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REMARKS ON SHERMAN LIKE INEQUALITIES
FOR (o, 3)-CONVEX FUNCTIONS

MAREK NIEZGODA

(Communicated by I. Peric)

Abstract. In this paper, Sherman’s inequality is extended from convex functions to the class
of (a,f)-convex functions including (k,h)-convex functions. Sherman’s type results corre-
sponding to Jensen-Steffensen, Mercer-Steffensen and Brunk inequalities are established. The
obtained results are applied to mixed (c, ) -convex functions.

1. Introduction

A vector y = (y1,y2,...,¥n) € R" is said to be majorized by a vector X = (x1,x7,
cooyXxp) € R", written as y < x, if

J
Yoy < 2 for j=1,2,....n

with equality for j =n (see [10, p. 8]). Here y|; and x|; are the ith largest entry of y
and x, respectively.

An m x n real matrix A = (a;;) is said to be row stochastic if a;; > 0 for i =
1,2,...,m, j=1,2,...,n,and all row sums of A areequalto 1,i.e., ¥ a;;=1 fori=

j=1

1,2,...,m. If in addition the transpose AT = (a;;) of A = (a;;) is row stochastic, then
A is called doubly stochastic. In other words, an n X n matrix A is doubly stochastic
iff A >0 (entrywise) and eA = e = eA” , where e = (1,...,1) is the 1 x n vector of
ones.

It is well-known (see [10, pp. 33]) that for x,y € R",

y < x if and only if y =xA for some doubly stochastic n x n matrix A. (1)

A real function F defined on a set S C R" is said to be Schur-convex on § if for
X,y €S,
y < x implies F(y) < F(x).
A relationship between Schur-convexity and standard convexity is included in the
following Majorization Theorem (see [10, pp. 92-93]).

Mathematics subject classification (2010): 39B62, 26D15.
Keywords and phrases: Majorization, Schur-convex function, convex function, (o, f3)-convex func-
tion, (k,h)-convex function, h-convex function, Toader’s ¢-convex function, Breckner’s s-convex function.
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THEOREM A. Assume that f is a real convex function defined on an interval
I CR.
Then, for x = (x1,X2,...,%,) € " and 'y = (y1,v2,...,yn) € I",

y <x implies Y f(vi) <Y, f(x). 2)

i=1

IM-

That is, the function

n

F(xp,....xn) = Y f(x;) for (xi,x2,...,x,) €I
i=1
is Schur-convex on I, whenever f is convex on /.

EXAMPLE 1.1. Petrovi¢’s inequality [6, p. 123] says that if f is a real convex
function defined on interval [0,c0), then

fOe)+f0) .+ fa) < fOn+x2+ ... +x,) + (n—1)£(0) (3)

for all x1,x2,...,x, € [0,00).
Inequality (3) is a corollary to (2), because

(x1,%0, ..y Xn) < (X1 +x24+ ... +x,,0,...,0)
~——

n—1 times
for all x1,x2,...,%, € [0,00).

Throughout, for a positive integer p, we denote Rﬁ ={(x1,...,xp) ERP 1 x; >
0,...,x, >0}.
A more general result is the following Sherman Theorem ([17], see also [3, 7]).

THEOREM B. Assume that f is a real convex function defined on an interval
I CR.

If X= (x17x27"'7xn) S In, Y= (yhyg,...,ym) € Im, a—= (al7a27~~~7an) c Ri’
b = (b17b27~~~7bm) € Rﬁ, and

y=xA" and a=bA forsome mx n row stochastic matrix A = (a;;), @)
then
m n
N bif(yi) < Y ajf(x;). &)
i=1 j=1

If f is concave, then the inequality (5) is reversed.

REMARK 1.2. (i) Observe that Theorem B implies Theorem A by the substitu-
tion m=n and b=e = (1,...,1) € R", because y < x gives y = xA” with
some doubly stochastic matrix A (see (1)) and a=bA =e.
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(ii) In the case m =1 and b = [1], Sherman’s inequality (5) reduces to Jensen’s in-
equality.

(iili) The Sherman theorem is usually given in the form of the equivalence of (4) and
(5). See [3] for its proof.

To illustrate Sherman’s inequality (5) we now provide an example.

EXAMPLE 1.3. Bougoffa [4, Theorem 1.2] showed thatif f is a real convex func-
tion defined on an interval I C R, then for x;,xp,...,x, €1,

n—1 |:f<X1+xz>+'”+f<w)+f<xn+XI):| +f<m)

<Y ). ©)
i=1

To prove (6) with the help of Theorem B, consider the matrices A and AT of sizes
(n+1)xnand nx (n+ 1), respectively, given by

1 11
50...05 =
11 n
5?00...00 il,,,O(z)l
0530...00 27 7
L 03...00,
A=t it | and AT=]00...00
0000...%% . -
1 1 . .. . .
5000...0 5
T111 1t 00--%?%
nnnn n n 00..EEZ
It is easily seen that for
n
X = (x1,x2,...,x,) and b= | 1,1,...1, ,
—— n—1
ntimes
we have
—XAT— X1 +x2 x2+x3 Xn1+Xn Xp+x1 X1+x+...+x,
y_ - 2 9 2 IR 2 9 2 ) n
and .
=bA = 1,1,...,1).
a — 1L

Now, inequality (6) is a direct consequence of (5).

REMARK 1.4. (i) The proof of Theorem B can be based on Jensen inequality.

(ii) On the other hand, it is not hard to check that Theorem B remains valid if convex
functions are replaced by subadditive functions, and a row stochastic matrix is
replaced by the all-ones matrix.
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The first purpose of this paper is to extend Sherman’s Theorem B from convex
functions to so-called (¢, 3)-convex functions (see Section 2). The second purpose is
to derive Sherman’s type results corresponding to Jensen-Steffensen, Mercer-Steffensen
and Brunk inequalities (see Section 3). Also, (k,h)-convex functions and Toader’s c-
convex functions are discussed in this context. The obtained results are applied to
mixed (e, B)-convex functions in Section 4. This leads to a combination of Jensen and
Bellman inequalities.

2. Sherman type results for (¢, 3)-convex functions

In this paper, for given vectors o, 3 € R", we say that a function f: I — R defined
on an interval I C R is (a, fB)-convex (resp. (o, f)-concave) on a set S C I" if the
following inequality holds:

fa,x)) < (2) (B, f(x)) forxes, (7

where (-,-) is the standard inner product on R”, and f(x) = (f(x1),f(x2),-..,f(xx))
for x = (x1,x2,...,%,) € S (cf. [9]).

The class of functions satisfying inequality (7) (with oo = 8 or o # ) includes
convex functions, subadditive functions, starshaped functions, Breckner’s s-convex
functions [6, p. 254], Godunova-Levin functions [ 18], P-functions [16, 18], h-convex
functions [18], Toader’s c-convex functions [8], (k,h)-convex functions [9, 12, 15],
etc. For some details, see below.

(i) Jensen’s inequality [1]: Let f:I — R be a convex function on an interval I C R.
Then

n

1 1 &
f(F Epixi> < anipif(xi)a (®)

nj=1
n

where x = (x1,x2,...,%,) €S=I"and p; 20, P,= Y p; > 0.
=1

=

(ii) Jensen-Steffensen inequality [1] asserts that if f:1 — R is a convex function on an
interval I C R, such that [a,b] CI with a<b,andif a<x; < <...<x, <b

and
osw, <w,, W,>0 fori=1,...,n, 9)
where W; = Y w;, i=1,...,n, then
j=1
) )
fl= D wixj | <= wif(xj). (10)
an:l an:l

Statement (9) is called Steffensen’s condition. Here S = {x = (xy,...,x,) € I" :
a<x; <...<x, <b}.
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(iii) Brunk inequality [5]: Let f be a real convex function defined on [0,x;] with
f(0)<0. Assumethat 1 >h; >2h>...2h,>20and x; > x> ... 2 x, =2 0.

Then
/ (

(iv) Mercer’s inequality [11, Theorem 1.2]: If f is areal convex function on an interval
containing numbers x; for i=1,...,n,and 0 < x; <x < ... <Xy, then

M:

Il
—_

(-1 ‘1h,x,> 2 D hf (xy). (11)

Zwlszrxn) < flx) Ewlf (1) 4 f (), (12)

i=1

where Y w; =1 with w; > 0.

i=1

(V) Mercer-Steffensen inequality [1, Theorem 2]: Let f:I — R be a convex function,

where I is an interval in R, and let [a,b] C I with a <b. Let x = (x1,...,X,)
and w = (wy,...,w,) bereal n-tuples. If a <x; <xp <...<x, <b and
wiZ0 and OSW; <W,, W, >0 fori=1,. (13)
where W; = Y w;, i=1,...,n, then
j=1
1
fa_WZszz"f'b) __szf Xi +f( ) (14)
ni '

(vi) Generalized Mercer type inequality [13, Theorem 2.1]: Let f: I — R be a con-
tinuous convex function on interval / C R, a = (ay,...,a,) with a; € I, and
X = (x;;) be areal n x m matrix such that x;; € I forall 7, j.

If a majorizes each row of X, i.e., (xi1,...,Xim) < (a1,...,ay) for each i =
1,...,n, then
m m—1 n m m—1 n
f Zaj Z Zwlxlj S Z 2 Zwlf )Clj (15)
Jj=1 j=li= Jj=1 j=li=

n
where Y w; =1 with w; > 0.
i=1

(vii) Toader’s c-convex functions f:1=[0,b] — R for ¢ € [0,1] are defined by the
following inequality (see [8]):
f(t1x1 + .11+ ctnx,,) < tlf(xl) +... +ln,1f(xn,1) + ct,,f(xn) (16)

forall (x,...,x,) €S=1[0,b]" and 1y,...,t, € [0,1] with 7{ +...+#, = 1.

In particular, as noted in [8], (16) gives the standard convexity for ¢ = 1, and the
starshapedness for n =2 and ¢ =0.
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(viii) Breckner’s s-convex functions f:1 — R, I CR, s € (0,1], are defined by the
inequality (see [6, p. 254], cf. [18, p. 304]):

Sloxr + .o tpx) < f0e) + .+ f () (17)

forall (x1,...,x,) €S=1I"and 1,...,1, € (0,1) with t; + ...+, = 1.
(ix) P-functions f:1— Ry, I CR,are defined by the inequality (cf. [16],[18, p. 304]):
flaxr+ .o+ tx,) < flx)+ .o 4 f(xn) (18)

forall (x1,...,x,) €S=1I"and 1,...,1, € (0,1) with t; + ...+, = 1.

(x) Godunova-Levinfunctions f:1 — Ry, I CR, are defined by the inequality (cf. [18,
p- 303]):

1 1
f(t1x1+...+t,,xn)<Ef(xl)—I—...—l—t—f(xn) (19)
forall (xy,...,x,) €S=1"and 11,...,1, € (0,1) with ; +...+1, = 1.

(xi) Let /:(0,1) — R be a given function. An h-convex function f: 1 —R,, I CR,
is defined by the inequality (cf. [18, p. 304]):

Floxi+ .o+ taxn) < h(0) f(x1) + .o+ h(tn) f(xn) (20)
forall (xp,...,x,) €S=1"and 11,...,1, € (0,1) with ; + ...+, = 1.

Now we are at position to state a result of Sherman type for (o, B)-convex func-
tions.

THEOREM 2.1. Let A = (a;j) and B = (b;j) be m x n-matrices with ith rows @,
and B;, respectively, i = 1,2,....m. Let f:1 — R be an (04, B;i)-convex function on a
set O £ S C I" with an interval I C R, i.e.,

({0, x) < (B f(x)) forxeS, i=12,....m. 1)

Let x = (x1,x2,...,%0) €S, Y= (V1,)2,---,¥m) €I™, a=(aj,a,...,a,) € R",
b= (b1,b,...,by,) € RY.
If
y=xA" and a=bB (22)

then

m

Y bif (i) <

i=1 J

M-

a;f(x)): (23)

1

If fis (o4, B;)-concave, i =1,2,... ,m, then the inequality (23) is reversed.
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Proof. By denoting £(y) = (f(y1),f(52).-.., f(y)) we have

m

2 bif (vi) = (b, f(¥))- (24)

i=1

Here (-,-) stands for the standard inner product on R™.
From y = xA” we derive

n
Yi = Ea,-jxj, i= 1,2,...,m
J=1

Now, by using (21), we conclude that

=f (Z(a,-jxj) < Eb,-jf(xj), i=12,....m
=1 =

Hence

(2 biif(x;), szjf me,f X; ) = f(x)BT,

where f(x) = (f(x1),f(x2),...,f(xs)) and <¢ denotes the componentwise preorder
on R™.
In consequence, from (24) and (22) and by the positivity of b € R"! , we obtain

m

3, 01) = 0.13) € (0. (OBT) = (OB.0) = (0.5 = 3, ),

i=1
as required. [J

Let k: (0,1) — R be a given function and n > 2 be a given positive integer. Then
aset I C R is said to be (k;n)-convex if

k(t)xi+ ... +k(ta)xn €1

for all xj,...,x, €I and #1,...,1, € (0,1) with #; +...+1, = 1. (Cf. [12, Def. 2.1],
[15D.

Let k,h: (0,1) — R be two given functions and n > 2 be a given positive integer.
A function f:1— R defined on a (k;n)-convex set I C R is said to be (k,h;n)-convex
if

Flk(t)x1+ ...+ k(tn)xn) < () f(x1) + ...+ h(t) f(xn)

forall xy,...,x, €l and 11,...,t, € (0,1) with #; +...4+1, = 1. (Cf. [12, Def. 2.4], [6,
p- 2541, [15]).

Given a function g: (0,1) — R, and an m x n matrix T = (1;;) such that 7;; € (0,1)
forall 7, j, we define g(T) to be the matrix (g(z;;)).
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COROLLARY 2.2. Let k,h: (0,1) — R be two given functions and n > 2 be a
given positive integer. Assume that f is a real (k,h;n)-convex function defined on a
(kyn)-convex set I C R.

If x=(x1,%0,...,0,) €I", y=(y1,¥2,-..,ym) €I", a=(a1,a2,...,a,) € R,
b= (b1,bs,...,by) € RY, and

y=x(k(T))T and a=b(h(T))

for some m X n row stochastic matrix T, then

Y bif (vi) < Y ajf(x)). (25)
i=1 j=1

Proof. Use Theorem 2.1 with A = k(T) and B=h(T). O

EXAMPLE 2.3. By setting k(1) =t and h(r) =1¢°, t,s € (0,1), we can apply
Corollary 2.2 to Breckner’s s-convex functions (see (17)).

Assume that f : (0,00) — R is an s-convex function defined on I = (0,c0), s €
(0,1).

If x=(x1,x2,...,%,) €I", y= (1,y2,-...ym) €I", a=(ar,az,...,a,) € R,
b= (b1,bs,...,by) € R, and

y=xT’" and a=DbT’ (26)

for some m x n row stochastic matrix T = (7;;), then (25) holds with (26).

3. The case A =B

Our aim in this section is to give some applications of Theorem 2.1 when A =B.

REMARK 3.1. Theorem A is a special case of Theorem 2.1 with A =B connected
with the classical Jensen’s inequality (8).

The next result is related to Jensen-Steffensen inequality (10).

COROLLARY 3.2. Let f:I— R be a real convex function defined on an interval
I=la,b] CR. Let x=(x1,x2,...,%y) EI" with a<x; <x<...<x,<b, y=
1y2,--,ym) €I, a=(ay,az,...,a,) €R", and b= (by,by,...,b,) € R

If y =xAT and a =bA for some m x n matrix A = (a;;) with rows satisfying
Steffensen’s condition:

M=

ajj fori=12,....om, k=1,2,...,n, 27

k
0< zaij<1=
~

J Jj=1

then (23) holds.
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Proof. According to Jensen-Steffensen inequality (10) for convex f we get that f
is (04, 0;)-convex, i.e.,

foi,x)) < (o, f(x)), i=1,2,...,m,

where ¢ is the ith row of A. Now, it is enough to employ Theorem 2.1 with A =
B. O

In the next example we present a generalization of the inequality of Brunk (11).
EXAMPLE 3.3. Suppose that f is a real convex function defined on interval [ =
[0,x;] with f(0) < 0. Let x = (x1,Xx2,...,X,) € I" with x; > x, > ... > x, >0, and

b= (b1,ba,...,bn) E R
If A= (a;;) = ((—=1)/"'hy;) is an m x n matrix with rows such that

1>hy>hp>...>hn>0 fori=1,2,...,m,

then

m

=

n n
bif (2(—1)’_1’%'./&/) < X aif(x)),
1 =1 =1
where a =bA, ie.. a; = (— 1)1 S bihs;.
i=1

In the forthcoming example we use Toader’s c-convexity (16) with n = 2.

EXAMPLE 3.4. Assume f is a real Toader’s c-convex function defined on an
interval / = [0,6) C R. Let x = (x1,x2) € I* and b = (by,bs,...,by) € R
If A is an m x 2 matrix with rows o; = (a;1,cap) such that

aj+ap=1, aj,ap>0 fori=1,2,...,m,
then
bif (ajix1 +capxy) < arf(x)) +axrf(x),

M=

i=1

m m
where ay = 2 b,-a,-l and a)==c¢ 2 biaiz.
i=1 i=1

In Corollary 3.5 we provide an extension of Mercer-Steffensen inequality (14).

COROLLARY 3.5. Let f:1— R be a real convex function defined on an interval
I=la,b] CR. Let x= (x1,X2,...,%,) €I" with a <x; <x3<...<x, <b, and
b= (b1,b,...,by,) € RY.

If A = (ajj) is an m x n matrix with rows satisfying Steffensen’s condition (27),
then

m

Y bif(a— Y, aijxj+b) < Y bif(a) — X a;f (x;)+ X, bif(b), (28)
' =l -

i=1 j=1 i=1

3

where aj = Y, a;;b;.

i=1
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Proof. By 1,, we denote the (column) m-tuple of ones.
By taking y = (y1,y2,...,ym) = xAT € I", a= (a1, a2,...,a,) =DA € R", y =
al’ —y+b17, b=b, and

A=(Ly,—A1,) and X=(a,x,b) = (a,x1,%2,...,%,,b) €',

we derive y = XA” and a = bA.
Moreover, by Mercer-Steffensen inequality (14) we find that

f(a_ <ai,X> +b) < f(a) - <(Xi,f(X)> +f(b)7 i= 1727...,7}’1,
where o; denotes the ith row of the matrix A. Thus we obtain
f(@,x) < (o, f(X)), i=1,2,....m,

where @& denotes the ith row of the matrix A . Consequently, f is (04, 0;)-convex.
So, by employing Theorem 2.1 we infer that

_ n+2
bif (i) < Y, aif (%)) (29)

1 j=1

M=

m
Hence, for a; = 3 a;;b;,
i=1

m

S bif (i) < (2 bl-> fla)— 3 aife) + (2 b,-> £(b). (30)
-1 =1 i=1

i=1
since
n
yi=a—yi+b=a— aijxj+b,
j=1
m m
ay = a2 = Eb,‘, aj1 = — Za,-jb,- =—aj, j=12,...,n.

i=1 i=1

For this reason inequality (28) follows from (29)-(30), completing the proof. [

We now interpret the last corollary in the context of Mercer’s inequality (12).

EXAMPLE 3.6. Let f:I — R be a real convex function defined on an inter-
val I =[a,b] CR. Let x = (x[,x2,...,%,) € I" with x; <x, < ... <x,, and b=
(b1,b2,...,by) € RY.

If A = (a;;) is an m X n row stochastic matrix, then

M=

m n
Zbif(xl — 2 a,-.,'xj-—kxn) <
i=1

j=1 i

bif (x1) = Y ajf(x;)+ . bif (xa),
=1 i=1

1

m
where aj= z aijb,-.
i=1
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4. Combining (¢, 3)-convexity and (7, 0)-convexity

In this section we focus on convex combinations of (¢, 3)-convexity and (y,0)-
convexity.

LEMMA 4.1. Let f:1— R be convex on an interval I CR. Let o, B, y and
O be given vectors in R". Assume that f is (o, )-convex and (7, 8)-convex on a set
Scr, ie,

f((o,x)) < (B, f(x)) and f({1,x)) <(6,f(x)), x€S. (€2Y)

Then for any t € [0,1] function f is (to+ (1—1)y,tf+ (1 —1)3)-convex on S,
Le.,

fro+(1=1)y.x)) < B+ (1-1)7.f(x)), XES.
Proof. Fix arbitrarily 7 € [0,1] and x € S. Tt follows that
fl{ro+(1=1)y,x)) = f(t{o.x) + (L —1)(r,x)) <tf({or, %)) + (1= 1) f({v.x))
SHBF(X)+ (1=1)(8,f(x)) = B+ (1-1)8, f(x)),

as claimed. The former inequality is a consequence of the (standard) convexity of f,
and the latter follows from (31). This finishes the proof. [l

EXAMPLE 4.2. Suppose that f : I — R is convex on an interval / = [0,x;] and
f(0) £0. By Bellman’s inequality (see [2, p. 462]), for x; > x; > ... > x, > 0, it holds
that

Flxi—xadx3—xg+ ... +(=1)""1x) < Flx)—F )+ f(3)—f(xa) 4+ .. (=)L f(x).

In other words, by putting o = B = (1,—1,1,—1,...,(=1)"""), we see that f is
(o, B)-convex. Furthermore, by Jensen’s inequality, f is also (7,0)-convex, where
Y=20=(wi,wa,...,wy) €0, 1]" with wi +wo+...+w, =1.

In summary, in light of Lemma 4.1, for 7 € [0,1] the function f is (for+ (1 —
1)y, +(1—1)8)-convexon S={xel":x; >... 2 x,},le,forxeS,

/(

It is evident that (32) becomes Jensen’s inequality for # = 0, and Bellman’s inequality
fort=1.

n

((—1>“t+(1—t>w,->x,-> <Y+ (1=nw)f(x). (32

j=1

M=

1

Finally, we demonstrate a Sherman type result based on inequality (32).

COROLLARY 4.3. Let f:I— R be a real convex function defined on an interval
I=1[0,x;] CR and f(0) <O0. Let X = (x1,X2,...,%,) EI" withx; 2 x> ... 2 x, 20,
and b= (by,by,...,by) € R".
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If A = (ajj) is an m x n matrix with rows o; of the form

o =t(1,—1,1,—1,.... (=" Y+ (1 =) (wi1,win, .., win) fori=12,...,m,

with t € [0,1], wii +wip+...+wiy =1, wij; >0, then

be i (1_t)wlj Zajij

i=1 j=1

where aj = % (=) 't + (1 —1)w;j) b;.
i=1

[1]
[2]
[3]
[4]

[5]
[6]

[7]

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

i=

Proof. 1t is sufficient to apply Theorem 2.1. [J
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