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FUNCTIONAL EQUATIONS AND SHARP WEAK–TYPE

INEQUALITIES FOR THE MARTINGALE SQUARE FUNCTION

ADAM OSȨKOWSKI

(Communicated by I. Franjić)

Abstract. The paper aims at the identification of the best constants in the weak-type (p, p) in-
equalities for the martingale square function, 1 � p < ∞ . To accomplish this, a related optimal
stopping problem for the space-time Brownian motion is investigated. Interestingly, the analysis
of the cases 1 � p � 2 and 2 < p < ∞ requires completely different methods. Namely, in the
first case the corresponding value function can be written down explicitly; in the second case the
approach rests on the careful analysis of an interesting, integral functional equation.

1. Introduction

Square function inequalities play an important role in both classical and noncom-
mutative probability theory, harmonic analysis, potential theory and many other areas
of mathematics. The purpose of this paper is to establish a class of sharp weak-type
bounds for the square function of a continuous-path martingale. These results are mo-
tivated by closely related works of Burkholder [3], Davis [7], Novikov [13], Pedersen
and Peskir [17], Shepp [22], Wang [23] and many others.

We begin by introducing the necessary background and notation. Suppose that
(Ω,F ,P) is a probability space, filtered by a nondecreasing family (Fn)∞

n=0 of sub-
σ -fields of F . Let f = ( fn)n�0 be an adapted real-valued martingale and let d f =
(d fn)n�0 stand for its difference sequence:

d f0 = f0, d fn = fn − fn−1, n = 1, 2, . . . .

Then S( f ) , the square function of f , is given by

S( f ) =

(
∞

∑
n=0

|d fn|2
)1/2

.

There is an interesting general question about the comparison of the sizes of f and
S( f ) , which is, for instance, of fundamental importance to the theory of stochastic
integration. The literature on the subject is very large, the results are connected with
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other areas of mathematics and it is impossible to give even a brief review here. For
some of the aspects of this subject, we refer the interested reader to the survey [5] by
Burkholder, the exposition [15] by the author or the monograph [21] by Revuz and Yor.
To present our motivation, let us mention the moment inequalities

cp||S( f )||p � || f ||p � Cp||S( f )||p, 1 � p < ∞, (1.1)

where || f ||p = supn�0 || fn||p and cp , Cp are absolute constants depending only on p .
These estimates go back to the classical works of Khintchine [10], Littlewood [11],
Marcinkiewicz [12] and Paley [16] (of course, the concept of a martingale did not
appear in those papers; the results were formulated in terms of partial sums of the
Rademacher functions and the Haar system). Burkholder [4] proved that if 1 < p < ∞ ,
then (1.1) holds with c−1

p = Cp = p∗ −1, where p∗ = max{p, p/(p−1)} . It turns out
that this choice of cp is optimal for 1 < p � 2, and Cp is the best for p � 2. Further-
more, if p = 1, then the left inequality in (1.1) does not hold with any finite c1 , while
the best choice for C1 is 2 (cf. [14]).

Using straightforward approximation arguments, one can transfer (1.1) from the
discrete- to the continuous-time setting. Assume that (Ω,F ,P) is a complete probabil-
ity space, equipped with (Ft )t�0 , a nondecreasing family of sub-σ -fields of F , such
that F0 contains all the events of probability 0. Let X be an adapted, real-valued cad-
lag martingale. Then the role of the square function is played by [X ,X ] = ([X ,X ]t)t�0 ,
the quadratic covariance process (or square bracket) of X . See e.g. Dellacherie and
Meyer [9] for detailed definition of this object and examples. Then we have

cp||[X ,X ]1/2
∞ ||p � ||X ||p � Cp||[X ,X ]1/2

∞ ||p, 1 � p < ∞, (1.2)

where cp , Cp are the same as in (1.1) and ||X ||p = supt�0 ||Xt ||p . From the point of
view of the applications, it is often interesting to study the above bound for a special
class of martingales. We will be particularly interested in the case when X has contin-
uous paths and starts from 0. Then the corresponding sharp versions of (1.2) are due
to Davis [7]. Let νp be the smallest positive zero of Mp , the confluent hypergeometric
function, and μp be the largest positive zero of Dp , the parabolic cylinder function of
parameter p (see Abramovitz and Stegun [1] for the necessary definitions). Then the
best possible constants for Cp are vp when 0 < p < 2 and μp for 2 � p < ∞ . On the
other hand, the best possible constants for cp are μp when 1 < p < 2 and νp when
2 � p < ∞ .

When p = 1, then the left inequality in (1.1) does not hold with any finite constant,
even for continuous-path martingales. However, as usual, one can establish the weak-
type bound

||[X ,X ]1/2
∞ ||1,∞ � C||X ||1

for some universal C . Here

||[X ,X ]1/2
∞ ||p,∞ = sup

λ
λ
(
P
(
[X ,X ]1/2

∞ � λ
))1/p

, 1 � p < ∞,

denotes the weak p -th norm of [X ,X ]1/2
∞ . This estimate, with various constants, can be

found in many papers. For instance, Burkholder [3] showed that one can take C = 3,
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and it follows from the work of Bollobás [2] that C = 1.4623 suffices. What about the
optimal choice for C? The primary goal of this paper is to study this question for a
wider class of parameters. Namely, for any 1 � p < ∞ , we will identify the optimal
constant βp in the inequality

||[X ,X ]1/2
∞ ||p,∞ � βp||X ||p (1.3)

under the assumption that X is a real-valued continuous-path martingale satisfying
X0 = 0.

A few words about our approach. By Dambis-Dubins-Schwarz theorem (cf. [6]
and [8]; a convenient reference is Chapter V of [21]), it suffices to study the aboveweak-
type inequalities in the case when X is a stopped Brownian motion. Let 1 � p < ∞ be
a fixed number. To put the problem in the right framework, let us introduce the gain
function G : R×R → R by the formula

G(x,t) = 1{t�1}− |x|p.

For a fixed t ∈ R , consider the optimal stopping problem

sup
τ

EG(Bτ ,t + τ), (1.4)

where B is a standard Brownian motion and the supremum is taken over all adapted
bounded stopping times. As we will see, the (partial) solution to (1.4) will immediately
yield the optimal constants βp in the weak-type bound (1.3).

It may be a little surprising that the analysis in the cases 1 � p � 2 and p > 2
is completely different. The first case is very easy: the optimal stopping rule and the
value of the supremum in (1.4) can be written down explicitly (in particular, βp can
be expressed by a compact formula). On the other hand, the case p > 2 requires the
solution of an underlying free-boundary problem. This is a much more difficult task
and will involve the analysis of a certain integral functional equation. The constant βp

will be expressed in terms of the solution to this equation; no compact explicit formula
for βp seems to exist in this case. The approach is of independent interest and, as we
hope, can be applied in a number of related important results.

We have organized this paper as follows. In the next section we analyze the optimal
stopping problem (1.4) in the case 1 � p � 2. Section 3 is the main part of the paper
and contains the study of (1.4) for 2 < p < ∞ .

2. Easy case

We start with some general observations which will also be useful in the case
p > 2. A successful treatment of (1.4) requires the extension of the problem so that the
space-time process (Bt ,t) can start at arbitrary points in the state space R×R . This is
standard: consider the function V : R×R → R given by the formula

V (x,t) = supEG(x+Bτ ,t + τ), (2.1)
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where the supremum is taken over all adapted bounded stopping times τ . The process
(|x + Bt |p)t�0 is a submartingale, so for t � 1 and any bounded τ we have EG(x +
Bτ ,t +τ) � 1−|x|p . On the other hand, τ ≡ 0 gives equality here, so we conclude that

V (x,t) = 1−|x|p for t � 1. (2.2)

In addition, if t < 1, then in the computation of V (x,t) , we may restrict ourselves to
stopping times bounded by 1− t ; indeed, this follows from the inequality

P(t + τ � 1)−E|x+Bτ|p � P(t +(τ ∧ (1− t)) � 1)−E|x+Bτ∧(1−t)|p.
Now we assume that 1 � p � 2. Actually, it will be enough for us to find the

solution to (2.1) (i.e., the formula for V ) on a part of the domain R×R . Let

t0 = t0(p) = 1− π1/p

2Γ( p
2 + 1

2 )2/p
� 0.

For the motivation for t0 , look at the last line in (2.5) below. To see the inequality
t0 � 0, observe that

t0 = 1− (E|B1|p)−2/p � 1− (E|B1|2)−1 = 0.

We will show that if x ∈ R and t � t0 , then the optimal stopping time for V (x,t)
equals τ ≡ (1−t)+ ; thus the value function V can be expressed explicitly on [t0,∞)×R

in the following manner.

LEMMA 2.1. If t � t0 and x ∈ R , then

V (x,t) =

{
1−|x|p if t � 1,

1−E|x+B1−t|p if t0 � t < 1.
(2.3)

Proof. Let U denote the right-hand side of (2.3). By (2.2), the formula (2.3) holds
true for t � 1. If t0 � t < 1, observe that

U(x,t) = EG(x+B1−t,t +(1− t)),

which implies U � V , by the very definition of V . To prove the reverse bound, note
that by the strong Markov property, U satisfies the heat equation

Ut +
1
2
Uxx = 0 on R× (t0,1). (2.4)

Furthermore, for any a, b ∈ R we have

|a+b|p + |a−b|p � 2|a|p +2|b|p.
Hence, by the symmetry of Brownian motion,

2E|x+B1−t|p = E|x+B1−t|p +E|x−B1−t|p
� 2|x|p +2E|B1−t|p
� 2|x|p +2E|B1−t0|p
= 2|x|p +2(1− t0)p/2

E|B1|p = 2|x|p +2,

(2.5)
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which is equivalent to G(x,t) � U(x,t) . Therefore, if τ is a stopping time bounded by
1− t , then, by Itô’s formula and (2.4),

EG(x+Bτ ,t + τ) � EU(x+Bτ ,t + τ) = U(x,t).

Taking supremum over τ gives V (x,t) � U(x,t) . This completes the proof. �

THEOREM 2.1. Let 1 � p � 2 be fixed. For any continuous-path martingale X
starting from 0 we have the sharp inequality

||[X ,X ]1/2
∞ ||p,∞ � π1/(2p)

21/2Γ
( p

2 + 1
2

)1/p
||X ||p. (2.6)

Proof. We will use the Dambis-Dubins-Schwarz theorem and represent X as a
time-changed Brownian motion. Clearly, we may and do assume that ||X ||p < ∞ , since
otherwise there is nothing to prove. Then the pointwise limit X∞ of (Xt)t�0 exists and
is finite almost surely. For any t � 0, introduce the stopping time

Tt = inf{s : [X ,X ]s > t}

and define the process W by

Wt =

{
XTt for t < [X ,X ]∞,

X∞ for t � [X ,X ]∞.

Then there is an enlargement (F̃t)t�0 of the filtration (Ft)t�0 such that W is an
(F̃t)t�0 -Brownian motion stopped at [X ,X ]∞ (see Theorem 1.7 of Chapter V in [21]).
Consequently, by Lemma 2.1, we may write

P([X ,X ]∞ � 1− t0) = P(t0 +[X ,X ]∞ � 1) � E
∣∣W[X ,X ]∞

∣∣p +V (0,t0) = ||X ||pp,

since V (0, t0) = 1−E|B1−t0 |p = 1− (1− t0)p/2
E|B1|p = 0. By homogeneity, the above

bound implies that for any λ > 0,

λ p
P([X ,X ]1/2

∞ � λ ) � (1− t0)p/2||X ||pp =
π1/2

2p/2Γ
( p

2 + 1
2

) ||X ||pp,

and taking the supremum over λ gives (2.6). To show that this estimate is sharp,
let B be a Brownian motion and pick τ = 1− t0 . Then ||τ1/2||p,∞ = (1− t0)1/2 and
||Bτ ||p = 1, so both sides of (2.6) are equal. �
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3. Difficult case

Now we turn to the much more elaborate case of large p . As previously, we extend
the optimal stopping problem to the form (2.1). Then V (x, t) = 1−|x|p for t � 1, and
if t < 1, we may restrict ourselves to stopping times τ which are bounded by 1− t . For
the sake of clarity and convenience, we have decided to split the remaining reasoning
into eleven intermediate steps.

Step 1. First we will show that the function V is continuous. Pick t < 1, x, y ∈ R

and let τ be an arbitrary stopping time bounded by 1− t . The process (|x+Bs|p−1)s�0

is a submartingale, so by mean value property,

E|y+Bτ |p−E|x+Bτ |p � pE|y+Bτ |p−1|y− x|� p|y− x| ·E|y+B1−t|p−1

and thus
V (x,t) � V (y,t)+ p|y− x| ·E|y+B1−t|p−1,

by the definition of V . Therefore, by symmetry,

|V (x,t)−V(y,t)| � p|y− x|E(|x|+ |y|+ |B1−t|)p−1, (3.1)

so for each fixed t , the function x �→ V (x,t) is locally Lipschitz. Next, fix s < t �
1. For a given x , the function u �→ G(x,u) is nondecreasing and hence V also has
this property: thus, V (x,s) � V (x,t) . Furthermore, if τ is an arbitrary stopping time
bounded by 1− t and we put σ = τ + t− s , then

P(τ � 1− t)−E|x+Bτ|p

= P(σ � 1− s)−E|x+Bσ|p +E

[
|x+Bτ+t−s|p−|x+Bτ|p

]
� V (x,s)+ pE|x+Bτ |p−1|Bτ+t−s−Bτ |
� V (x,s)+ pE|x+Bτ |p−1

E|Bτ+t−s −Bτ |

� V (x,s)+

√
2(t− s)

π
pE|x+B1−t|p−1.

Therefore, we have

0 � V (x,t)−V(x,s) �
√

2(t− s)
π

pE|x+B1−t|p−1,

which combined with (3.1) yields the continuity of V .

Step 2. Let us provide an abstract formula for the optimal stopping time in (2.1).
Introduce the continuation set C and the stopping region D by

C = {(x,t) ∈ R×R : V (x,t) > G(x,t)}

and
D = {(x,t) ∈ R×R : V (x,t) = G(x,t)}.
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The gain function G is upper semicontinuous and the function V is lower semicon-
tinuous (since it is continuous, in view of Step 1). Therefore, by the general theory
of optimal stopping (cf. Corollary 2.9 in Peskir and Shiryaev [20]), for a given state
(x,t) ∈ R×R , the stopping time

τD = inf{s � 0 : (t + s,x+Bs) ∈ D}
is optimal in (2.1). Now, standard arguments based on the strong Markov property and
classic results from PDEs (see e.g. Chapter III in [20]) show that V is of class C2,1 on
C and satisfies the heat equation

Vt +
1
2
Vxx = 0 (3.2)

on this set. These facts will be freely used in the considerations below.

Step 3. Let us provide some insight into the shape of C and D . By the symmetry
of Brownian motion, we immediately get that C and D are symmetric with respect to
y-axis. By the upper semicontinuity of G and the continuity of V , we conclude that C
is open and D is closed. As we have already observed, R× [1,∞) ⊂ D . Now, for any
x ∈ R we have limt↑1(1−|x+B1−t|p) = 1−|x|p > −|x|p ; thus, for a given x , we have
V (x,t) > G(x, t) for t sufficiently close to 1, and hence (x,t) ∈C . Next, take 0 � x < y
and a bounded stopping time τ . Put 2δ = y− x and set σ = inf{s : Bs = −x− δ} .
Consider the Brownian motion reflected at time σ , given by

Ws =

{
Bs if s < σ ,

2Bσ −Bs if s � σ .
(3.3)

It is easy to check the majorization

|x+Bs| � |y+Ws| for all s . (3.4)

Indeed, if s � σ , then Bs � −x− δ , so

|y+Ws| = |x+2δ +Bs| = x+2δ +Bs � |x+Bs|.
On the other hand, if s > σ , then y +Ws = x + 2δ − 2x− 2δ − Bs = −x− Bs and
|y+Ws|= |x+Bs| . Thus, (3.4) follows. Now, if τ is a stopping time bounded by 1− t ,
then Itô’s formula gives

V (x, t)−G(x,t) � P(t + τ � 1)−E|x+Bτ |p−G(x,t)
= P(t + τ � 1)−E|x+Bτ |p + |x|p

= P(t + τ � 1)− p(p−1)
2

E

∫ τ

0
|x+Bs|p−2ds

� P(t + τ � 1)− p(p−1)
2

E

∫ τ

0
|y+Ws|p−2ds

= P(t + τ � 1)−E|y+Wτ|p + |y|p.
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Hence, taking supremum over τ yields

V (x,t)−G(x,t) � V (y,t)−G(y,t).

Therefore, C enjoys the following: if (y,t) ∈C , then [−y,y]×{t}⊂C .
To prove another geometrical property of the continuation set, note that for a fixed

x , the function t �→V (x,t) is nondecreasing (we have already pointed this out above).
Hence the function t �→V (x,t)−G(x,t) , t ∈ (−∞,1) , also satisfies this condition; thus
we may conclude that if (x,t)∈C , then the whole line segment {x}× [t,1) is contained
in C .

Now we will show that if t < 1 is fixed, then (x, t) ∈ D for sufficiently large |x| .
Otherwise, by the previous facts, we would have R× [t,1) ⊂ C and hence τ ≡ 1− t
would be optimal for (x,t) . But, by Itô’s formula,

E|x+B1−t|p−|x|p =
p(p−1)

2

∫ 1−t

0
E|x+Bs|p−2ds → ∞

as |x| → ∞ . So, if |x| is sufficiently large, then V (x,t) = 1−E|x+B1−t|p < −|x|p =
G(x,t) , a contradiction.

The final insight into the structure of C is gained with the use Davis’ inequality
(1.2). Namely, for any bounded stopping time τ we have

P(t + τ � 1) � P(τ � 1− t) � ||τ1/2||pp
(1− t)p/2

� Cp
pE|Bτ |p

(1− t)p/2
.

Therefore, if 1− t >C2
p , then P(t +τ � 1)−E|Bτ |p � 0 = G(0,t) and hence (0,t)∈D

(which implies that the whole horizontal line R×{t} is contained in D , in view of the
above properties). The combination of the facts proved above leads to the following
statement: there is a nondecreasing function b : (−∞,1) → [0,∞) which vanishes on
some interval (−∞, t0] and tends to ∞ as t ↑ 1, such that

C = {(x,t) ∈ R× (−∞,1) : |x| < b(t)}.

See Figure 1 below.

Figure 1: The continuation set lies between the curves |x| = b(t) and t = 1 .
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Step 4. Our next task is to prove that the function b is continuous. Let us first focus
on the left-continuity of b . For this, fix t < 1 and consider a sequence (tn)n�0 which
increases to t as n → ∞ . Since b is nondecreasing, the limit b(t−) = limn→∞ b(tn)
exists. Because (b(tn),tn) belongs to D for all n and D is closed, it follows that
(b(t−), t) belongs to D . This implies b(t−) � b(t) , and we get the reverse bound by
the monotonicity of b . Consequently, b is left-continuous, as claimed.

We turn to the right-continuity of b . Assume on contrary that there is t > 0 such
that b(t) < b(t+) and pick x, y ∈ (b(t),b(t+)) such that x < y . Define the stopping
time

τ ′ = inf{s > 0 : (y+Bs,t + s) ∈ D}
(the difference between τ ′ and τD lies in the fact that in the above infimum we consider
positive s). The process (y+Bs,t + s)0<s<τ ′ takes values in C , so by Itô’s formula and
(3.2), we have

0 = V (y, t)+ |y|p = EV (y+Bτ ′,t + τ ′)−G(y,t)
= EG(y+Bτ ′,t + τ ′)−G(y,t)

= P(t + τ ′ � 1)− p(p−1)
2

E

∫ τ ′

0
|y+Bs|p−2ds.

(3.5)

Now we repeat the coupling argument from Step 3: let W be the reflected Brownian
motion, corresponding to x < y , given by (3.3). Directly from its construction and the
monotonicity of b , we infer that the process (x +Ws,t + s)0<s<τ ′ takes values in C .
Indeed, if (x +Ws, t + s) ∈ D for some s ∈ (0,τ ′) , then σ > s , since otherwise we
would have |x+Ws| = |y+Bs| , a contradiction with the definition of τ ′ . But if σ > s ,
then −b(t + s) < −δ < x+Ws < |y+Bs| < b(t + s) , which again makes the condition
(x +Ws, t + s) ∈ D impossible. Thus, (x +Ws,t + s) ∈ C for s ∈ (0,τ) ; furthermore,
we have x+Bτ ′ > 0 with positive probability, which implies that P((x+Wτ ′ , t + τ ′) ∈
C) > 0. Therefore, by Itô’s formula,

0 = V (x, t)+ |x|p = EV (x+Wτ ′ ,t + τ ′)−G(y,t)
> EG(x+Wτ ′ ,t + τ ′)−G(y,t)

= P(t + τ ′ � 1)− p(p−1)
2

E

∫ τ ′

0
|x+Ws|p−2ds.

Combining this with (3.5) yields

E

∫ τ ′

0
|x+Ws|p−2ds > E

∫ τ ′

0
|y+Bs|p−2ds,

which contradicts the inequality |x+Ws| � |y+Bs| which can be proved as in Step 3.
This gives the desired continuity of b .

Step 5. Now we will show the following smooth-fit property: for each t < 1
the function x �→ V (x,t) is differentiable at the point b(t) and satisfies Vx(b(t),t) =
Gx(b(t), t) . Clearly, it suffices to compare the left derivatives of V and G . Since
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V (b(t), t) = G(b(t), t) , we may write

V (b(t),t)−V(b(t)− ε,t)
ε

� G(b(t),t)−G(b(t)− ε,t)
ε

for all ε > 0 and hence

limsup
ε↓0

V (b(t),t)−V(b(t)− ε,t)
ε

� Gx(b(t),t).

Let τε = τD(b(t)−ε,t) be optimal for V (b(t)−ε,t) . Then by the mean value theorem
we have

V (b(t), t)−V(b(t)− ε,t)
ε

� 1
ε

(
EG(b(t)+Bτε ,t + τε)−EG(b(t)− ε +Bτε ,t + τε)

)
= EGx(ξε ,t + τε),

where ξε lies between b(t)− ε +Bτε and b(t)+Bτε . Since t �→ b(t) is nondecreasing
and t �→ λ t is a lower function for B at 0+ for every λ ∈ R , one easily proves that
τε → 0 as ε ↓ 0. Consequently, ξε → b(t) and Gx(ξε ,t + τε) → Gx(b(t),t) as ε ↓ 0.
In addition,

|Gx(ξε , t + τε)| � p
(|b(t)+Bτε |+ ε

)p−1 � p
(

sup
0�s�1−t

|b(t)+Bs|+ ε
)p−1

and the latter variable is integrable. Therefore, we may conclude that

liminf
ε↓0

V (b(t),t)−V(b(t)− ε,t)
ε

� Gx(b(t),t)

by Lebesgue’s dominated convergence theorem. This proves the desired smoothness of
V .

Step 6. Now we will apply a local time-space formula of Peskir [19]. Let us first
list the necessary properties of V , which will allow us to use this result. We denote by
Ao the interior of a set A .

V is of class C2,1 on C∪Do, (3.6)

Vt +Vxx/2 is locally bounded on C∪Do, (3.7)

t �→Vx(b(t),t) is continuous on (−∞,1), (3.8)

x �→V (x,t) is concave. (3.9)

Indeed: (3.6) is obvious; we have Vt +Vxx/2 = 0 on C and Vt +Vxx/2 = −p(p−
1)|x|p−2/2 on Do , which gives (3.7); by Step 5, we have Vx(b(t),t) = −pb(t)p−1 ,
which is a continuous function of t : see Step 4. Finally, we have Vt � 0 on C and
hence, by (3.2), Vxx � 0 on this set; furthermore, Vxx(x,t) = −p(p− 1)|x|p−2 � 0 on
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Do . Combining these facts with Step 5 gives that x �→V (x,t) is of class C1 for all t and
the concavity follows. Furthermore, the function b obviously satisfies the condition

P(x+Bs = b(t + s)) = 0 for all x ∈ R and t, s > 0.

Therefore, by the result of Peskir [19], the following change-of-variable formula holds:
for t < 1 and s � 1− t ,

V (x+Bs,t + s) = V (x,t)+ I + II + III, (3.10)

where

I =
∫ s

0
Vx(x+Bu,t +u)dBu,

II =
∫ s

0

(
Vt +

1
2
Vxx

)
(x+Bu,t +u)1{|x+Bu|
=b(t+u)}du

III =
∫ s

0

(
Vx(x+Bu+,t +u)−Vx(x+Bu−,t +u)

)
1{x+Bu=−b(t+u)}d�−b

t+u

+
∫ s

0

(
Vx(x+Bu+,t +u)−Vx(x+Bu−,t +u)

)
1{x+Bu=b(t+u)}d�b

t+u.

Here �c
s is the local time of Brownian motion B at curve c given by the limit in proba-

bility

�c
s = lim

ε↓0
1
2ε

∫ s

0
1{c(r)−ε<Xr<c(r)+ε}dr.

Let us analyze the terms I through III separately. The process in I is a local martingale;
in fact, by (3.9), the partial derivative Vx is locally bounded, so the process is actually
a true martingale and hence the stochastic integral has mean zero. The term II can be
computed directly:

II = − p(p−1)
2

∫ s

0
|x+Bu|p−21{|x+Bu|>b(t+u)}du.

Finally, by the smooth-fit principle studied in Step 5, the term III vanishes. Conse-
quently, taking s = 1− t and integrating both sides of (3.10), we get

1−E|x+B1−t|p = V (x,t)− p(p−1)
2

∫ 1−t

0
E|x+Bu|p−21{|x+Bu|>b(t+u)}du.

Now take x = b(t) . Then V (x,t) = −b(t)p and by Itô’s formula, we get

∫ 1−t

0
E|x+Bu|p−21{|x+Bu|�b(t+u)}du =

2
p(p−1)

.

Since x+Bu ∼ N (x,u) , we obtain the following functional equation for b :

∫ 1

t

∫
|r|�b(u)

|r|p−2√
2π(u− t)

exp

(
− (r−b(t))2

2(u− t)

)
drdu =

2
p(p−1)

. (3.11)
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Step 7. The purpose of the four steps below is to show that the solution to (3.11)
is unique. The reasoning we are going to present is a modification of the technique
introduced by Peskir [18] to study an open problem concerning American options. So,
suppose that c : (−∞,1)→ [0,∞) is a nondecreasing continuous function satisfying the
above functional equation. Note that limt↑1 c(t) = ∞ ; otherwise, the left-hand side of
(3.11) would be bounded from above by an expression of the form

∫ 1

t

α1√
u− t

exp

(
− α2

2(u− t)

)
du

(for some positive constants α1 , α2 ), which converges to 0 as t ↑ 1.
Motivated by the above considerations leading to (3.11), we introduce the auxiliary

function Uc : R× (−∞,1]→ R given by

Uc(x, t) = EG(x+B1−t,1)− p(p−1)
2

∫ 1−t

0
E|x+Bu|p−21{|x+Bu|>c(t+u)}du.

The assumption that c solves (3.11) is equivalent to saying that

∫ 1−t

0
E|x+Bu|p−21{|x+Bu|�c(t+u)}du =

2
p(p−1)

,

which, in turn, implies that Uc(c(t),t) = G(c(t),t) for all t . In the remainder of this
step we shall prove that Uc(x,t) = G(x,t) provided |x| � c(t) ; this will be accom-
plished with the use of the following martingale methods.

Observe that if X is a Markov process and we set F(x,t) = ExG(X1−t) for an in-
tegrable function G (where Px is a probability measure on the sample space such that
Px(X0 = x) = 1), the the Markov property of X implies that

(
F(Xt ,t)

)
t∈[0,1] is a mar-

tingale under Px . Similarly, if we set F(x,t) = Ex

(∫ 1−t
0 H(Xs)ds

)
for a sufficiently

regular function H , then
(
F(Xt ,t)+

∫ t
0 H(Xs)ds

)
t∈[0,1] is a martingale under Px . Ap-

plying these facts to the space-time Markov process ((x+Bs, t + s))s�0 , we get that for
a fixed number t ,(

Uc(x+Bs, t + s)+
p(p−1)

2

∫ s

0
|x+Bu|p−21{|x+Bu|>c(t+u)}du

)
s�1−t

(3.12)

is a martingale. On the other hand, we have

G(x+Bs,t + s) = G(x,t)− p(p−1)
2

∫ s

0
|x+Bu|p−2du+Ms,

where

Ms = p
∫ s

0
|x+Bu|p−2(x+Bu)dBu, 0 < s < 1− t,

is a martingale. Suppose that |x| > c(t) and consider the stopping time

σc = inf{0 < s < 1− t : |x+Bs| = c(t + s)}.
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The stopping time σc is bounded by 1− t , since c is continuous and explodes at the
right endpoint of its domain. As we have already pointed out above, we have the equal-
ity Uc(x+Bσc , t + σc) = G(x+Bσc,t + σc) and thus

Uc(x, t)

= E

[
Uc(x+Bσc,t + σc)+

p(p−1)
2

∫ σc

0
|x+Bu|p−21{|x+Bu|>c(t+u)}du

]

= E

[
G(x+Bσc,t + σc)+

p(p−1)
2

∫ σc

0
|x+Bu|p−2du

]
= G(x, t).

Step 8. Let us prove that Uc � V . To do this, fix x ∈ R , t < 1 and consider the
stopping time

τc = inf{0 � s < 1− t : |x+Bs| � c(t + s)},
with the convention inf /0 = 1− t . By the previous step and the equality Uc(x,1) =
G(x,1) (which is obvious from the formula for Uc ) we have Uc(x + Bτc ,t + τc) =
G(x+Bτc , t + τc) . Using the martingale property of the process (3.12) and the fact that
the integrand appearing in its definition vanishes for u < τc , we obtain

Uc(x, t) = EUc(x+Bτc,t + τc) = EG(x+Bτc ,t + τc) � V (x,t),

as desired.

Step 9. We are ready to show that c(t) � b(t) for all t < 1. Suppose that there is
t < 1 for which the reverse inequality c(t) > b(t) holds. Introduce the stopping time

σb = inf{0 � s < 1− t : c(t)+Bs = b(t + s)}

(since limu↑1 b(u) = ∞ , the above definition makes sense). By Itô formula, we have

EV (c(t)+Bσb,t + σb) = V (c(t),t)− p(p−1)
2

E

∫ σb

0
|c(t)+Bu|p−2du

and, by the martingale property of the process (3.12),

EUc(c(t)+Bσb ,t + σb)

= Uc(c(t),t)− p(p−1)
2

E

∫ σb

0
|c(t)+Bu|p−21{|c(t)+Bu|>c(t+u)}du.

But we have V (c(t), t) = G(c(t),t) = Uc(c(t),t) and, by the previous step, Uc(c(t)+
Bσb ,t +σb) �V (c(t)+Bσb ,t +σb) . Consequently, the two equalities above imply that

E

∫ σb

0
|c(t)+Bu|p−21{|c(t)+Bu|�c(t+u)}du � 0,

which is impossible in view of the continuity of b and c .
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Step 10. Finally, we show that b � c , which will complete the proof of the unique-
ness. Suppose on contrary that there is t for which c(t) < b(t) and pick x∈ (c(t),b(t)) .
Let

τD = inf{s > 0 : (x+Bs,t + s) ∈ D}.
We have

EG(x+BτD ,t + τD) = V (x,t)

and, since G(x+BτD ,t + τD) = Uc(x+BτD,t + τD) , we get

EG(x+BτD , t + τD) = Uc(x,t)

− p(p−1)
2

E

(∫ τD

0
|x+Bt+u|p−21{|x+Bu|>c(t+u)}du

)
.

However, we have V � Uc (see Step 8), so the two identities above imply

E

(∫ τD

0
|x+Bt+u|p−21{|x+Bu|>c(t+u)}du

)
� 0,

which cannot hold, because of the continuity of b and c . This completes the proof of
the uniqueness of the solution to (3.11).

Step 11. Finally, we are ready to establish the main statement of this section. Let
t0 = sup{t : b(t) = 0} .

THEOREM 3.1. Suppose that 2 < p < ∞ . Then for any continuous-path martin-
gale X we have the sharp bound

||[X ,X ]1/2
∞ ||p,∞ � (1− t0)1/2||X ||p. (3.13)

Proof. We proceed as in the proof of Theorem 2.1. Let W be the stopped Brown-
ian motion introduced there; then

P([X ,X ]∞ � 1− t0) � ||X ||pp +V(0,t0) = ||X ||pp,
which, by homogeneity, yields

λ p
P([X ,X ]∞ � λ ) � (1− t0)p/2||X ||pp

and (3.13) follows. To see that the constant (1− t0)1/2 cannot be improved, pick an
arbitrary number t > t0 and let τ be the optimal stopping time for (0,t) . We have
V (0,t) > 0 and

P(τ � 1− t)−E|Bτ|p = V (0,t) > 0,

which implies

||τ1/2||p,∞ � (1− t)1/2(
P(τ � 1− t)

)1/p
> (1− t)1/2||Bτ ||p.

Therefore, the best constant is not smaller than (1− t)1/2 and letting t ↓ t0 yields the
desired lower bound. �
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