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VOLUME INEQUALITIES FOR ORLICZ MEAN ZONOIDS

CHANGMIN DU, GANGSONG LENG AND DONGMENG XI

(Communicated by M. A. Hernandez Cifre)

Abstract. In this paper, a more general mean zonoid called Orlicz mean zonoid Z φ K of a convex
body K is introduced. Using shadow systems of convex bodies, we give a sharp lower estimate
for the volume ratio of Z φ K and K , and a sharp upper estimate for the volume product of Z

∗
φ K

and K .

1. Introduction

The Orlicz Brunn-Minkowski theory emerged following three remarkable papers
which established the Orlicz projection inequality [21], the Orlicz centroid inequality
[22] and the even Orlicz Minkowski problem [12]. Analogous to the way that Orlicz
spaces generalize Lp spaces, this theory represents an extension of the evolving Lp

Brunn-Minkowski theory. This extension is motivated by asymmetric concepts within
the Lp Brunn-Minkowski theory developed by Ludwig [15], Haberl and Schuster [10,
11], Ludwig and Reitzner [16]. Recently, Gardner, Hug and Weil [7] have given the
systematic description of the Orlicz Brunn-Minkowski theory. Despite various studies
are issued within this theory, there are still lots of works to be considered (see e.g.
[9, 13, 14, 17, 18, 19, 20, 32, 33]). The aim of this paper is to go on in this way to
establish volume inequalities for the Orlicz mean zonoids.

A zonotope is the Minkowski sum of segments (see e.g. [4, 27, 28]). Zonoids are
defined as limits of zonotopes in the Hausdorff metric. A zonoid Z can be denoted by

hZ(u) =
1
2

∫
Sn−1

|u · v|dμ(v),

for all u ∈ Sn−1 , where μ is an even measure on the unit sphere Sn−1 . The extremal
problems about geometric mean values are studied by Pfiefer [24, 25]. We focus now
our attention on an interesting paper [34], in which Zhang defined the mean zonoid ZK
of a convex body K by

hZK(u) =
1

|K|2
∫

K

∫
K
|u · (x− y)|dxdy
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for all u ∈ Sn−1 . In fact, the body ZK is a zonoid.
In this paper, we are interested in the Orlicz mean zonoids. We consider an even

convex function φ : R → [0,∞) such that φ(0) = 0. This means that φ must be de-
creasing on (−∞,0] and increasing on [0,∞) . We require that φ is strictly increasing
on [0,∞) . The class of such φ will be denoted by C . If K is a convex body with
volume |K| , and φ ∈ C , then we define the Orlicz mean zonoid Zφ K of K by

hZφ K(u) = inf
{

λ > 0 :
1

|K|2
∫

K

∫
K

φ
(

u · (x− y)
λ

)
dxdy � 1

}
, (1)

for all u ∈ R
n . Taking φ(·) = | · | , Zφ K is just ZK . Taking φ(·) = | · |p for p � 1, we

obtain ZpK . It is easy to see that Z∞K = DK for p = ∞ , where DK is the difference
body of K (i.e., DK = K +(−K)). By Jensen’s inequality, we have

ZpK ⊂ ZqK ⊂ DK,

for all 1 � p � q . From the definition of Lp radial mean bodies [5] and Lp centroid
bodies [19], we can get that Lp mean zonoids are just the Lp centroid bodies of Ln+p

radial mean bodies with a dilatation.
Using shadow systems of convex bodies, Campi and Gronchi (see e.g. [1, 2, 3,

4]) got volume inequalities for Lp zonotopes and related results. Inspired by their
works, Wang, Leng and Huang [32] obtained volume inequalities for Orlicz zonotopes.
Following all of their works, we will prove the following theorems.

THEOREM 1. If φ ∈ C and K is a convex body in R
n , then the volume ratio

|Zφ K|/|K| (2)

is minimized if and only if K is an ellipsoid.

Taking φ(·) = | · | , Theorem 1 is just Theorem 7 in [34].
A Blaschke-Santaló type inequality is given by the next theorem.

THEOREM 2. If φ ∈ C and K is a convex body in R
n , then

|Z∗
φ K||K| � |Z∗

φ E||E|, (3)

equality holds if and only if K is an ellipsoid.

This paper is organized as follows: In Section 2, we present some notation and
existing results needed in this paper. In Section 3, we obtain some properties for Orlicz
mean bodies. The proofs of the main theorems are given in Section 4.
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2. Background and notation

In this section we present the terminology and notation we shall use throughout.
For general references the reader may wish to consult the books of Gardner [6], Gru-
ber [8], and Schneider [29].

A convex body K in Euclidean n -space R
n is a compact convex set with non-

empty interiors. |K| is defined as the volume of K . Denote by K n the class of convex
bodies. A convex body K is uniquely determined by its support function defined by

hK(x) = max
y∈K

x · y, for all x ∈ R
n,

where x · y is the standard inner product of x and y . If the origin is an interior point
of K , then its polar body K∗ is defined by

K∗ = {x ∈ R
n : x · y � 1 for all y ∈ K}.

The Hausdorff metric δ (·, ·) on K n is

δ (K,L) = max
u∈Sn−1

|hK(u)−hL(u)|,

for K,L ∈ K n , where Sn−1 is the unit sphere in R
n . For v ∈ Sn−1 , v⊥ = {x ∈ R

n :
x · v = 0} . Denote by K|v⊥ and x|v⊥ the orthogonal projection of the convex body
K and the vector x onto v⊥ respectively. |K|v⊥|n−1 defines the (n− 1)-dimensional
volume of K|v⊥ .

Denote by GL(n) the group of linear transformations. For ψ ∈ GL(n) , ψT is the
transpose of ψ . Each affine transformation consists of a linear transformation followed
by a translation.

The technique used in this paper is that of shadow systems developed by Rogers
and Shephard (see [26] and [30]). A shadow system along the unit direction v is a
family of convex sets Kt ∈ R

n that can be defined by

Kt = conv{z+ α(z)tv : z ∈ A ⊂ R
n},

where A is an arbitrary bounded set of points, α is a real bounded function on A , and
the parameter t runs in an interval of the real axis.

A particular type of shadow system called parallel chord movements along the unit
direction v is a family of convex bodies Kt ∈ R

n defined by

Kt = {z+ β (z|v⊥)tv : z ∈ K,0 � t � 1}, (4)

where K is a convex body in R
n and β is a continuous real function on v⊥ . Notice

that Kt |v⊥ is independent of t . By Fubini’s theorem, |Kt | is also independent of t .
If the speed function β of the movement is an affine function (that is, β (x) =

x · u + k , for some vector u and real constant k ), then it is easy to see that Kt is an
affine image of K for every t in the range of the movement.

Fix a direction v and let

K = {x+ yv∈ R
n : x ∈ K|v⊥,y ∈ R, f (x) � y � g(x)},
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where f and −g are convex functions on K|v⊥. The parallel chord movement with
speed function β (x) = −( f (x)+g(x)) is such that K0 = K, K1 = Kv, the reflection of
K with respect to hyperplane v⊥ , and K1/2 is the Steiner symmetral of K with respect
to v⊥ .

The following lemmas about shadow systems of convex bodies are important in
this paper.

LEMMA 1. [1] Let {Ht : 0 � t � 1} be a one-parameter family of convex bodies
such that Ht |v⊥ is independent of t. Assume that the bodies Ht are defined by

Ht = {x+ yv : x ∈ Ht |v⊥,y ∈ R, ft (x) � y � gt(x)}, 0 � t � 1,

for suitable functions ft ,gt . Then {Ht : 0 � t � 1} is a shadow system along the direc-
tion v if and only if for every x ∈ H0|v⊥ ,

(i) gt and − ft are convex functions of the parameter t in [0,1],
(ii) fλ t1+(1−λ )t2(x) � λgt1(x)+(1−λ ) ft2 (x)� gλ t1+(1−λ )t2(x), for every t1,t2,λ ∈

[0,1].

LEMMA 2. [30] The volume of a shadow system is a convex function of the pa-
rameter t .

LEMMA 3. [3] Let K be a convex body in R
n . If Kt is a shadow system of origin

symmetric convex bodies in R
n , then |K∗

t |−1 is a convex function of t .

3. Description of results

Since a function φ ∈ C is strictly increasing on [0,∞) , it follows that the function

λ �→ 1
|K|2

∫
K

∫
K

φ
(

u · (x− y)
λ

)
dxdy

is strictly decreasing on [0,∞) . In view of the definition (1), we have

LEMMA 4. If φ ∈ C , K ∈ K n and u0 ∈ R
n \ {0} , then

hZφ K(u0) = λ0 ⇔ 1
|K|2

∫
K

∫
K

φ
(

u0 · (x− y)
λ0

)
dxdy = 1. (5)

The following lemma shows that Zφ K defined in (1) is a convex body.

LEMMA 5. If φ ∈ C and K ∈K n , then the function hZφ K is the support function

of a convex body Zφ K .
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Proof. Because a sublinear function can uniquely determine a support function of
a convex body, we only need to prove hZφ K is a sublinear function. By the definition

(1), for all u ∈ R
n and c > 0, it is easy to see

hZφ K(cu) = chZφ K(u). (6)

For all u1,u2 ∈ R
n , by the convexity of the function φ , we have

φ
(

(u1 +u2) · (x− y)
λ1 + λ2

)
= φ

(
u1 · (x− y)

λ1 + λ2
+

u2 · (x− y)
λ1 + λ2

)

� λ1

λ1 + λ2
φ
(

u1 · (x− y)
λ1

)
+

λ2

λ1 + λ2
φ
(

u2 · (x− y)
λ2

)
.

Let hZφ K(ui) = λi, i = 1,2. By lemma 4, integrating both sides of the above inequality,
we get

1
|K|2

∫
K

∫
K

φ
(

(u1 +u2) · (x− y)
λ1 + λ2

)
dxdy � 1.

This is
hZφ K(u1 +u2) � λ1 + λ2.

It means
hZφ K(u1 +u2) � hZφ K(u1)+hZφ K(u2). (7)

Hence, we complete the proof from (6) and (7). �

The next lemma demonstrates that |Zφ K|/|K| is affine invariant.

LEMMA 6. If φ ∈ C , K ∈ K n and ψ ∈ GL(n), then

Zφ (ψK + γ) = ψZφ K.

for any γ ∈ R
n .

Proof. Let ψ ∈ GL(n), it follows (1) that

hZφ (ψK+γ)(u)

= inf
{

λ > 0 :
1

|ψK + γ|2
∫

ψK+γ

∫
ψK+γ

φ
(

u · (x− y)
λ

)
dxdy � 1

}

= inf
{

λ > 0 :
1

|ψK|2
∫

K

∫
K

φ
(

u · (ψx′+ γ −ψy′ − γ)
λ

)
|ψ |2dx′dy′ � 1

}

= inf
{

λ > 0 :
1

|K|2
∫

K

∫
K

φ
(

ψT u · (x′ − y′)
λ

)
dx′dy′ � 1

}

= hZφ K(ψT u). �
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Associated with each φ ∈ C , cφ is defined by

cφ = min{c > 0 : φ(c) � 1}.

Thus φ(cφ ) = 1. In order to get the continuity of the operator Zφ , the following lemma
is needed.

LEMMA 7. If φ ∈ C , K ∈ K n and u ∈ Sn−1 , then

|K|u⊥|n−1

|K|cφ
� hZφ K(u) � DK

cφ
,

where DK denotes the longest chord length of K .

Proof. Suppose u0 ∈ Sn−1 such that hZφ K(u0) = λ0. From the definition of cφ ,

Jensen’s inequality and Lemma 4, we get

φ(cφ ) = 1 =
1

|K|2
∫

K

∫
K

φ
(

u0 · (x− y)
λ0

)
dxdy

� 1
|K|2

∫
K

∫
K

φ
(

(u0 · (x− y))+
λ0

)
dxdy

� φ
(

1
|K|2

∫
K

∫
K

(u0 · (x− y))+
λ0

dxdy

)

= φ
(

1
|K|2

∫
K

∫
K−y

(u0 · z)+
λ0

dzdy

)

= φ
(

1
|K|2λ0

∫
K
|(K− y)|u⊥0 |n−1dy

)

= φ
(

1
|K|2λ0

∫
K
|K|u⊥0 |n−1dy

)

= φ
( |K|u⊥0 |n−1

|K|λ0

)
,

where (u0 · (x− y))+ = max{u0 · (x− y),0} . Since φ is increasing on [0,∞) , then we
obtain the lower bound of hZφ K :

|K|u⊥0 |n−1

|K|cφ
� λ0.

In order to get the upper bound, we also use the monotonicity of φ on [0,∞) .

φ(cφ ) = 1 =
1

|K|2
∫

K

∫
K

φ
(

u0 · (x− y)
λ0

)
dxdy

� 1
|K|2

∫
K

∫
K

(
max
x,y∈K

φ
(

u0 · (x− y)
λ0

))
dxdy
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� 1
|K|2

∫
K

∫
K

φ
(

DK

λ0

)
dxdy

= φ
(

DK

λ0

)
.

Thus

λ0 � DK

cφ
. �

The continuity of the operator Zφ on K n can be obtained as follows.

LEMMA 8. If φ ∈ C , Ki ∈ K n and Ki → K ∈ K n , then Zφ Ki → Zφ K.

Proof. Suppose u0 ∈ Sn−1 , we will show that

hZφ Ki
(u0) → hZφ K(u0).

Let
hZφ Ki

(u0) = λi,

and by Lemma 7,
|Ki|u⊥|n−1

|Ki|cφ
� λi � DKi

cφ
.

Since Ki → K , there exist real numbers a,b such that 0 < a � λi � b < ∞, for all large
enough i .

We will show that the bounded sequence {λi} converges to hZφ K(u0) , and it only

remains to be shown that every convergent subsequence of {λi} converges to hZφ K(u0) .
Denote an arbitrary convergent subsequence of {λi} by {λi} as well. Assume

λi → λ∗.

Obviously, a � λ∗ � b. Let K̃i = λ−1
i Ki . Since λ−1

i → λ−1∗ , we get

K̃i → λ−1
∗ K.

Lemma 6 and the fact hZφ Ki
(u0) = λi show that hZφ K̃i

(u0) = 1; that is,

1

|K̃i|2
∫

K̃i

∫
K̃i

φ
(

u0 · (x− y)
)

dxdy = 1,

for all i . Since K̃i → λ−1∗ K , the above formula implies

1

|λ−1∗ K|2
∫

λ−1∗ K

∫
λ−1∗ K

φ
(

u0 · (x− y)
)

dxdy = 1.
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Thus we have

hZφ λ−1∗ K(u0) = 1.

By Lemma 6, we get

hZφ K(u0) = λ∗.

This shows that hZφ Ki
(u0) → hZφ K(u0) as desired.

Since the support functions hZφ Ki
→ hZφ K pointwise on Sn−1 , they converge uni-

formly and hence

Zφ Ki → Zφ K. �

As described in Section 2, we know that if {Kt : 0 � t � 1} is a parallel chord
movement along the unit direction v , then Kt |v⊥ is independent of t . The next lemma
shows that (Zφ Kt)|v⊥ has the same property.

LEMMA 9. If φ ∈ C , and {Kt : 0 � t � 1} is a parallel chord movement along
the unit direction v, then the orthogonal projection of Zφ Kt onto v⊥ is independent of
t.

Proof. For any u ∈ R
n , we have

hZφ Kt
(u)

= inf
{

λ > 0 :
1

|Kt |2
∫

Kt

∫
Kt

φ
(

u · (x− y)
λ

)
dxdy � 1

}

= inf
{

λ > 0 :
1

|K0|2
∫

K0

∫
K0

φ
(

u · (z1+β (z1|v⊥)tv−z2−β (z2|v⊥)tv)
λ

)
dz1dz2 � 1

}

= inf
{

λ > 0 :
1

|K0|2
∫

K0

∫
K0

φ
(

u · (z1−z2)+(β (z1|v⊥)−β (z2|v⊥))tu · v
λ

)
dz1dz2 � 1

}
.

Then hZφ Kt
(u) = hZφ K(u) for all u ∈ v⊥ . �

In order to obtain Theorem 1, we also need the following theorems which will be
proved in the next section.

THEOREM 3. If φ ∈ C , and {Kt : 0 � t � 1} is a parallel chord movement along
the unit direction v with speed function β , then Zφ Kt is a shadow system along the
same direction v.

THEOREM 4. If φ ∈ C , and {Kt : 0 � t � 1} is a parallel chord movement along
the unit direction v with speed function β , then the volume of Zφ Kt is a strictly convex
function of t unless β is affine.
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4. The proofs of main theorems

Proof of Theorem 3. By Lemma 9, the orthogonal projection of Zφ Kt onto v⊥ is
independent of t . Next, we only need to verify that Zφ Kt satisfies conditions (i) and
(ii) of Lemma 1.

Since Zφ Kt is an origin symmetric convex body for every t ∈ [0,1] , it can be
written as

Zφ Kt = {x+ yv : x ∈ Zφ K0|v⊥,−gt(−x) � y � gt(x)},
where gt(·) is a suitable concave function defined on Zφ K0|v⊥.

Since z ∈ Zφ Kt if and only if z ·u � hZφ Kt
(u) for every u ∈ R

n , we have

gt(x) = sup{λ ∈ R : (x+ λv) ·u � hZφ Kt
(u), ∀ u ∈ R

n}
= sup{λ ∈ R : λv ·u � hZφ Kt

(u)− x ·u, ∀ u ∈ R
n}.

Since the inner product and support function are both homogeneous of degree 1, we
only need to consider the vectors v such that |u · v| = 1. Due to the fact that vectors u
with a non-positive inner product with v provide no bounds for λ , we get

gt(x) = sup{λ ∈ R : λ � hZφ Kt
(ω + v)− x · (ω + v), ∀ ω ∈ v⊥}

= inf
ω∈v⊥

{hZφ Kt
(ω + v)− x ·ω}. (8)

Then, the convexity of gt with respect to t is stated as follows.
We first show that if u1,u2 ∈ v⊥,t1,t2 ∈ [0,1] , then

hZφ Kt1+t2
2

(u1 +u2 +2v) � hZφ Kt1
(u1 + v)+hZφ Kt2

(u2 + v). (9)

In fact, let

hZφ Kt1
(u1 + v) = λ1,hZφ Kt2

(u2 + v) = λ2. (10)

The convexity of φ implies that

φ
(

(u1 +u2 +2v) · (z1 − z2)+(β (z1|v⊥)−β (z2|v⊥)) t1+t2
2 (u1 +u2 +2v) · v

λ1 +λ2

)

= φ
(

(u1 + v) · (z1 − z2)+(β (z1|v⊥)−β (z2|v⊥))t1 +(u2 + v) · (z1 − z2)+(β (z1|v⊥)−β (z2|v⊥))t2
λ1 +λ2

)

= φ
(

(u1 + v) · (z1 − z2)+(β (z1|v⊥)−β (z2|v⊥))t1(u1 + v) · v+(u2 + v) · (z1 − z2)+(β (z1|v⊥)−β (z2|v⊥))t2(u2 + v) · v
λ1 +λ2

)

� λ1

λ1 +λ2
φ
(

(u1 + v) · (z1 − z2)+(β (z1|v⊥)−β (z2|v⊥))t1(u1 + v) · v
λ1

)

+
λ2

λ1 +λ2
φ
(

(u2 + v) · (z1 − z2)+(β (z1|v⊥)−β (z2|v⊥))t2(u2 + v) · v
λ2

)
.

Integrating both sides and using (10), we get (9).
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It follows from (8) and (9) that

2g t1+t2
2

(x)

= inf
ω∈v⊥

{hZφ Kt1+t2
2

(2(ω + v))− x ·2ω}

= inf
u1,u2∈v⊥

{hZφ Kt1+t2
2

(u1 +u2 +2v)− x · (u1+u2)}

� inf
u1,u2∈v⊥

{hZφ Kt1
(u1 + v)+hZφ Kt2

(u2 + v)− x · (u1 +u2)}

= inf
u1∈v⊥

{hZφ Kt1
(u1 + v)− x ·u1}+ inf

u2∈v⊥
{hZφ Kt2

(u2 + v)− x ·u2}

= gt1(x)+gt2(x).

Thus, the condition (i) of Lemma 1 is verified.
Assume θ ∈ [0,1] , let

hZφ Kt1
(−θu1−θv) = μ1, hZφ Kθ t1+(1−θ )t2

(u2 + v) = μ2. (11)

Then we get

φ
(

(u2 −θu1 +(1−θ )v) · (z1 − z2)+(β(z1|v⊥)−β(z2|v⊥))t2(u2 −θu1 +(1−θ )v) ·v
μ1 + μ2

)

= φ
(

(u2 + v) · (z1 − z2)+(−θu1−θv) · (z1 − z2)− (β(z1|v⊥)−β(z2|v⊥))((1−θ )t2 +θ t1 −θ t1)
μ1 + μ2

)

� μ2

μ1 + μ2
φ
(

(u2 + v) · (z1 − z2)+(β(z1|v⊥)−β(z2|v⊥))((1−θ )t2 +θ t1)(u2 + v) ·v
μ2

)

+
μ1

μ1 + μ2
φ
(

(−θu1−θv) · (z1 − z2)+(β(z1|v⊥)−β(z2|v⊥))t1(−θu1−θv) ·v
μ1

)
.

Integrating both sides and using (11), we get

hZφ Kt2
(u2−θu1 +(1−θ )v) � hZφ Kt1

(−θu1−θv)+hZφ Kθ t1+(1−θ )t2
(u2 + v).

Thus, we have

(1−θ )gt2(x)
= inf

u∈v⊥
{hZφ Kt2

((1−θ )(u+ v))− x ·u}
= inf

u1,u2∈v⊥
{hZφ Kt2

(u2−θu1 +(1−θ )v)− x · (u2−θu1)}

� inf
u1,u2∈v⊥

{hZφ Kt1
(−θu1−θv)+hZφ Kθ t1+(1−θ )t2

(u2 + v)− x · (u2−θu1)}

= inf
u1∈v⊥

{hZφ Kt1
(−θu1−θv)− x · (−θu1)}+ inf

u2∈v⊥
{hZφ Kθ t1+(1−θ )t2

(u2 + v)− x ·u2}

= θgt1(−x)+g(1−θ)t2+θt1(x).

This is the first inequality of (ii). Interchanging t1 with t2 , θ with (1−θ ) and x with
−x , we obtain the second inequality. �
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Proof of Theorem 4. By Theorem 3 and Lemma 2, we get that the volume of Zφ Kt

is a convex function of t . Fubini’s theorem and the symmetry of Zφ Kt imply

|Zφ Kt | =
∫

(Zφ K0)|v⊥
[gt(x)+gt(−x)]dx = 2

∫
(Zφ K0)|v⊥

gt(x)dx. (12)

The convexity of the volume of Zφ Kt with respect to t easily follows from that of gt(x)
with respect to t .

Suppose that
2|Zφ Kt1+t2

2
| = |Zφ Kt1 |+ |Zφ Kt2 | (13)

for some t1, t2 ∈ [0,1] . From the convexity of gt with respect to t , (12) and (13) we
obtain

2g t1+t2
2

(x) = gt1(x)+gt2(x) (14)

for almost every x ∈ (Zφ K0)|v⊥ . Take x ∈ relint((Zφ K0)|v⊥) . There exist u1,u2 ∈ v⊥
such that

gt1(x)+gt2(x)
= hZφ Kt1

(u1 + v)− x ·u1+hZφ Kt2
(u2 + v)− x ·u2

� 2hZφ Kt1+t2
2

(
u1 +u2

2
+ v

)
−2x · u1 +u2

2

� 2g t1+t2
2

(x).

(15)

The first inequality of (15) follows from (9), and the second follows from (8). The
equation (14) guarantees the equality in (15) and (9).

Since φ is strictly convex and the equality condition for the Jensen’s inequality
holds, the equality in (9) implies

(u1 + v) · (z1− z2)+ (β (z1|v⊥)−β (z2|v⊥))t1
λ1

(16)

=
(u2 + v) · (z1− z2)+ (β (z1|v⊥)−β (z2|v⊥))t2

λ2

for every z1,z2 ∈ K0 , due to the continuity of β .
Taking z1 = z′1 + λ ′

1v,z2 = z′2 + λ ′
2v in (16), where z′1,z

′
2 ∈ K0|v⊥ , then by differ-

entiating with respect to the parameter λ ′
1 or λ ′

2 , we get that λ1/λ2 = 1. Hence, β is
an affine function. �

Proof of Theorem 1. If {Kt : 0 � t � 1} is a parallel chord movement along the
unit direction v with speed function β (x) = −( f (x)+g(x)) . It follows from Theorem
4 that the volume of Zφ Kt is a convex function of the parameter t . Thus,

|Zφ K1/2| �
1
2
|Zφ K0|+ 1

2
|Zφ K1|. (17)
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It is easy to verify that Zφ (Kv) = (Zφ K)v for every unit direction v by Lemma 6. Since
K0 = K,K1 = Kv , and K1/2 is the Steiner symmetral of K with respect to v⊥ , the
volume of the Orlicz mean zonoid does not increase after a Steiner symmetrization. It
is well known that every convex body can be transformed into a ball through a sequence
of suitable Steiner symmetrizations (see e.g. [31]). By Lemma 8, the ratio |Zφ K|/|K|
is continuous in the Hausdorff metric. Therefore it attains its minimum value when K
is a ball.

Next, we characterize all the minimizers. If the speed function β of the movement
is an affine function, then Kt is an affine image of K , for every t in the range of the
movement. It is well known that (see e.g. [23]) if K is not an ellipsoid, then there exists
a direction v such that the Steiner symmetral of K along the direnction v is not an
image of K under an affine transformation. However, Lemma 6 shows that |Zφ K|/|K|
is affine invariant. Thus, by Theorem 4, we know that |Zφ K|/|K| is minimized if and
only if K is an ellipsoid. �

Proof of Theorem 2. By Lemma 6, we see that |Z∗
φ K||K| is affine invariant. Thus,

following step by step the proof of Theorem 1 together with Lemma 3, we conclude the
proof. �
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Birkhäuser, Basel, 1983, pp. 264–276.
[24] R. E. PFIEFER, The Extrema of Geometric Mean Values, PhD dissertation, Department of Mathemat-

ics, University of California, Davis, CA, 1982.
[25] R. E. PFIEFER, Maximum and minimum sets for some geometric mean values, J. Theoret. Probab. 3

(1990), 169–179.
[26] C. A. ROGERS AND G. C. SHEPHARD, Some extremal problems for convex bodies, Mathematika 5

(1958), 93–102.
[27] R. SCHNEIDER, Random hyperplanes meeting a convex body, Z. Wahr. Verw. Gebiete 61 (1982),

379–387.
[28] R. SCHNEIDER AND W. WEIL, Zonoids and related topics, Convexity and its Applications,
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