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ON A SYSTEM OF REGULARIZED

NONCONVEX VARIATIONAL INEQUALITIES
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Abstract. In the present paper, we point out that the basic result, which is the main tool, in
[D. J. Wen, Projection methods for a generalized system of nonconvex variational inequalities
with different nonlinear operators, Nonlinear Anal. 73 (2010) 2292–2297] has some fatal er-
rors. Therefore, the results and algorithms in the above mentioned paper are no longer valid.
To overcome with the problems in the above mentioned paper, we introduce a system of reg-
ularized nonconvex variational inequalities (SRNVI) and establish an equivalence between this
system and a fixed point problem. By using this equivalence, we suggest a projection iterative
algorithm for solving SRNVI. Furthermore, we also prove the existence and uniqueness of a so-
lution of SRNVI. The convergence analysis of the suggested iterative algorithm is studied. As a
consequence, we derive the correct version of the algorithms and results presented in the above
mentioned paper.
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