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Abstract. In the present paper, we point out that the basic result, which is the main tool, in
[D. J. Wen, Projection methods for a generalized system of nonconvex variational inequalities
with different nonlinear operators, Nonlinear Anal. 73 (2010) 2292–2297] has some fatal er-
rors. Therefore, the results and algorithms in the above mentioned paper are no longer valid.
To overcome with the problems in the above mentioned paper, we introduce a system of reg-
ularized nonconvex variational inequalities (SRNVI) and establish an equivalence between this
system and a fixed point problem. By using this equivalence, we suggest a projection iterative
algorithm for solving SRNVI. Furthermore, we also prove the existence and uniqueness of a so-
lution of SRNVI. The convergence analysis of the suggested iterative algorithm is studied. As a
consequence, we derive the correct version of the algorithms and results presented in the above
mentioned paper.

1. Introduction

In the last two decades, the system of variational inequalities is used as a tool to
study the Nash equilibrium problem [1, 2]; See, for example, [3, 4, 5, 6, 7] and the
references therein. In 1985, Pang [7] showed that the system of variational inequalities
is the model of several equilibrium problems, namely, the traffic equilibrium problem,
the spatial equilibrium problem, the Nash equilibrium problem, and the general equi-
librium programming problem, etc. Several existence results for the solutions of the
systems of variational inequalities with their applications to Nash equilibrium problem
are investigated in [3, 4, 5] and the references therein. In the recent past, several au-
thors considered different kinds of systems of variational inequalities and suggested
iterative algorithms to find the approximate solutions of such systems; See, for exam-
ple, [6, 7, 8, 9, 10, 12, 13] and the references therein. We note that almost all the results
regarding the existence of solutions and iterative schemes for solving system of varia-
tional inequalities and related problems are being considered in the setting of convex
sets. Consequently, the techniques are based on the properties of the projection opera-
tor over convex sets, which may not hold in general, when the sets are nonconvex. It is
known that the uniformly prox-regular sets are nonconvex and include the convex sets
as special cases; See, for example, [14, 15, 16, 17, 18] and the references therein.
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Very recently, Wen [13] introduced and considered a system of nonconvex varia-
tional inequalities (SNVI) with different nonlinear operators and asserted that this sys-
tem is equivalent to the fixed point problem. He used this equivalence formulation to
suggest an iterative algorithm for solving the SNVI. The convergence analysis of the
proposed iterative algorithm under some certain conditions is also studied.

In this paper, we point out that the equivalence formulation used by Wen [13] is not
correct. Therefore, all the results and algorithms in [13] are not correct. To overcome
with the problems in [13], we introduce a system of regularized nonconvex variational
inequalities (SRNVI) and establish an equivalence between this system and a fixed point
problem. By using this equivalence, we suggest a projection iterative algorithm for
solving SRNVI. Furthermore, we also prove the existence and uniqueness of a solution
of SRNVI. The convergence analysis of the proposed iterative algorithm is studied. As
a consequence, we derive the correct version of the algorithms and results presented in
[13].

2. Preliminaries and basic results

Throughout the paper, unless otherwise specified, we shall use the following no-
tations, terminology and assumptions. Let H be a real Hilbert space whose inner
product and norm are denoted by 〈., .〉 and ‖.‖ , respectively. Let K be a nonempty
closed subset of H . We denote by dK(.) or d(.,K) the usual distance function from a
point to a set K , that is, dK(u) = inf

v∈K
‖u− v‖ .

DEFINITION 2.1. Let u∈H be a point not lying in K . A point v∈ K is called a
closest point or a projection of u onto K if dK(u) = ‖u−v‖ . The set of all such closest
points is denoted by PK(u) , that is,

PK(u) := {v ∈ K : dK(u) = ‖u− v‖}.

DEFINITION 2.2. The proximal normal cone of K at a point u ∈ K is given by

NP
K(u) := {ξ ∈ H : u ∈ PK(u+ αξ )} ,

where α > 0 is a constant.

It can be easily seen NP
K(·) is a closed set-valued map.

The following lemmas give the characterization of the proximal normal cone.

LEMMA 2.1. [15, Proposition 1.1.5] Let K be a nonempty closed subset of H .
Then ξ ∈ NP

K(u) if and only if there exists a constant α = α(ξ ,u) > 0 such that 〈ξ ,v−
u〉 � α‖v−u‖2 for all v ∈ K .

LEMMA 2.2. [15, Proposition 1.1.10] Let K be a nonempty, closed and convex
subset of H . Then ξ ∈ NP

K(u) if and only if 〈ξ ,v−u〉� 0 for all v ∈ K .
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DEFINITION 2.3. [19] Let f : H → R be locally Lipschitz near a point x . The
Clarke’s directional derivative of f at x in the direction v , denoted by f ◦(x;v) , is
defined by

f ◦(x;v) = limsup
y→x
t↓0

f (y+ tv)− f (y)
t

,

where y is a vector in H and t is a positive scalar.

The tangent cone to K at a point x ∈ K , denoted by TK(x) , is defined by

TK(x) := {v ∈ H : d◦
K(x;v) = 0} .

The normal cone to K at x ∈ K , denoted by NK(x) , is defined by

NK(x) := {ξ ∈ H : 〈ξ ,v〉 � 0 for all v ∈ TK(x)} .

The Clarke normal cone, denoted by NC
K (x) , is defined by NC

K(x) = co[NP
K(x)] ,

where co[S] denotes the closure of the convex hull of S .
Clearly, NP

K(x) ⊆ NC
K(x) . Note that NC

K(x) is a closed and convex cone, whereas
NP

K(x) is convex, but may not be closed. For further details on this topic, we refer to
[19, 15, 18] and the references therein.

In 1995, Clarke et al. [16] introduced a nonconvex set, called proximally smooth
set. Subsequently, it has been investigated by Poliquin et al. [18] but under the name of
uniformly prox-regular set. Such kind of sets are used in many nonconvex applications
in optimization, economic models, dynamical systems, differential inclusions, etc. For
further details and applications, we refer to [20, 21, 22] and the references therein.
This class of nonconvex sets seems particularly well suited to overcome the difficulties
which arise due to the nonconvexity assumption.

DEFINITION 2.4. [16] For a given r ∈ (0,+∞] , a subset Kr of H is said to
be normalized uniformly prox-regular (or uniformly r -prox-regular) if every nonzero
proximal normal to Kr can be realized by an r -ball. This means that for all x ∈ Kr and
all 0 
= ξ ∈ NP

Kr
(x) ,〈

ξ
‖ξ‖ ,x− x

〉
� 1

2r
‖x− x‖2, for all x ∈ Kr.

It is evident that for all x ∈ Kr and all 0 
= ξ ∈ NP
Kr

(x) with ‖ξ‖ = 1, we have

〈ξ ,x− x〉 � 1
2r

‖x− x‖2, for all x ∈ Kr.

The class of normalized uniformly prox-regular sets includes the class of convex
sets, p -convex sets [23], C1,1 submanifolds (possibly with boundary) of H , the im-
ages under a C1,1 diffeomorphism of convex sets and many other nonconvex sets [16].

LEMMA 2.3. [16] A closed set K ⊆ H is convex if and only if it is uniformly
r -prox-regular for every r > 0 .
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If r = +∞ , then in view of Definition 2.4 and Lemma 2.3, the uniform r -prox-
regularity of Kr is equivalent to the convexity of Kr . That is, for r = +∞ , we set
Kr = K .

The following proposition summarizes some important consequences of the uni-
form prox-regularity needed in the sequel.

PROPOSITION 2.1. [16, 18] Let r > 0 and Kr be a nonempty closed and uni-
formly r -prox-regular subset of H . Let U(r) = {u ∈ H : 0 < dKr(u) < r} . Then the
following statements hold:

(a) For all x ∈U(r) , PKr(x) 
= /0 ;

(b) For all r′ ∈ (0,r) , PKr is Lipschitz continuous with constant r
r−r′ on U(r′) =

{u ∈ H : 0 < dKr(u) < r′} .

Since NP
K(·) is a closed set-valued map, we have NC

Kr
(x) = NP

Kr
(x) . Therefore, we

define NKr(x) := NC
Kr

(x) = NP
Kr

(x) .
The union of two disjoint intervals [a,b] and [c,d] is uniformly r -prox-regular

with r = c−b
2 [14, 15, 18]. The finite union of disjoint intervals is also uniformly r -

prox-regular and r depends on the distances between the intervals.

3. Formulations and some basic comments

Let Kr be an uniformly r -prox-regular (nonconvex) set, and g : Kr →Kr be a given
mapping. For given two different mappings T1,T2 : Kr → Kr , Wen [13] considered the
problem of finding (x∗,y∗) ∈ Kr ×Kr such that

〈ρT1(y∗,x∗)+g(x∗)−g(y∗),x−g(x∗)〉 � 0, for all x ∈ Kr, ρ > 0, (3.1)

〈ηT2(x∗,y∗)+g(y∗)−g(x∗),x−g(y∗)〉 � 0, for all x ∈ Kr, η > 0. (3.2)

He also considered several special cases of the above system. If T1 = T2 = T : Kr → Kr

is an univariate nonlinear operator, g ≡ I (the identity operator) and x∗ = y∗ = u , then
the system (3.1)–(3.2) reduces to the following classical variational inequality (VI)
defined on the nonconvex set Kr : Find u ∈ Kr such that

〈Tu,v−u〉� 0, for all v ∈ Kr. (3.3)

Wen [13] has also mentioned that the VI is equivalent to find u ∈ Kr such that

0 ∈ Tu+NP
Kr

(u), (3.4)

where NP
Kr

(u) denotes the normal cone of Kr at u in the sense of nonconvex analysis.
An iterative algorithm is proposed in [13] by utilizing the following lemma.

LEMMA 3.1. [13, Lemma 3.1] (x∗,y∗) ∈ Kr ×Kr is a solution of problems (3.1)–
(3.2) if and only if

g(x∗) = PKr [g(y∗)−ρT1(y∗,x∗)], (3.5)
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g(y∗) = PKr [g(x∗)−ηT2(x∗,y∗)], (3.6)

where PKr is the projection of H onto the uniformly r -prox-regular set Kr .

By a careful reading, we found that there are two fatal errors in the proof of this lemma.
Firstly, in view of Proposition 2.1, it should be pointed that for any r′ ∈ (0,r) , the
projection of points in the tube U(r′) = {u ∈ H : 0 < dKr(u) < r′} onto the set Kr

exists and unique, that is, for any x ∈ U(r′) , the set PKr(x) is nonempty and single-
ton. From the equations (3.5)–(3.6) and Proposition 2.1, it follows that two points
g(y∗)− ρT1(y∗,x∗) and g(x∗)− ηT2(x∗,y∗) should be belonged to U(r′) for some
r′ ∈ (0,r) . Unfortunately, it is not necessarily true. Indeed, the equations (3.5)–(3.6)
are not necessarily well defined. If ρ < r′

1+‖T1(y∗,x∗)‖ and η < r′
1+‖T2(x∗,y∗)‖ , for some

r′ ∈ (0,r) , then we have

dKr(g(y∗)−ρT1(y∗,x∗)) � dKr(g(y∗))+ ρ‖T1(y∗,x∗)‖

<
r′‖T1(y∗,x∗)‖

1+‖T1(y∗,x∗)‖ < r′,

because g(y∗) ∈ Kr . Therefore, g(y∗)−ρT1(y∗,x∗) ∈U(r′) . Similarly, one can deduce
that g(x∗)−ηT2(x∗,y∗) ∈U(r′) . Hence, if ρ < r′

1+‖T1(y∗,x∗)‖ and η < r′
1+‖T2(x∗,y∗)‖ , for

some r′ ∈ (0,r) , then the equations (3.5)–(3.6) are well defined.
Secondly, we note that Wen [13] used the following system of nonconvex varia-

tional inclusions as an equivalence formulation of the system (3.1)–(3.2):{
0 ∈ ρT1(y∗,x∗)+g(x∗)−g(y∗)+ ρNP

Kr
(g(x∗)), ρ > 0

0 ∈ ηT2(x∗,y∗)+g(y∗)−g(x∗)+ ηNP
Kr

(g(y∗)), η > 0.
(3.7)

Since NP
Kr

(g(x∗)) and NP
Kr

(g(y∗)) are cone, the system (3.7) is equivalent to the follow-
ing system: {

0 ∈ ρT1(y∗,x∗)+g(x∗)−g(y∗)+NP
Kr

(g(x∗)), ρ > 0
0 ∈ ηT2(x∗,y∗)+g(y∗)−g(x∗)+NP

Kr
(g(y∗)), η > 0.

(3.8)

Therefore, according to the proof of [13, Lemma 3.1], the system (3.1)–(3.2) is equiv-
alent to the system (3.8). Unfortunately, it is not true.

REMARK 3.1. Every solution of the system (3.1)–(3.2) is a solution of the system
(3.8), but the converse is not necessarily true.

Proof. Let (x∗,y∗) ∈ Kr ×Kr be a solution of the system (3.1)–(3.2). Then,{ 〈ρT1(y∗,x∗)+g(x∗)−g(y∗),x−g(x∗)〉 � 0, for all x ∈ Kr, ρ > 0
〈ηT2(x∗,y∗)+g(y∗)−g(x∗),x−g(y∗)〉 � 0, for all x ∈ Kr, η > 0.

(3.9)

It follows from the inequalities (3.9) that for all α > 0,⎧⎪⎪⎨
⎪⎪⎩

〈ρT1(y∗,x∗)+g(x∗)−g(y∗),x−g(x∗)〉+ α‖x−g(x∗)‖2 � 0,
for all x ∈ Kr, ρ > 0

〈ηT2(x∗,y∗)+g(y∗)−g(x∗),x−g(y∗)〉+ α‖x−g(y∗)‖2 � 0,
for all x ∈ Kr, η > 0.

(3.10)
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The inequalities (3.10) and Lemma 2.1 imply that{−(ρT1(y∗,x∗)+g(x∗)−g(y∗)) ∈ NP
Kr

(g(x∗)), for all ρ > 0,
−(ηT2(x∗,y∗)+g(y∗)−g(x∗)) ∈ NP

Kr
(g(y∗)), for all η > 0,

and therefore,{
0 ∈ ρT1(y∗,x∗)+g(x∗)−g(y∗)+NP

Kr
(g(x∗)), for all ρ > 0,

0 ∈ ηT2(x∗,y∗)+g(y∗)−g(x∗)+NP
Kr

(g(y∗)), for all η > 0.
(3.11)

We see that the converse is not true in general. Indeed, suppose that the inclusions
(3.11) holds for some (x∗,y∗) ∈ Kr ×Kr . Then, Lemma 2.1 implies that the system
(3.10) hold for some α > 0. However, by using the system (3.10), we cannot deduce
the system (3.9).

The following example illustrates that the system (3.10) does not imply the system
(3.9).

EXAMPLE 3.1. Let H = R and Kr = [0,β ]∪ [γ,δ ] be the union of two disjoint
intervals [0,β ] and [γ,δ ] where 0 < β < γ < δ . Then Kr is an uniformly r -prox-
regular set with r = γ−β

2 . For each i = 1,2, define Ti : Kr ×Kr → Kr and g : Kr → Kr

by
Ti(x,y) = θie

sixy and g(x) = kxl, for all x,y ∈ Kr,

where for each i = 1,2, si, l ∈ R , θi < 0 and β 1−l � k < γ
β l are arbitrary but fixed.

Take x∗ = y∗ = β , and let ρ ,η > 0 and α � max

{
− ρθ1e

s1β2

γ−kβ l ,−ηθ2e
s2β2

γ−kβ l

}
be arbitrary

and fixed. Then, we have

〈ρT1(y∗,x∗)+g(x∗)−g(y∗),w−g(x∗)〉+ α‖w−g(x∗)‖2

= ρθ1e
s1β 2

(w− kβ l)+ α(w− kβ l)2

= (w− kβ l)
(

α(w− kβ l)+ ρθ1e
s1β 2

)
, for all w ∈ Kr.

(3.12)

If w ∈ [0,β ] , then −kβ l � w− kβ l � β − kβ l = β (1− kβ l−1) and

−kαβ l + ρθ1e
s1β 2 � α

(
w− kβ l

)
+ ρθ1e

s1β 2 � ρθ1e
s1β 2

+ αβ
(
1− kβ l−1

)
.

For w ∈ [γ,δ ] , we have γ − kβ l � w− kβ l � δ − kβ l and

α
(

γ − kβ l
)

+ ρθ1e
s1β 2 � α

(
w− kβ l

)
+ ρθ1e

s1β 2 � α
(

δ − kβ l
)

+ ρθ1e
s1β 2

,

and therefore,(
w− kβ l

)(
α

(
w− kβ l

)
+ ρθ1e

s1β 2
)

� 0, for all w ∈ Kr. (3.13)

By (3.12) and (3.13), it follows that

〈ρT1(y∗,x∗)+g(x∗)−g(y∗),w−g(x∗)〉+ α‖w−g(x∗)‖2 � 0, for all w ∈ Kr.
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However, it is obvious that ρθ1es1β 2
(w− kβ l) < 0 for all w ∈ [γ,δ ] , that is,

〈ρT1(y∗,x∗)+g(x∗)−g(y∗),w−g(x∗)〉 < 0, for all w ∈ [γ,δ ].

Hence, the inequality

〈ρT1(y∗,x∗)+g(x∗)−g(y∗),w−g(x∗)〉 � 0,

cannot hold for all w ∈ Kr .
Similarly, we have

〈ηT2(x∗,y∗)+g(y∗)−g(x∗),w−g(y∗)〉+ α‖w−g(y∗)‖2 � 0, for all w ∈ Kr,

while the inequality

〈ηT2(x∗,y∗)+g(y∗)−g(x∗),w−g(y∗)〉 � 0

cannot hold for all w ∈ Kr .

Similarly, we can see that every solution of (3.3) is a solution of (3.4), but the
converse is not true in general.

In view of the above remark, the results in [13] and in the papers where the same
technique and method are used, are no longer valid.

Instead of the system (3.1)–(3.2) of [13], in this paper, we consider another sys-
tem of nonconvex variational inequalities called system of regularized nonconvex varia-
tional inequalities (SRNVI). We prove the equivalence between SRNVI and the system
of nonconvex variational inclusions (3.8) as well as the fixed point problems (3.5)–(3.6).

For given nonlinear mappings T1,T2 : H ×H → H and g : H → H , and
the constants ρ ,η > 0, we consider the following system of regularized nonconvex
variational inequalities (SRNVI): Find (x∗,y∗) ∈ H ×H such that (g(x∗),g(y∗)) ∈
Kr ×Kr and

⎧⎪⎪⎨
⎪⎪⎩

〈ρT1(y∗,x∗)+g(x∗)−g(y∗),x−g(x∗)〉+ ‖ρT1(y∗,x∗)+x∗−y∗‖
2r ‖x−g(x∗)‖2 � 0,
for all x ∈ Kr,

〈ηT2(x∗,y∗)+g(y∗)−g(x∗),x−g(y∗)〉+ ‖ηT2(x∗,y∗)+g(y∗)−g(x∗)‖
2r ‖x−g(y∗)‖2 � 0,

for all x ∈ Kr.

(3.14)

If g ≡ I , then the system (3.14) collapses to the following system of finding (x∗,y∗) ∈
Kr ×Kr such that{
〈ρT1(y∗,x∗)+ x∗− y∗,x− x∗〉+ ‖ρT1(y∗,x∗)+x∗−y∗‖

2r ‖x− x∗‖2 � 0, for all x ∈ Kr,

〈ηT2(x∗,y∗)+ y∗− x∗,x− y∗〉+ ‖ηT2(x∗,y∗)+g(y∗)−g(x∗)‖
2r ‖x− y∗‖2 � 0, for all x ∈ Kr,

(3.15)

which appears to be a new system of regularized nonconvex variational inequalities.



168 Q. H. ANSARI AND J. BALOOEE

If r = ∞ , that is, Kr = K , the convex set in H , then the system (3.15) reduces to
the following system of finding (x∗,y∗) ∈ K×K such that{ 〈ρT1(y∗,x∗)+ x∗− y∗,x− x∗〉 � 0, for all x ∈ K,

〈ηT2(x∗,y∗)+ y∗− x∗,x− y∗〉 � 0, for all x ∈ K,
(3.16)

which is considered and studied in [9].
If r = ∞ and T1 = T2 = T , then the system (3.15) considered and studied by Chang

et al. [8] and Verma [10].
If r = ∞ and T1 = T2 = T : H → H is an univariate nonlinear operator, then the

system (3.15) reduces to the system of variational inequalities considered in [12].
If T1 = T2 = T : H →H is an univariate nonlinear operator, x∗ = y∗ and ρ = η ,

then the system (3.15) becomes the problem of finding x∗ ∈ Kr such that

〈ρT (x∗),x− x∗〉+ ‖ρT (x∗)‖
2r

‖x− x∗‖2 � 0, for all x ∈ Kr, (3.17)

which appears to be a new problem of nonlinear regularized nonconvex variational
inequality.

If r = ∞ , then the problem (3.17) reduces to the classical variational inequality.
In the next proposition, the equivalence between the system of regularized noncon-

vex variational inequalities (3.14) and the system of nonconvex variational inclusions
(3.8) is established.

PROPOSITION 3.1. Let Kr be an uniformly r -prox-regular set. The system (3.14)
is equivalent to the system (3.8).

Proof. Let (x∗,y∗) ∈ H ×H with (g(x∗),g(y∗)) ∈ Kr ×Kr be a solution of the
system (3.14). If ρT1(y∗,x∗)+g(x∗)−g(y∗) = 0, then 0∈ρT1(y∗,x∗)+g(x∗)−g(y∗)+
NP

Kr
(g(x∗)) because the vector zero always belongs to any normal cone. If ρT1(y∗,x∗)+

g(x∗)−g(y∗) 
= 0, then for all x ∈ Kr , we have

〈−(ρT1(y∗,x∗)+g(x∗)−g(y∗)) ,x−g(x∗)〉� ‖ρT1(y∗,x∗)+g(x∗)−g(y∗)‖
2r

‖x−g(x∗)‖2.

By Lemma 2.1, we have

−(ρT1(y∗,x∗)+g(x∗)−g(y∗)) ∈ NP
Kr

(g(x∗)),

which implies that

0 ∈ ρT1(y∗,x∗)+g(x∗)−g(y∗)+NP
Kr

(g(x∗)).

Similarly, we obtain

0 ∈ ηT2(x∗,y∗)+g(y∗)−g(x∗)+NP
Kr

(g(y∗)).

Conversely, if (x∗,y∗) ∈ H ×H with (g(x∗),g(y∗)) ∈ Kr ×Kr is a solution
of the system (3.8), then it follows from Definition 2.4 that (x∗,y∗) ∈ H ×H with
(g(x∗),g(y∗)) ∈ Kr ×Kr is a solution of the system (3.14). �

By using the projection operator technique, we establish the equivalence between
the system (3.14) and the fixed point problems (3.5)–(3.6).
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LEMMA 3.2. Let T1 , T2 , g , ρ and η be the same as in the system (3.14). Then
(x∗,y∗) ∈ H ×H with (g(x∗),g(y∗)) ∈ Kr ×Kr is a solution of the system (3.14) if
and only if (x∗,y∗) satisfies the system (3.5)–(3.6) provided that ρ < r′

1+‖T1(y∗,x∗)‖ and

η < r′
1+‖T2(x∗,y∗)‖ for some r′ ∈ (0,r) .

Proof. Let (x∗,y∗) ∈ H ×H with (g(x∗),g(y∗)) ∈ Kr ×Kr be a solution of the
system (3.14). Since g(x∗),g(y∗) ∈ Kr , ρ < r′

1+‖T1(y∗,x∗)‖ and η < r′
1+‖T2(x∗,y∗)‖ , it fol-

lows that the equations (3.5)–(3.6) are well defined. By using the well-known fact that
PKr = (I +NP

Kr
)−1 and Proposition 3.1, we obtain

0 ∈ ρT1(y∗,x∗)+g(x∗)−g(y∗)+NP
Kr

(g(x∗))

⇔ g(y∗)−ρT1(y∗,x∗) ∈ g(x∗)+NP
Kr

(g(x∗))

⇔ g(y∗)−ρT1(y∗,x∗) ∈ (I +NP
Kr

)(g(x∗))
⇔ g(x∗) = PKr(g(y∗)−ρT1(y∗,x∗)),

where I is the identity operator. Similarly, we deduce

0 ∈ ηT2(x∗,y∗)+g(y∗)−g(x∗)+NP
Kr

(g(y∗))
⇔ g(y∗) = PKr(g(x∗)−ηT2(x∗,y∗)).

This completes the proof. �

4. Existence and uniqueness of a solution and convergence analysis

DEFINITION 4.1. A mapping T : H → H is said to be

(a) monotone in the first variable if for all x,y ∈ H ,

〈T (x,u)−T (y,v),x− y〉 � 0, for all u,v ∈ H ;

(b) r -strongly monotone in the first variable if there exists a constant r > 0 such that
for all x,y ∈ H ,

〈T (x,u)−T (y,v),x− y〉 � r‖x− y‖2, for all u,v ∈ H ;

(c) (ξ ,ρ)-relaxed cocoercive in the first variable if there exist two constants ξ ,ρ >
0 such that for all x,y ∈ H ,

〈T (x,u)−T (y,v),x−y〉�−ξ‖T(x,u)−T (y,v)‖2+ρ‖x−y‖2, for all u,v∈H ;

(d) μ -Lipschitz continuous in the first variable if there exists a constant μ > 0 such
that for all x,y ∈ H ,

‖T (x,u)−T (y,v)‖ � μ‖x− y‖, for all u,v ∈ H .
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DEFINITION 4.2. A mapping g : H → H is said to be

(a) κ -strongly monotone if there exists a constant κ > 0 such that

〈g(x)−g(y),x− y〉� κ‖x− y‖2, for all x,y ∈ H ;

(b) γ -Lipschitz continuous if there exists a constant γ > 0 such that

‖g(x)−g(y)‖� γ‖x− y‖, for all x,y ∈ H .

Now, we prove the existence of a unique solution of the system of regularized
nonconvex variational inequalities (3.14).

THEOREM 4.1. Let the mappings Ti , g (i = 1,2) and the constants ρ and η be
the same as in the system (3.14) such that g(H ) ⊆ Kr . For each i = 1,2 , let Ti be
ξi -strongly monotone and μi -Lipschitz continuous in the first variable, and let g be
ξ3 -strongly monotone and μ3 -Lipschitz continuous. If the constants ρ and η satisfy
the following conditions

ρ <
r′

1+‖T1(y,x)‖ and η <
r′

1+‖T2(x,y)‖ , for some r′ ∈ (0,r) and ∀x,y ∈ H

(4.18)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣ρ − ξ1
μ2

1

∣∣∣ <

√
δ 2ξ 2

1 − μ2
1(δ 2 − (1− (1+ δ )k)2)

δ μ2
1

,

∣∣∣η − ξ2
μ2

2

∣∣∣ <

√
δ 2ξ 2

2 − μ2
2 (δ 2 − (1− (1+ δ )k)2)

δ μ2
2

,

ξi >

√
δ 2− (1− (1+ δ )k)2

δ
μi, i = 1,2,

k =
√

1−2ξ3 + μ2
3 < 1, 2ξ3 � 1+ μ2

3 ,

(4.19)

δ = r
r−r′ , then the system (3.14) admits a unique solution.

Proof. Define ψ ,φ : H ×H → H by

ψ(x,y) = x−g(x)+PKr(g(y)−ρT1(y,x)),
φ(x,y) = y−g(y)+PKr(g(x)−ηT2(x,y)),

(4.20)

for all x,y ∈ H . Define ‖.‖∗ on H ×H by

‖(x,y)‖∗ = ‖x‖+‖y||, for all (x,y) ∈ H ×H .

It is obvious that (H ×H ,‖.‖∗) is a Hilbert space. Also, define F : H ×H →
H ×H by

F(x,y) = (ψ(x,y),φ(x,y)), for all (x,y) ∈ H ×H . (4.21)
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We claim that F is a contraction mapping. Indeed, let (x,y),(x̂, ŷ) ∈ H ×H be
given. Since g(y) ∈ Kr and ρ < r′

1+‖T1(y,x)‖ , for some r′ ∈ (0,r) , it follows that g(y)−
ρT1(y,x) ∈U(r′) and the r -prox-regularity of Kr implies that PKr(g(y)−ρT1(y,x) ex-
ists and unique. Similarly, we can deduce that PKr(g(x)−ρT2(x,y) exists and unique.
By using Proposition 2.1, we have

‖ψ(x,y)−ψ(x̂, ŷ)‖
= ‖x−g(x)+PKr(g(y)−ρT1(y,x))− (x̂−g(x̂)+PKr(g(ŷ)−ρT1(ŷ, x̂)))‖
� ‖x− x̂− (g(x)−g(x̂))‖+ δ‖g(y)−g(ŷ)−ρ(T1(y,x)−T1(ŷ, x̂))‖
� ‖x− x̂− (g(x)−g(x̂))‖
+ δ (‖y− ŷ− (g(y)−g(ŷ))‖+‖y− ŷ−ρ(T1(y,x)−T1(ŷ, x̂))‖) ,

(4.22)

where δ = r
r−r′ . By ξ3 -strongly monotonicity and μ3 -Lipschitz continuity of g , we

have

‖x− x̂− (g(x)−g(x̂))‖2 = ‖x− x̂‖2−2〈g(x)−g(x̂),x− x̂〉+‖g(x)−g(x̂)‖2

� (1−2ξ3 + μ2
3 )‖x− x̂‖2,

which leads to

‖x− x̂− (g(x)−g(x̂))‖ �
√

1−2ξ3 + μ2
3‖x− x̂‖. (4.23)

Similarly, we obtain

‖y− ŷ− (g(y)−g(ŷ))‖ �
√

1−2ξ3 + μ2
3‖y− ŷ‖. (4.24)

Since T1 is ξ1 -strongly monotone and μ1 -Lipschitz continuous in the first variable, we
get

‖y− ŷ−ρ(T1(y,x)−T1(ŷ, x̂))‖2

= ‖y− ŷ‖2−2ρ〈T1(y,x)−T1(ŷ, x̂),y− ŷ〉+ ρ2‖T1(y,x)−T1(ŷ, x̂)‖2

� (1−2ρξ1 + ρ2μ2
1 )‖y− ŷ‖2.

(4.25)

By (4.22)–(4.25), we have

‖ψ(x,y)−ψ(x̂, ŷ)‖ � k‖x− x̂‖+ θ1‖y− ŷ‖, (4.26)

where

k =
√

1−2ξ3 + μ2
3 , and θ1 = δ

(
k+

√
1−2ρξ1 + ρ2μ2

1

)
.

Since T2 is ξ2 -strongly monotone and μ2 -Lipschitz continuous in the first variable,
and g is ξ3 -strongly monotone and μ3 -Lipschitz continuous, in a similar way, we have

‖φ(x,y)−φ(x̂, ŷ)‖ � θ2‖x− x̂‖+ k‖y− ŷ‖, (4.27)



172 Q. H. ANSARI AND J. BALOOEE

where

θ2 = δ
(

k+
√

1−2ηξ2 + η2μ2
2

)
.

It follows from (4.21), (4.26) and (4.27) that

‖F(x,y)−F(x̂, ŷ)‖∗ = ‖ψ(x,y)−ψ(x̂, ŷ)‖+‖φ(x,y)−φ(x̂, ŷ)‖
� (k+ θ2)‖x− x̂‖+(k+ θ1)‖y− ŷ‖
� ϑ‖(x,y)− (x̂, ŷ)‖∗,

(4.28)

where ϑ = max{k + θi : i = 1,2} . The condition (4.19) implies that 0 � ϑ < 1, and
so, (4.28) guarantees that F is a contraction mapping.

By Banach fixed point theorem, there exists a unique point (x∗,y∗) ∈ H ×H
such that F(x∗,y∗) = (x∗,y∗) . From (4.20) and (4.21), we conclude that

g(x∗) = PKr(g(y∗)−ρT1(y∗,x∗))

and
g(y∗) = PKr(g(x∗)−ηT2(x∗,y∗)),

because of the choice of the constants ρ and η , in similar way, deduce that the above
equations are well defined. Now, Lemma 3.2 guarantees that (x∗,y∗) ∈ H ×H with
(g(x∗),g(y∗))∈Kr×Kr is a solution of the system (3.14). This completes the proof. �

COROLLARY 4.1. Suppose that the mappings Ti (i = 1,2) and the constants ρ
and η are the same as in the system (3.15) and assume that for each i = 1,2 , the
mapping Ti is ξi -strongly monotone and μi -Lipschitz continuous in the first variable.
If the constants ρ and η satisfy the condition (4.18) and the following conditions⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣∣∣ρ − ξ1
μ2

1

∣∣∣ <

√
δ 2ξ 2

1 −μ2
1 (δ 2−1)

δ μ2
1

,∣∣∣η − ξ2
μ2

2

∣∣∣ <

√
δ 2ξ 2

2 −μ2
2 (δ 2−1)

δ μ2
2

,

ξi >

√
δ 2−1
δ μi, i = 1,2,

(4.29)

where δ = r
r−r′ , then the system (3.15) admits a unique solution.

COROLLARY 4.2. Let the mappings Ti (i = 1,2) and the constants ρ and η be
the same as in the system (3.16) such that for each i = 1,2 , the mapping Ti is ξi -
strongly monotone and μi -Lipschitz continuous in the first variable. If the constants ρ
and η satisfy the following conditions∣∣∣∣ρ − ξ1

μ2
1

∣∣∣∣ <
ξ1

μ2
1

and

∣∣∣∣η − ξ2

μ2
2

∣∣∣∣ <
ξ2

μ2
2

, (4.30)

then the system (3.16) admits a unique solution.
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COROLLARY 4.3. Assume that the mapping T and the constant ρ are the same
as in the problem (3.17) and suppose that the mapping T is ξ -strongly monotone and
μ -Lipschitz continuous. If the constant ρ satisfies the following conditions

ρ <
r′

1+‖T(x)‖ , for some r′ ∈ (0,r) and ∀x ∈ H , (4.31)

and ∣∣∣∣ρ − ξ
μ2

∣∣∣∣ <

√
δ 2ξ 2− μ2(δ 2−1)

δ μ2 and ξ >

√
δ 2 −1

δ
μ , (4.32)

where δ = r
r−r′ , then the problem (3.17) admits a unique solution.

By utilizing Lemma 3.2, we suggest and analyze the following explicit projection
iterative method for solving the system of regularized nonconvex variational inequali-
ties (3.14).

ALGORITHM 4.1. Let the mappings Ti (i = 1,2) , g and the constants ρ and η
be the same as in the system (3.14) such that g(H ) ⊆ Kr . For arbitrary initial points
x0,y0 ∈ H , compute the sequences {xn} and {yn} in H in the following way:{

xn+1 = (1−αn)xn + αn[xn −g(xn)+PKr(g(yn)−ρT1(yn,xn))],
yn+1 = (1−αn)yn + αn[yn −g(yn)+PKr(g(xn)−ηT2(xn,yn))],

(4.33)

where {αn} is a sequence in [0,1] .

ALGORITHM 4.2. Let the mappings Ti (i = 1,2) and the constants ρ and η be
the same as in the system (3.15). For arbitrary initial points x0,y0 ∈ Kr , compute the
sequences {xn} and {yn} in Kr in the following way:{

xn+1 = PKr(yn+1−ρT1(yn+1,xn)),
yn+1 = PKr(xn−ηT2(xn,yn)),

where {αn} is a sequence in [0,1] .

ALGORITHM 4.3. Let the mappings Ti (i = 1,2) and the constants ρ and η be
the same as in the system (3.16). For arbitrary initial points x0,y0 ∈ K , compute the
sequences {xn} and {yn} in the following way:{

xn+1 = (1−αn)xn + αnPK(yn−ρT1(yn,xn)),
yn+1 = (1−αn)yn + αnPK(xn−ηT2(xn,yn)),

where {αn} is a sequence in [0,1] .

ALGORITHM 4.4. Let the mapping T and the constant ρ be the same as in the
problem (3.17). For an arbitrary initial point x0 ∈ Kr , compute the sequence {xn} in
Kr by the following iterative process:

xn+1 = PKr(xn−ρT (xn)),

where {αn} is a sequence in [0,1] .
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Now, we prove the strong convergence of the sequences generated by Algorithm
4.1 to a unique solution of the system (3.14).

THEOREM 4.2. Let the mappings Ti , g (i = 1,2) and the constants ρ and η
be the same as in Theorem 4.1, and let all the conditions of Theorem 4.1 hold. If the
constants ρ and η satisfy the conditions (4.18) and (4.19) and ∑∞

n=0 αn = ∞ , then
the iterative sequence {(xn,yn)} generated by Algorithm 4.1 converges strongly to a
unique solution (x∗,y∗) of the system (3.14).

Proof. Theorem 4.1 guarantees the existence of a unique solution (x∗,y∗) in H ×
H with (g(x∗),g(y∗)) in Kr ×Kr for the system (3.14). Since ρ < r′

1+‖T1(y∗,x∗)‖ and

η < r′
1+‖T2(x∗,y∗)‖ , for some r′ ∈ (0,r) , it follows from Lemma 3.2 that (x∗,y∗) satisfies

the system (3.5)–(3.6). Then for each n � 0, we have{
x∗ = (1−αn)x∗ + αn[x∗ −g(x∗)+PKr(g(y∗)−ρT1(y∗,x∗))],
y∗ = (1−αn)y∗ + αn[y∗ −g(y∗)+PKr(g(x∗)−ηT2(x∗,y∗))],

(4.34)

where the sequence {αn} is the same as in Algorithm 4.1. Since for each n ∈ N ,
g(y∗),g(yn) ∈ Kr , ρ < r′

1+‖T1(y∗,x∗)‖ and ρ < r′
1+‖T1(yn,xn)‖ , it is easy to check that for

each n ∈ N , g(y∗)−ρT1(y∗,x∗),g(yn)−ρT1(yn,xn) ∈U(r′) . From (4.33), (4.34) and
Proposition 2.1, we obtain

‖xn+1− x∗‖
� (1−αn)‖xn− x∗‖+ αn

(
‖xn− x∗− (g(xn)−g(x∗))‖

+‖PKr(g(yn)−ρT1(yn,xn))−PKr(g(y∗)−ρT1(y∗,x∗))‖
)

� (1−αn)‖xn− x∗‖+ αn

(
‖xn− x∗− (g(xn)−g(x∗))‖

+ δ‖g(yn)−g(y∗)−ρ(T1(yn,xn)−T1(y∗,x∗))‖
)

� (1−αn)‖xn− x∗‖+ αn

(
‖xn− x∗− (g(xn)−g(x∗))‖

+ δ (‖yn− y∗− (g(yn)−g(y∗))‖+‖yn− y∗ −ρ(T1(yn,xn)−T1(y∗,x∗))‖
)
.

(4.35)

Since T1 is ξ1 -strongly monotone and μ1 -Lipschitz continuous in the first variable,
and g is ξ3 -strongly monotone and μ3 -Lipschitz continuous, in a similar way, we have

‖xn− x∗ − (g(xn)−g(x∗))‖ �
√

1−2ξ3 + μ2
3‖xn− x∗‖, (4.36)

‖yn− y∗− (g(yn)−g(y∗))‖ �
√

1−2ξ3 + μ2
3‖yn− y∗‖ (4.37)

and

‖yn− y∗−ρ(T1(yn,xn)−T1(y∗,x∗))‖ �
√

1−2ρξ1 + ρ2μ2
1‖yn− y∗‖. (4.38)
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Combining (4.35)–(4.38), we obtain

‖xn+1− x∗‖ � (1−αn)‖xn− x∗‖+ αn (k‖xn− x∗‖+ θ1‖yn− y∗‖) , (4.39)

where k and θ1 are the same as in (4.26). By g(x∗),g(xn) ∈ Kr (n ∈ N) , η <
r′

1+‖T2(x∗,y∗)‖ and η < r′
1+‖T2(xn,yn)‖ , it follows that for each n ∈ N , g(x∗)−ηT2(x∗,y∗) ,

g(xn)−ηT2(xn,yn) ∈U(r′) . Since T2 is ξ2 -strongly monotone and μ2 -Lipschitz con-
tinuous in the first variable, and g is ξ3 -strongly monotone and μ3 -Lipschitz continu-
ous, in a similar way as that of proof (4.35)–(4.39), we get

‖yn+1− y∗‖ � (1−αn)‖yn− y∗‖+ αn (k‖yn− y∗‖+ θ2‖xn− x∗‖) , (4.40)

where θ2 is the same as in (4.27). By (4.39) and (4.40), we have

‖(xn+1,yn+1)− (x∗,y∗)‖∗
� (1−αn)‖(xn,yn)− (x∗,y∗)‖∗ + αn ((k+ θ2)‖xn− x∗‖+(k+ θ1)‖yn− y∗‖)
� (1−αn)‖(xn,yn)− (x∗,y∗)‖∗ + αnϑ‖(xn,yn)− (x∗,y∗)‖∗
= (1− (1−ϑ)αn)‖(xn,yn)− (x∗,y∗)‖∗
�

n

∏
i=0

(1− (1−ϑ)αi)‖(x0,y0)− (x∗,y∗)‖∗,

(4.41)

where ϑ is the same as in (4.28). The condition (4.19) guarantees that ϑ ∈ (0,1) .
Since ∑∞

n=0 αn = ∞ , we get

lim
n→∞

n

∏
i=0

(1− (1−ϑ)αi) = 0. (4.42)

It follows from (4.41) and (4.42) that ‖(xn,yn)− (x∗,y∗)‖∗ → 0, as n → ∞ , and so
the sequence {(xn,yn)} generated by Algorithm 4.1, converges strongly to a unique
solution (x∗,y∗) of the system (3.14). This completes the proof. �

Similarly, we can prove the convergence of iterative sequences generated by Al-
gorithm 4.2.

COROLLARY 4.4. Assume that the mappings Ti (i = 1,2) and the constants ρ
and η are the same as in Corollary 4.1, and let all the conditions of Corollary 4.1
hold. If the constants ρ and η satisfy the conditions (4.18) and (4.29), then the iterative
sequence {(xn,yn)} generated by Algorithm 4.2 converges strongly to a unique solution
(x∗,y∗) of the system (3.15).

COROLLARY 4.5. Assume that the mappings Ti (i = 1,2) and the constants ρ
and η are the same as in Corollary 4.2, and let all the conditions of Corollary 4.2
hold. If the constants ρ and η satisfy the condition (4.30) and ∑∞

n=0 αn = ∞ , then
the iterative sequence {(xn,yn)} generated by Algorithm 4.3 converges strongly to a
unique solution (x∗,y∗) of the system (3.16).
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Proof. Since r = ∞ , that is, Kr = K , we have δ = 1. On the other hand, since
g ≡ I , it follows that g is ξ3 -strongly monotone and μ3 -Lipschitz continuous with

ξ3 = μ3 = 1, and we have k =
√

1−2ξ3 + μ2
3 = 0. Taking δ = 1 and k = 0 in the

condition (4.19) of Theorem 4.1, the condition (4.19) reduces to the condition (4.30) of
Corollary 4.2, and result follows from Corollary 4.2. �

COROLLARY 4.6. Let the mapping T and the constant ρ be the same as in Corol-
lary 4.3 and suppose that all the conditions of Corollary 4.3 hold. If the constant ρ
satisfies the conditions (4.31) and (4.32), then the iterative sequence {xn} generated
by Algorithm 4.4 converges strongly to a unique solution x∗ of the problem (3.17).

5. Conclusions

In this paper, we have investigated and analyzed, so called, generalized system of
nonconvex variational inequalities (2.1a) and (2.1b) from [13] and verified that this sys-
tem of inequalities is not equivalent to the fixed point problems (3.1a) and (3.1b) from
[13]. That is, the [13, Lemma 3.1] is incorrect. Lemma 3.1 in [13] is the main key to
suggest the algorithm and to prove the strong convergence of the sequences generated
by the proposed algorithm. Since [13, Lemma 3.1] is no longer valid, the algorithms
and results in [13] are also no longer valid. To overcome with the problems in [13],
we introduced a system of regularized nonconvex variational inequalities (SRNVI). By
using the projection operator technique, we have verified the equivalence between the
SRNVI and the fixed point problems. By using this equivalence, we suggested and ana-
lyzed an explicit projection iterative method for solving the SRNVI. The existence of a
unique solution of the SRNVI is proved and the convergence analysis of the suggested
iterative algorithm under some suitable conditions is studied.
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