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REMARKS ON SHERMAN LIKE INEQUALITIES

FOR (α,β )–CONVEX FUNCTIONS

MAREK NIEZGODA

(Communicated by I. Perić)

Abstract. In this paper, Sherman’s inequality is extended from convex functions to the class
of (α ,β) -convex functions including (k,h) -convex functions. Sherman’s type results corre-
sponding to Jensen-Steffensen, Mercer-Steffensen and Brunk inequalities are established. The
obtained results are applied to mixed (α ,β) -convex functions.

1. Introduction

A vector y = (y1,y2, . . . ,yn) ∈ R
n is said to be majorized by a vector x = (x1,x2,

. . . ,xn) ∈ R
n , written as y ≺ x , if

j

∑
i=1

y[i] �
j

∑
i=1

x[i] for j = 1,2, . . . ,n

with equality for j = n (see [10, p. 8]). Here y[i] and x[i] are the i th largest entry of y
and x , respectively.

An m× n real matrix A = (ai j) is said to be row stochastic if ai j � 0 for i =

1,2, . . . ,m , j = 1,2, . . . ,n , and all row sums of A are equal to 1, i.e.,
n
∑
j=1

ai j = 1 for i =

1,2, . . . ,m . If in addition the transpose AT = (a ji) of A = (ai j) is row stochastic, then
A is called doubly stochastic. In other words, an n× n matrix A is doubly stochastic
iff A � 0 (entrywise) and eA = e = eAT , where e = (1, . . . ,1) is the 1× n vector of
ones.

It is well-known (see [10, pp. 33]) that for x,y ∈ R
n ,

y ≺ x if and only if y = xA for some doubly stochastic n×n matrix A . (1)

A real function F defined on a set S ⊂ R
n is said to be Schur-convex on S if for

x,y ∈ S ,
y ≺ x implies F(y) � F(x).

A relationship between Schur-convexity and standard convexity is included in the
following Majorization Theorem (see [10, pp. 92-93]).
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THEOREM A. Assume that f is a real convex function defined on an interval
I ⊂ R .

Then, for x = (x1,x2, . . . ,xn) ∈ In and y = (y1,y2, . . . ,yn) ∈ In ,

y ≺ x implies
n

∑
i=1

f (yi) �
n

∑
i=1

f (xi). (2)

That is, the function

F(x1, . . . ,xn) =
n

∑
i=1

f (xi) for (x1,x2, . . . ,xn) ∈ In

is Schur-convex on In , whenever f is convex on I .

EXAMPLE 1.1. Petrović’s inequality [6, p. 123] says that if f is a real convex
function defined on interval [0,∞) , then

f (x1)+ f (x2)+ . . .+ f (xn) � f (x1 + x2 + . . .+ xn)+ (n−1) f (0) (3)

for all x1,x2, . . . ,xn ∈ [0,∞) .
Inequality (3) is a corollary to (2), because

(x1,x2, . . . ,xn) ≺ (x1 + x2 + . . .+ xn, 0, . . . ,0︸ ︷︷ ︸
n−1 times

)

for all x1,x2, . . . ,xn ∈ [0,∞) .

Throughout, for a positive integer p , we denote R
p
+ = {(x1, . . . ,xp) ∈ R

p : x1 �
0, . . . ,xp � 0} .

A more general result is the following Sherman Theorem ([17], see also [3, 7]).

THEOREM B. Assume that f is a real convex function defined on an interval
I ⊂ R .

If x = (x1,x2, . . . ,xn) ∈ In , y = (y1,y2, . . . ,ym) ∈ Im , a = (a1,a2, . . . ,an) ∈ R
n
+ ,

b = (b1,b2, . . . ,bm) ∈ R
m
+ , and

y = xAT and a = bA for some m×n row stochastic matrix A = (ai j) , (4)

then
m

∑
i=1

bi f (yi) �
n

∑
j=1

a j f (x j). (5)

If f is concave, then the inequality (5) is reversed.

REMARK 1.2. (i) Observe that Theorem B implies Theorem A by the substitu-
tion m = n and b = e = (1, . . . ,1) ∈ R

n , because y ≺ x gives y = xAT with
some doubly stochastic matrix A (see (1)) and a = bA = e .
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(ii) In the case m = 1 and b = [1] , Sherman’s inequality (5) reduces to Jensen’s in-
equality.

(iii) The Sherman theorem is usually given in the form of the equivalence of (4) and
(5). See [3] for its proof.

To illustrate Sherman’s inequality (5) we now provide an example.

EXAMPLE 1.3. Bougoffa [4, Theorem 1.2] showed that if f is a real convex func-
tion defined on an interval I ⊂ R , then for x1,x2, . . . ,xn ∈ I ,

n−1
n

[
f

(
x1 + x2

2

)
+ . . .+ f

(
xn−1 + xn

2

)
+ f

(
xn + x1

2

)]
+ f

(
x1 + x2 + . . .+ xn

n

)

�
n

∑
i=1

f (xi). (6)

To prove (6) with the help of Theorem B, consider the matrices A and AT of sizes
(n+1)×n and n× (n+1) , respectively, given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 . . . 0 0

0 1
2

1
2 0 . . . 0 0

...
...

...
... . . .

...
...

0 0 0 0 . . . 1
2

1
2

1
2 0 0 0 . . . 0 1

2
1
n

1
n

1
n

1
n . . . 1

n
1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and AT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 . . . 0 1

2
1
n

1
2

1
2 . . . 0 0 1

n
0 1

2 . . . 0 0 1
n

0 0 . . . 0 0 1
n

...
... . . .

...
...

...
0 0 . . . 1

2 0 1
n

0 0 . . . 1
2

1
2

1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is easily seen that for

x = (x1,x2, . . . ,xn) and b =

⎛⎝1,1, . . . ,1︸ ︷︷ ︸
n times

,
n

n−1

⎞⎠ ,

we have

y = xAT =
(

x1 + x2

2
,
x2 + x3

2
, . . . ,

xn−1 + xn

2
,
xn + x1

2
,
x1 + x2 + . . .+ xn

n

)
and

a = bA =
n

n−1
(1,1, . . . ,1) .

Now, inequality (6) is a direct consequence of (5).

REMARK 1.4. (i) The proof of Theorem B can be based on Jensen inequality.

(ii) On the other hand, it is not hard to check that Theorem B remains valid if convex
functions are replaced by subadditive functions, and a row stochastic matrix is
replaced by the all-ones matrix.
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The first purpose of this paper is to extend Sherman’s Theorem B from convex
functions to so-called (α,β )-convex functions (see Section 2). The second purpose is
to derive Sherman’s type results corresponding to Jensen-Steffensen, Mercer-Steffensen
and Brunk inequalities (see Section 3). Also, (k,h)-convex functions and Toader’s c-
convex functions are discussed in this context. The obtained results are applied to
mixed (α,β )-convex functions in Section 4. This leads to a combination of Jensen and
Bellman inequalities.

2. Sherman type results for (α,β )-convex functions

In this paper, for given vectors α,β ∈R
n , we say that a function f : I →R defined

on an interval I ⊂ R is (α,β )-convex (resp. (α,β )-concave) on a set S ⊂ In if the
following inequality holds:

f (〈α,x〉) � (�) 〈β , f (x)〉 for x ∈ S , (7)

where 〈·, ·〉 is the standard inner product on R
n , and f (x) = ( f (x1), f (x2), . . . , f (xn))

for x = (x1,x2, . . . ,xn) ∈ S (cf. [9]).
The class of functions satisfying inequality (7) (with α = β or α �= β ) includes

convex functions, subadditive functions, starshaped functions, Breckner’s s-convex
functions [6, p. 254], Godunova-Levin functions [18], P-functions [16, 18], h -convex
functions [18], Toader’s c-convex functions [8], (k,h)-convex functions [9, 12, 15],
etc. For some details, see below.

(i) Jensen’s inequality [1]: Let f : I → R be a convex function on an interval I ⊂ R .
Then

f

(
1
Pn

n

∑
i=1

pixi

)
� 1

Pn

n

∑
i=1

pi f (xi), (8)

where x = (x1,x2, . . . ,xn) ∈ S = In and pi � 0, Pn =
n
∑
i=1

pi > 0.

(ii) Jensen-Steffensen inequality [1] asserts that if f : I → R is a convex function on an
interval I ⊂ R , such that [a,b]⊂ I with a < b , and if a � x1 � x2 � . . . � xn � b
and

0 � Wi � Wn , Wn > 0 for i = 1, . . . ,n , (9)

where Wi =
i

∑
j=1

wj , i = 1, . . . ,n , then

f

(
1

Wn

n

∑
j=1

wjx j

)
� 1

Wn

n

∑
j=1

wj f (x j). (10)

Statement (9) is called Steffensen’s condition. Here S = {x = (x1, . . . ,xn) ∈ In :
a � x1 � . . . � xn � b} .



SHERMAN LIKE INEQUALITIES 1583

(iii) Brunk inequality [5]: Let f be a real convex function defined on [0,x1] with
f (0) � 0. Assume that 1 � h1 � h2 � . . . � hn � 0 and x1 � x2 � . . . � xn � 0.
Then

f

(
n

∑
i=1

(−1)i−1hixi

)
�

n

∑
i=1

(−1)i−1hi f (xi). (11)

(iv) Mercer’s inequality [11, Theorem 1.2]: If f is a real convex function on an interval
containing numbers xi for i = 1, . . . ,n , and 0 < x1 � x2 � . . . � xn, then

f (x1 −
n

∑
i=1

wixi + xn) � f (x1)−
n

∑
i=1

wi f (xi)+ f (xn), (12)

where
n
∑
i=1

wi = 1 with wi > 0.

(v) Mercer-Steffensen inequality [1, Theorem 2]: Let f : I → R be a convex function,
where I is an interval in R , and let [a,b] ⊂ I with a < b . Let x = (x1, . . . ,xn)
and w = (w1, . . . ,wn) be real n -tuples. If a � x1 � x2 � . . . � xn � b and

wi �= 0 and 0 � Wi � Wn , Wn > 0 for i = 1, . . . ,n , (13)

where Wi =
i

∑
j=1

wj , i = 1, . . . ,n , then

f (a− 1
Wn

n

∑
i=1

wixi +b) � f (a)− 1
Wn

n

∑
i=1

wi f (xi)+ f (b). (14)

(vi) Generalized Mercer type inequality [13, Theorem 2.1]: Let f : I → R be a con-
tinuous convex function on interval I ⊂ R , a = (a1, . . . ,am) with a j ∈ I , and
X = (xi j) be a real n×m matrix such that xi j ∈ I for all i, j .

If a majorizes each row of X , i.e., (xi1, . . . ,xim) ≺ (a1, . . . ,am) for each i =
1, . . . ,n , then

f

(
m

∑
j=1

a j −
m−1

∑
j=1

n

∑
i=1

wixi j

)
�

m

∑
j=1

f (a j)−
m−1

∑
j=1

n

∑
i=1

wi f (xi j), (15)

where
n
∑
i=1

wi = 1 with wi � 0.

(vii) Toader’s c-convex functions f : I = [0,b] → R for c ∈ [0,1] are defined by the
following inequality (see [8]):

f (t1x1 + . . .+ tn−1xn−1 + ctnxn) � t1 f (x1)+ . . .+ tn−1 f (xn−1)+ ctn f (xn) (16)

for all (x1, . . . ,xn) ∈ S = [0,b]n and t1, . . . ,tn ∈ [0,1] with t1 + . . .+ tn = 1.

In particular, as noted in [8], (16) gives the standard convexity for c = 1, and the
starshapedness for n = 2 and c = 0.
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(viii) Breckner’s s-convex functions f : I → R+ , I ⊂ R , s ∈ (0,1] , are defined by the
inequality (see [6, p. 254], cf. [18, p. 304]):

f (t1x1 + . . .+ tnxn) � ts1 f (x1)+ . . .+ tsn f (xn) (17)

for all (x1, . . . ,xn) ∈ S = In and t1, . . . ,tn ∈ (0,1) with t1 + . . .+ tn = 1.

(ix) P-functions f : I →R+ , I ⊂R , are defined by the inequality (cf. [16],[18, p. 304]):

f (t1x1 + . . .+ tnxn) � f (x1)+ . . .+ f (xn) (18)

for all (x1, . . . ,xn) ∈ S = In and t1, . . . ,tn ∈ (0,1) with t1 + . . .+ tn = 1.

(x) Godunova-Levin functions f : I →R+ , I ⊂R , are defined by the inequality (cf. [18,
p. 303]):

f (t1x1 + . . .+ tnxn) � 1
t1

f (x1)+ . . .+
1
tn

f (xn) (19)

for all (x1, . . . ,xn) ∈ S = In and t1, . . . ,tn ∈ (0,1) with t1 + . . .+ tn = 1.

(xi) Let h : (0,1)→R+ be a given function. An h-convex function f : I →R+ , I ⊂R ,
is defined by the inequality (cf. [18, p. 304]):

f (t1x1 + . . .+ tnxn) � h(t1) f (x1)+ . . .+h(tn) f (xn) (20)

for all (x1, . . . ,xn) ∈ S = In and t1, . . . ,tn ∈ (0,1) with t1 + . . .+ tn = 1.

Now we are at position to state a result of Sherman type for (α,β )-convex func-
tions.

THEOREM 2.1. Let A = (ai j) and B = (bi j) be m×n-matrices with i th rows αi

and βi , respectively, i = 1,2, . . . ,m. Let f : I → R be an (αi,βi)-convex function on a
set /0 �= S ⊂ In with an interval I ⊂ R , i.e.,

f (〈αi,x〉) � 〈βi, f (x)〉 for x ∈ S , i = 1,2, . . . ,m. (21)

Let x = (x1,x2, . . . ,xn) ∈ S , y = (y1,y2, . . . ,ym) ∈ Im , a = (a1,a2, . . . ,an) ∈ R
n ,

b = (b1,b2, . . . ,bm) ∈ R
m
+ .

If

y = xAT and a = bB (22)

then
m

∑
i=1

bi f (yi) �
n

∑
j=1

a j f (x j). (23)

If f is (αi,βi)-concave, i = 1,2, . . . ,m, then the inequality (23) is reversed.
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Proof. By denoting f (y) = ( f (y1), f (y2), . . . , f (ym)) we have

m

∑
i=1

bi f (yi) = 〈b, f (y)〉. (24)

Here 〈·, ·〉 stands for the standard inner product on R
m .

From y = xAT we derive

yi =
n

∑
j=1

ai jx j, i = 1,2, . . . ,m.

Now, by using (21), we conclude that

f (yi) = f

(
n

∑
j=1

ai jx j

)
�

n

∑
j=1

bi j f (x j), i = 1,2, . . . ,m.

Hence

f (y) �C

(
n

∑
j=1

b1 j f (x j),
n

∑
j=1

b2 j f (x j), . . . ,
n

∑
j=1

bmj f (x j)

)
= f (x)BT ,

where f (x) = ( f (x1), f (x2), . . . , f (xn)) and �C denotes the componentwise preorder
on R

m .
In consequence, from (24) and (22) and by the positivity of b ∈ R

m
+ , we obtain

m

∑
i=1

bi f (yi) = 〈b, f (y)〉 � 〈b, f (x)BT 〉 = 〈bB, f (x)〉 = 〈a, f (x)〉 =
n

∑
j=1

a j f (x j),

as required. �

Let k : (0,1)→ R be a given function and n � 2 be a given positive integer. Then
a set I ⊂ R is said to be (k;n)-convex if

k(t1)x1 + . . .+ k(tn)xn ∈ I

for all x1, . . . ,xn ∈ I and t1, . . . ,tn ∈ (0,1) with t1 + . . . + tn = 1. (Cf. [12, Def. 2.1],
[15]).

Let k,h : (0,1)→ R be two given functions and n � 2 be a given positive integer.
A function f : I →R defined on a (k;n)-convex set I ⊂R is said to be (k,h;n)-convex
if

f (k(t1)x1 + . . .+ k(tn)xn) � h(t1) f (x1)+ . . .+h(tn) f (xn)

for all x1, . . . ,xn ∈ I and t1, . . . ,tn ∈ (0,1) with t1 + . . .+ tn = 1. (Cf. [12, Def. 2.4], [6,
p. 254], [15]).

Given a function g : (0,1)→R , and an m×n matrix T = (ti j) such that ti j ∈ (0,1)
for all i, j , we define g(T) to be the matrix (g(ti j)) .
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COROLLARY 2.2. Let k,h : (0,1) → R be two given functions and n � 2 be a
given positive integer. Assume that f is a real (k,h;n)-convex function defined on a
(k;n)-convex set I ⊂ R .

If x = (x1,x2, . . . ,xn) ∈ In , y = (y1,y2, . . . ,ym) ∈ Im , a = (a1,a2, . . . ,an) ∈ R
n
+ ,

b = (b1,b2, . . . ,bm) ∈ R
m
+ , and

y = x(k(T))T and a = b(h(T))

for some m×n row stochastic matrix T , then

m

∑
i=1

bi f (yi) �
n

∑
j=1

a j f (x j). (25)

Proof. Use Theorem 2.1 with A = k(T) and B = h(T) . �

EXAMPLE 2.3. By setting k(t) = t and h(t) = ts , t,s ∈ (0,1) , we can apply
Corollary 2.2 to Breckner’s s-convex functions (see (17)).

Assume that f : (0,∞) → R+ is an s-convex function defined on I = (0,∞) , s ∈
(0,1) .

If x = (x1,x2, . . . ,xn) ∈ In , y = (y1,y2, . . . ,ym) ∈ Im , a = (a1,a2, . . . ,an) ∈ R
n
+ ,

b = (b1,b2, . . . ,bm) ∈ R
m
+ , and

y = xTT and a = bTs (26)

for some m×n row stochastic matrix T = (ti j) , then (25) holds with (26).

3. The case A = B

Our aim in this section is to give some applications of Theorem 2.1 when A = B .

REMARK 3.1. Theorem A is a special case of Theorem 2.1 with A = B connected
with the classical Jensen’s inequality (8).

The next result is related to Jensen-Steffensen inequality (10).

COROLLARY 3.2. Let f : I → R be a real convex function defined on an interval
I = [a,b] ⊂ R . Let x = (x1,x2, . . . ,xn) ∈ In with a � x1 � x2 � . . . � xn � b, y =
(y1,y2, . . . ,ym) ∈ Im , a = (a1,a2, . . . ,an) ∈ R

n , and b = (b1,b2, . . . ,bm) ∈ R
m
+ .

If y = xAT and a = bA for some m× n matrix A = (ai j) with rows satisfying
Steffensen’s condition:

0 �
k

∑
j=1

ai j � 1 =
n

∑
j=1

ai j for i = 1,2, . . . ,m, k = 1,2, . . . ,n, (27)

then (23) holds.
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Proof. According to Jensen-Steffensen inequality (10) for convex f we get that f
is (αi,αi)-convex, i.e.,

f (〈αi,x〉) � 〈αi, f (x)〉, i = 1,2, . . . ,m ,

where αi is the i th row of A . Now, it is enough to employ Theorem 2.1 with A =
B . �

In the next example we present a generalization of the inequality of Brunk (11).

EXAMPLE 3.3. Suppose that f is a real convex function defined on interval I =
[0,x1] with f (0) � 0. Let x = (x1,x2, . . . ,xn) ∈ In with x1 � x2 � . . . � xn > 0, and
b = (b1,b2, . . . ,bm) ∈ R

m
+ .

If A = (ai j) = ((−1) j−1hi j) is an m×n matrix with rows such that

1 � hi1 � hi2 � . . . � hin � 0 for i = 1,2, . . . ,m ,

then
m

∑
i=1

bi f

(
n

∑
j=1

(−1) j−1hi jx j

)
�

n

∑
j=1

a j f (x j),

where a = bA , i.e., a j = (−1) j−1
m
∑
i=1

bihi j .

In the forthcoming example we use Toader’s c-convexity (16) with n = 2.

EXAMPLE 3.4. Assume f is a real Toader’s c-convex function defined on an
interval I = [0,b) ⊂ R . Let x = (x1,x2) ∈ I2 and b = (b1,b2, . . . ,bm) ∈ R

m
+ .

If A is an m×2 matrix with rows αi = (ai1,cai2) such that

ai1 +ai2 = 1, ai1,ai2 � 0 for i = 1,2, . . . ,m ,

then
m

∑
i=1

bi f (ai1x1 + cai2x2) � a1 f (x1)+a2 f (x2),

where a1 =
m
∑
i=1

biai1 and a2 = c
m
∑
i=1

biai2 .

In Corollary 3.5 we provide an extension of Mercer-Steffensen inequality (14).

COROLLARY 3.5. Let f : I → R be a real convex function defined on an interval
I = [a,b] ⊂ R . Let x = (x1,x2, . . . ,xn) ∈ In with a � x1 � x2 � . . . � xn � b, and
b = (b1,b2, . . . ,bm) ∈ R

m
+ .

If A = (ai j) is an m× n matrix with rows satisfying Steffensen’s condition (27),
then

m

∑
i=1

bi f (a−
n

∑
j=1

ai jx j +b) �
m

∑
i=1

bi f (a)−
n

∑
j=1

a j f (x j)+
m

∑
i=1

bi f (b), (28)

where a j =
m
∑
i=1

ai jbi .



1588 MAREK NIEZGODA

Proof. By 1m we denote the (column) m-tuple of ones.
By taking y = (y1,y2, . . . ,ym) = xAT ∈ Im , a = (a1,a2, . . . ,an) = bA ∈ R

n , ỹ =
a1T −y+b1T , b̃ = b , and

Ã = (1m,−A,1m) and x̃ = (a,x,b) = (a,x1,x2, . . . ,xn,b) ∈ In+2,

we derive ỹ = x̃ÃT and ã = b̃Ã .
Moreover, by Mercer-Steffensen inequality (14) we find that

f (a−〈αi,x〉+b) � f (a)−〈αi, f (x)〉+ f (b), i = 1,2, . . . ,m ,

where αi denotes the i th row of the matrix A . Thus we obtain

f (〈α̃i, x̃〉) � 〈α̃i, f (x̃)〉, i = 1,2, . . . ,m ,

where α̃i denotes the i th row of the matrix Ã . Consequently, f is (α̃i, α̃i)-convex.
So, by employing Theorem 2.1 we infer that

m

∑
i=1

b̃i f (ỹi) �
n+2

∑
j=1

ã j f (x̃ j). (29)

Hence, for a j =
m
∑
i=1

ai jbi ,

m

∑
i=1

bi f (ỹi) �
(

m

∑
i=1

bi

)
f (a)−

n

∑
j=1

a j f (x j)+

(
m

∑
i=1

bi

)
f (b), (30)

since

ỹi = a− yi +b = a−
n

∑
j=1

ai jx j +b,

ã1 = ãn+2 =
m

∑
i=1

bi, ã j+1 = −
m

∑
i=1

ai jbi = −a j, j = 1,2, . . . ,n .

For this reason inequality (28) follows from (29)-(30), completing the proof. �
We now interpret the last corollary in the context of Mercer’s inequality (12).

EXAMPLE 3.6. Let f : I → R be a real convex function defined on an inter-
val I = [a,b] ⊂ R . Let x = (x1,x2, . . . ,xn) ∈ In with x1 � x2 � . . . � xn , and b =
(b1,b2, . . . ,bm) ∈ R

m
+ .

If A = (ai j) is an m×n row stochastic matrix, then

m

∑
i=1

bi f (x1 −
n

∑
j=1

ai jx j + xn) �
m

∑
i=1

bi f (x1)−
n

∑
j=1

a j f (x j)+
m

∑
i=1

bi f (xn),

where a j =
m
∑
i=1

ai jbi .
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4. Combining (α,β )-convexity and (γ,δ )-convexity

In this section we focus on convex combinations of (α,β )-convexity and (γ,δ )-
convexity.

LEMMA 4.1. Let f : I → R be convex on an interval I ⊂ R . Let α , β , γ and
δ be given vectors in R

n . Assume that f is (α,β )-convex and (γ,δ )-convex on a set
S ⊂ In , i.e.,

f (〈α,x〉) � 〈β , f (x)〉 and f (〈γ,x〉) � 〈δ , f (x)〉, x ∈ S . (31)

Then for any t ∈ [0,1] function f is (tα +(1− t)γ,tβ +(1− t)δ )-convex on S ,
i.e.,

f (〈tα +(1− t)γ,x〉) � 〈tβ +(1− t)γ, f (x)〉, x ∈ S .

Proof. Fix arbitrarily t ∈ [0,1] and x ∈ S . It follows that

f (〈tα +(1− t)γ,x〉) = f (t〈α,x〉+(1− t)〈γ,x〉) � t f (〈α,x〉)+ (1− t) f (〈γ,x〉)
� t〈β , f (x)〉+(1− t)〈δ , f (x)〉 = 〈tβ +(1− t)δ , f (x)〉,

as claimed. The former inequality is a consequence of the (standard) convexity of f ,
and the latter follows from (31). This finishes the proof. �

EXAMPLE 4.2. Suppose that f : I → R is convex on an interval I = [0,x1] and
f (0) � 0. By Bellman’s inequality (see [2, p. 462]), for x1 � x2 � . . . � xn � 0, it holds
that

f (x1−x2+x3−x4+ . . .+(−1)n−1xn)� f (x1)− f (x2)+ f (x3)− f (x4)+ . . .+(−1)n−1 f (xn).

In other words, by putting α = β = (1,−1,1,−1, . . . ,(−1)n−1) , we see that f is
(α,β )-convex. Furthermore, by Jensen’s inequality, f is also (γ,δ )-convex, where
γ = δ = (w1,w2, . . . ,wn) ∈ [0,1]n with w1 +w2 + . . .+wn = 1.

In summary, in light of Lemma 4.1, for t ∈ [0,1] the function f is (tα + (1−
t)γ,tβ +(1− t)δ )-convex on S = {x ∈ In : x1 � . . . � xn} , i.e., for x ∈ S ,

f

(
n

∑
j=1

((−1) j−1t +(1− t)wj)x j

)
�

n

∑
j=1

((−1) j−1t +(1− t)wj) f (x j). (32)

It is evident that (32) becomes Jensen’s inequality for t = 0, and Bellman’s inequality
for t = 1.

Finally, we demonstrate a Sherman type result based on inequality (32).

COROLLARY 4.3. Let f : I → R be a real convex function defined on an interval
I = [0,x1]⊂R and f (0) � 0 . Let x = (x1,x2, . . . ,xn) ∈ In with x1 � x2 � . . . � xn � 0 ,
and b = (b1,b2, . . . ,bm) ∈ R

m
+ .
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If A = (ai j) is an m×n matrix with rows αi of the form

αi = t(1,−1,1,−1, . . . ,(−1)n−1)+ (1− t)(wi1,wi2, . . . ,win) for i = 1,2, . . . ,m,

with t ∈ [0,1] , wi1 +wi2 + . . .+win = 1 , wi j � 0 , then

m

∑
i=1

bi f

(
n

∑
j=1

((−1) j−1t +(1− t)wi j)x j

)
�

n

∑
j=1

a j f (x j),

where a j =
m
∑
i=1

(
(−1) j−1t +(1− t)wi j

)
bi .

Proof. It is sufficient to apply Theorem 2.1. �
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