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Abstract. We recall that the Lebesgue summability of trigonometric series (see [6]) or trigono-
metric integrals (see [4] and [2]) is defined in terms of the symmetric differentiability of the
formally integrated series or integral, respectively. In the present paper we define the Lebesgue
summability of double trigonometric integrals, and extend a previous theorem from single to
double trigonometric integrals.

1. Introduction: the Lebesgue summability of single trigonometric integrals

Motivated by the notion of Lebesgue summability of trigonometric series (see
[6, Vol. I, pp. 321–322]), O. Szász [4] defined the Lebesgue summability of single
trigonometric integrals as follows.

Let f : R → C be such that it is integrable in Lebesgue’s sense over any bounded
interval, in symbols: f ∈ L1

loc(R) . We consider the trigonometric integral

∫
R

f (s)eisxds, x ∈ R, (1.1)

with the symmetric partial integrals

IS(x) :=
∫
|s|<S

f (s)eisxds, S > 0.

The integral (1.1) is said to converge at a point x ∈ R to the finite limit � if

lim
S→∞

IS(x) = �.

A formal integration of the integrand in (1.1) with respect to x gives

∫
R

f (s)
eisx

is
ds =: L(x), x ∈ R. (1.2)
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The definition of L(x) is interpreted formally, since the integral in (1.2) may not exist
in Lebesgue’s sense.

We recall (see [4]) that the Lebesgue summability of the integral (1.1) is formally
defined in terms of the symmetric differentiability of L . We say that the integral (1.1)
is Lebesgue summable at some point x ∈ R to the finite limit � ∈ C if

ΔL(x;h)
2h

:=
L(x+h)−L(x−h)

2h
=

∫
R

f (s)eisx sinsh
sh

ds → � as 0 < h → 0. (1.3)

The following theorem was proved in [4, Theorem 2 ′ ].

THEOREM 1. If f : R → C is such that f ∈ L1
loc(R) and

lim
S→∞

1
S

∫
|s|<S

|s f (s)|ds = 0, (1.4)

then the integral in (1.3) exists in Lebesgue’s sense and we have uniformly in x that

lim
h→0

(ΔL(x;h)
2h

− I1/h(x)
)

= 0, h > 0.

In other words, under condition (1.4) the integral (1.1) is Lebesgue summable at a
point x ∈ R to some finite limit if and only if (1.1) converges at x to the same limit.

REMARK 1. We recall (see, e.g., [6, Vol. II, p. 246]) that the Fourier transform f̂
of a function f ∈ L1(R) is defined by

f̂ (x) :=
1
2π

∫
R

f (s)e−isxds, x ∈ R (1.5)

(cf. (1.1)). Clearly, Theorem 1 can be reformulated in terms of the Lebesgue summa-
bility of the integral in (1.5) under the same condition (1.4).

REMARK 2. We also note that related results have just proved by J. Vindas [5] on
the relation between Lebesgue summability and some other summation methods.

2. New result: the Lebesgue summability of double trigonometric integrals

Let f : R2 → C be such that it is integrable in Lebesgue’s sense over any bounded
rectangle of R2 , in symbols: f ∈ L1

loc(R
2) . We consider the double trigonometric

integral ∫ ∫
R2

f (s,t)ei(sx+ty)dsdt, (x,y) ∈ R
2, (2.1)

with the symmetric rectangular partial integrals

IS,T (x,y) :=
∫
|s|<S

∫
|t|<T

f (s,t)ei(sx+ty)dsdt, S,T > 0. (2.2)
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We say that the double integral (2.1) converges in Pringsheim’s sense at a point (x,y) ∈
R2 to the finite limit � , in symbols:

lim
S,T→∞

IS,T (x,y) = �,

if for every ε > 0 there exists ρ1 = ρ1(ε) > 0 such that

|IS,T (x,y)− �|< ε if S,T > ρ1.

This notion of convergence was introduced by Pringsheim [3] for double series of
numbers; see for multiple series , e.g., in [6, Vol. II, p. 303, just after formula (1.18)]
by Zygmund, without indication of the term ‘in Pringsheim’s sense’. As to this conver-
gence notion for double integrals over R2

+ , see for example in [1].
A formal integration of the integrand in (2.1) with respect to both x and y gives

∫ ∫
R2

f (s,t)
ei(sx+ty)

i2st
dsdt =: L(x,y), (x,y) ∈ R

2. (2.3)

Again the definition of L(x,y) is interpreted formally (as in the case of (1.2)), since the
double integral in (2.3) may not exist in Lebesgue’s sense.

Motivated by (1.3), we say that the integral (2.1) is Lebesgue summable at some
point (x,y) ∈ R2 to the finite limit � ∈ C if

ΔL(x,y;h,k)
4hk

:=
1

4hk

(
L(x+h,y+ k)−L(x−h,y+ k) (2.4)

−L(x+h,y− k)+L(x−h,y− k)
)

=
∫ ∫

R2
f (s,t)ei(sx+ty) sinsh

sh
sin tk
tk

dsdt → �

as 0 < h,k → 0.

We note that ΔL(x,y;h,k) may be formally called the symmetric difference of the
function L at the point (x,y) ∈ R2 with the mesh sizes h,k > 0, while the limit in (2.4)
(if it exists) may be formally called the symmetric mixed derivative of L at (x,y) .

Now, our main result is formulated in the following

THEOREM 2. If f : R
2 → C is such that s

∫
R

f (s,t)dt ∈ L1
loc(R,ds) and

lim
S,T→∞

1
S

∫
|s|<S

∫
|t|<T

|s f (s,t)|dtds = 0 (2.5)

as well as t
∫

R
f (s, t)ds ∈ L1

loc(R,dt) and

lim
S,T→∞

1
T

∫
|s|<S

∫
|t|<T

|t f (s,t)|dtds = 0, (2.6)
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then the double integral in (2.4) exists in Lebesgue’s sense and we have uniformly in
(x,y) that

lim
h,k→0

(ΔL(x,y;h,k)
4hk

− I1/h,1/k(x,y)
)

= 0, h,k > 0. (2.7)

In other words, under conditions (2.5) and (2.6) the double integral (2.1) is Lebesgue
summable at some point (x,y) ∈ R2 to a finite limit if and only if (2.1) converges in
Pringsheim’s sense at (x,y) to the same limit.

REMARK 3. Analogously to (1.5), the double Fourier transform f̂ of a function
f ∈ L1(R2) is defined by

f̂ (x,y) :=
1

(2π)2

∫
R2

f (s,t)e−i(sx+ty)dsdt, (x,y) ∈ R
2 (2.8)

(cf. (2.1)). Clearly, Theorem 2 can be reformulated in terms of the Lebesgue summa-
bility of the double integral in (2.8) under the same conditions (2.5) and (2.6).

3. Auxiliary results

Conditions (2.5) and (2.6) in our main Theorem 2 resemble the Tauberian hypoth-
esis in Tauber’s first classical Tauberian theorem for power series. The technique em-
ployed in the proof of Theorem 2 is a two-dimensional generalization of that employed
by the second aouthor in [2]. The proof is based on Lemmas 1–5 below. Lemma 1 is
taken from [2]. Lemmas 2–4 connect the Tauberian assumptions with the growth order
of the tails of certain related integrals, while Lemma 5 is folklore.

LEMMA 1. (see in [2, Lemma 2 ′ ]) If g : R → C is such that g ∈ L1
loc(R) and

lim
S→∞

1
S

∫
|s|<S

|sg(s)|ds = 0, (3.1)

then

lim
S→∞

S
∫
|s|>S

∣∣∣g(s)
s

∣∣∣ds = 0. (3.2)

LEMMA 2. If f : R2 → C is such that s
∫

R
f (s,t)dt ∈ L1

loc(R,ds) and

lim
S→∞

1
S

∫
|s|<S

∫
R

|s f (s,t)|dtds = 0, (3.3)

then

lim
S→∞

S
∫
|s|>S

∫
R

∣∣∣ f (s,t)
s

∣∣∣dtds = 0. (3.4)

Proof. Lemma 2 is a trivial consequence of Lemma 1 in the case when

g(s) := s
∫

R

f (s,t)dt, s ∈ R. �

The symmetric counterpart of Lemma 2 reads as follows.
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LEMMA 3. If f : R2 → C is such that t
∫

R
f (s,t)ds ∈ L1

loc(R,dt) and

lim
T→∞

1
T

∫
R

∫
|t|<T

|t f (s,t)|dtds = 0, (3.5)

then

lim
T→∞

T
∫

R

∫
|t|>T

∣∣∣ f (s,t)
t

∣∣∣dtds = 0. (3.6)

LEMMA 4. If f : R2 → C is such that f ∈ L1
loc(R

2) and

lim
S,T→∞

1
ST

∫
|s|<S

∫
|t|<T

|st f (s,t)|dsdt = 0, (3.7)

then

lim
S,T→∞

ST
∫
|s|>S

∫
|t|>T

∣∣∣ f (s,t)
st

∣∣∣dsdt = 0. (3.8)

Proof. By (3.7), for every ε > 0 there exists ρ2 = ρ2(ε) > 0 such that

1
ST

∫
|s|<S

∫
|t|<T

|st f (s,t)|dsdt < ε if S,T > ρ2. (3.9)

For the sake of brevity in writing, we will use the following notation for the dyadic
blocks of numbers:

Dp(S) := {s ∈ R : 2pS < |s| � 2p+1S}, where S > 0 and p = 0,1,2, . . . .

Clearly, we have∫
Dp(S)

∫
Dq(T )

|st f (s,t)|dsdt � 2p+qST
∫

Dp(S)

∫
Dq(T)

| f (s,t)|dsdt

and ∫
Dp(S)

∫
Dq(T )

∣∣∣ f (s,t)
st

∣∣∣dsdt � 1
2p+qST

∫
Dp(S)

∫
Dq(T )

| f (s,t)|dsdt.

It follows from these two inequalities and (3.9) that
∫

Dp(S)

∫
Dq(T)

∣∣∣ f (s,t)
st

dsdt � 1
(2p+qST )2

∫
Dp(S)

∫
Dq(T )

|st f (s,t)|dsdt

<
1

(2p+qST )2 2p+q+2STε =
4ε

2p+qST
if S,T > ρ2 and p,q = 0,1,2, . . . .

Hence we conclude that

ST
∫
|s|>S

∫
|t|>T

∣∣∣ f (s,t)
st

∣∣∣dsdt = ST
∞

∑
p=0

∞

∑
q=0

∫
Dp(S)

∫
Dq(T)

∣∣∣ f (s,t)
st

∣∣∣dsdt

< 4ε
∞

∑
p=0

∞

∑
q=0

1
2p+q = 16ε if S,T > ρ2.

Since ε > 0 is arbitrary, this proves (3.8). �
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LEMMA 5. For every real number u �= 0 , we have

0 � 1− sinu
u

� 2|u|. (3.10)

Proof. By the Taylor expansion of the function sinu , we have

0 � 1− sinu
u

� u2

3!
if |u| � 1.

Clearly, we also have that

0 � 1− sinu
u

� 2|u| if |u| � 1.

Combining these two inequalities gives (3.10). �

4. Proof of Theorem 2

By conditions (2.5) and (2.6), we may apply Lemmas 2 and 3. As a result, it
follows from (3.4) and (3.6) that

f (s,t)
s

∈ L1({s ∈ R : |s| > S}×R)

and
f (s,t)

t
∈ L1(R×{t ∈ R : |t| > T})

for large enough S and T , respectively. Since f (s,t) ∈ L1
loc(R

2) , it follows that the
double integral in (2.4) exists in Lebesgue’s sense.

Let h > 0 and k > 0 be arbitrary real numbers. Keeping notations in (2.2) and
(2.4) in mind, the difference in (2.7) can be represented as follows

ΔL(x,y;h,k)
4hk

− I1/h,1/k(x,y) (4.1)

=
∫ ∫

R2
f (s,t)ei(sx+ty) sinsh

sh
sin tk
tk

dsdt

−
∫
|s|<1/h

∫
|t|<1/k

f (s,t)ei(sx+ty)dsdt

=
∫
|s|>1/h

∫
|t|>1/k

f (s,t)ei(sx+ty) sinsh
sh

sin tk
tk

dsdt

+
(∫

R

∫
|t|<1/k

f (s,t)ei(sx+ty) sinsh
sh

sin tk
tk

dsdt

−
∫
|s|<1/h

∫
|t|<1/k

f (s,t)ei(sx+ty) sin tk
tk

dsdt
)
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+
(∫

|s|<1/h

∫
R

f (s,t)ei(sx+ty) sinsh
sh

sin tk
tk

dsdt

−
∫
|s|<1/h

∫
|t|<1/k

f (s,t)ei(sx+ty) sinsh
sh

dsdt
)

−
∫
|s|<1/h

∫
|t|<1/k

f (s,t)ei(sx+ty)
(sinsh

sh
−1

)(sin tk
tk

−1
)
dsdt

=: J(1)
1/h,1/k(x,y)+ J(2)

1/h,1/k(x,y)+ J(3)
1/h,1/k(x,y)+ J(4)

1/h,1/k(x,y), say.

First, by (2.5) (as well as by (2.6)), we may apply Lemma 4 to obtain that
∣∣∣J(1)

1/h,1/k(x,y)
∣∣∣ � 1

hk

∫
|s|>1/h

∫
|t|>1/k

∣∣∣ f (s,t)
st

∣∣∣dsdt → 0 as h,k → 0. (4.2)

Second, we rewrite J(2)
1/h,1/k(x,y) into the following equivalent form:

J(2)
1/h,1/k(x,y) =

∫
|s|<1/h

∫
|t|<1/k

f (s,t)ei(sx+ty)
(sin sh

sh
−1

)sin tk
tk

dsdt

+
∫
|s|>1/h

∫
|t|<1/k

f (s,t)ei(sx+ty) sin sh
sh

sin tk
tk

dsdt.

By (2.5), we may apply Lemma 2 to obtain that
∣∣∣J(2)

1/h,1/k(x,y)
∣∣∣ � 2h

∫
|s|<1/h

∫
|t|<1/k

|s f (s,t)|dsdt (4.3)

+
1
h

∫
|s|>1/h

∫
|t|<1/k

∣∣∣ f (s,t)
s

∣∣∣dsdt → 0 as h,k → 0,

where we also used Lemma 5.
Third, the symmetric counterpart of (4.3) can be proved in an analogous way:

∣∣∣J(3)
1/h,1/k(x,y)

∣∣∣ � 2k
∫
|s|<1/h

∫
|t|<1/k

|t f (s,t)|dtds (4.4)

+
1
k

∫
|s|<1/h

∫
|t|>1/k

∣∣∣ f (s,t)
t

∣∣∣dtds → 0 as h,k → 0,

thanks to (2.6) and Lemmas 3 and 5.
Fourth, by either one of the conditions (2.5) or (2.6), we may apply Lemma 4 to

obtain that∣∣∣J(4)
1/h,1/k(x,y)

∣∣∣ � 4hk
∫
|s|<1/h

∫
|t|<1/k

|st f (s,t)|dsdt → 0 as h,k → 0. (4.5)

Combining (4.1)–(4.5) yields (2.7) to be a proved. �
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[4] O. SZÁSZ, On Lebesgue summability and its generalization to integrals, Amer. J. Math., 67 (1945),

389–396.
[5] J. VINDAS, On the relation between Lebesgue summability and some other summation methods, J.

Math. Anal. Appl., 411 (2014), 75–82.
[6] A. ZYGMUND, Trigonometric Series, Cambridge Univ. Press, 1959.

(Received April 22, 2013) L. Krizsán
Bolyai Institutre

University of Szeged
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