε,1). Thus f (x) will be strictly increasing on (1−ε,1). This means that λ1 is the
smallest value with the given property.

COROLLARY 2. The monotonicity of fλ1
and (9) implies the following inequali-

ties: (
x2 + λ1

x+ λ1

)γλ1

� Γ(x+1) �
(

x2 + λ1

x+ λ1

)(1−γ)(1+λ1)

, x ∈ [0,1].
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REMARK 1. We used the estimations proved in Lemma 3 in order to approximate
the functions u1(x), u5(x), u6(x) in the proofs of Theorem 1 and Theorem 2.

REMARK 2. In the following we shall compare the inequalities obtained from our
monotonicity results with some inequalities published earlier concerning the Γ func-
tion. In [1], page 145, it was proved that

xα(x−1)−γ < Γ(x) < xβ (x−1)−γ , x ∈ (0,1), (16)

with the best possible constants α = 1− γ and β = 1
2

(
π2

6 − γ
)
.

In [2] p. 780, the following inequality was established: if x ∈ (0,∞) then

√
2πxx exp

[
− x− 1

2
ψ(x+ α)

]
< Γ(x) <

√
2πxx exp

[
− x− 1

2
ψ(x+ β )

]
(17)

with the best possible constants α = 1
3 and β = 0. Another inequality which we are

interested in, was published in [6], page 3:

xx[1−lnx+ψ(x)]

ex < Γ(x) <
xx[1−lnx+ψ(x)]

ex−1 , x ∈ (0,1]. (18)

In [5] the following inequalities were published: if x > 0, then

√
2
(
x+

1
2

)x+ 1
2
e−x � Γ(x+1) < e

γ
eγ

(
x+

1
eγ

)x+ 1
eγ

e−x, (19)

√
2e

(x+1/2
e

)x+ 1
2 � Γ(x+1) <

√
2π

(x+1/2
e

)x+ 1
2
, (20)

√
2x+1xx exp

[
−

(
x+

1
6x+9/8

− 4
9

)]
< Γ(x+1)

<
√

π(2x+1)xx exp
[
−

(
x+

1
6x+9/8

)]
. (21)

It is obvious that Corollary 1 improves (2). Numerical approaches show that:
1. the second inequality of Corollary 2 improves the second inequality of (16),
2. the first inequality of Corollary 1 improves the first inequality of (18),
3. Corollary 2 improves (18),
4. the first inequality of Corollary 2 improves the first inequality of (19),
5. the second inequality of Corollary 1 improves the second inequality of (20),
6. Corollary 2 improves (20),
7. the first inequality of Corollary 1 improves the first inequality of (21),
8. the first inequality of Corollary 2 improves the first inequality of (21).
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[7] P. IVÁDY, A Note on a Gamma Function Inequality, J. Math. Inequal. 3, no. 2, (2009), 227–236.
[8] F. QI, BAI-NI GUO, An elegant rafinement of a double inequality for the gamma function,

arXiv:1001.1495v1.
[9] J. L. ZHAO, B. N. GUO, F. QI, A refinement of a double inequality for the gamma function, Publica-

tiones Mathematicae Debrecen, 80/3-4, (2012), 333–343.

(Received January 9, 2012) Pál A. Kupán
Sapientia Hungarian University of Transylvania

Tg. Mures, sos. Sighisoarei, 1c
Romania

e-mail: kupanp@ms.sapientia.ro
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