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(Communicated by I. Perić)

Abstract. New converses of the Jessen and Lah-Ribarič inequalities for continuous convex func-
tions with applications to means, the Hölder inequality, the Hadamard inequality, and the in-
equalities of Giaccardi and Petrović are given.

1. Introduction

Let E be a nonempty set and L be a linear class of real-valued functions f : E →R

having the properties:

L1: f ,g ∈ L ⇒ (a f +bg)∈ L for all a,b ∈ R ;

L2: 1 ∈ L , i.e., if f (t) = 1 for every t ∈ E , then f ∈ L .

We also consider positive linear functionals A : L → R . That is, we assume that:

A1: A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L and a,b ∈ R ;

A2: f ∈ L , f (t) � 0 for every t ∈ E ⇒ A( f ) � 0 (A is positive).

Jessen [5] gave the following generalization of Jensen’s inequality for convex func-
tions (see also [7, p. 47]):

THEOREM 1.1. ( [5]) Let L satisfy properties L1,L2 on a nonempty set E , and
assume that φ is a continous convex function on an interval I ⊂ R . If A is a positive
linear functional with A(1) = 1 , then for all f ∈ L such that φ( f )∈ L we have A( f )∈ I
and

φ(A( f )) � A(φ( f )). (1.1)

The following result is proved in [1] by Beesack and Pečarić (see also [7, p. 98]):
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THEOREM 1.2. ( [1]) Let φ be convex on I = [m,M] (−∞ < m < M < ∞) . Let
L satisfy conditions L1,L2 on E and let A be any positive linear functional on L with
A(1) = 1 . Then for every f ∈ L such that φ( f ) ∈ L (so that m � f (t) � M for all
t ∈ E ), we have

A(φ( f )) � (M−A( f ))φ(m)+ (A( f )−m)φ(M)
M−m

. (1.2)

Let (Ω,A ,μ) be a measurable space consisting of a set Ω , a σ -algebra A of
parts of Ω and a countably additive and positive measure μ on A with values in
R∪{∞} . For a μ -measurable function w : Ω → R , with w(x) � 0 for μ -a.e. (almost
every) x ∈ Ω , consider the Lebesgue space

Lw(Ω,μ) := { f : Ω → R, f is μ −measurable and
∫

Ω w(x)| f (x)|dμ(x) < ∞} .

S.S.Dragomir [3] gave the following converse of Jensen’s inequality:

THEOREM 1.3. ( [3]) Let φ : I → R be a continuous convex function on the in-

terval of real numbers I and m,M ∈ R , m < M with [m,M] ⊂◦
I , where

◦
I is interior of

I . Let w > 0 such that
∫

wdμ = 1 . If f : Ω → R is μ -measurable, satisfies the bounds

−∞ < m � f (t) � M < ∞ for μ -a.e. t ∈ Ω

and such that f ,φ ◦ f ∈ Lw(Ω,μ) , then

0 �
∫

Ω
w(t)φ( f (t))dμ(t)−φ( f Ω,w)

� (M− f Ω,w)( f Ω,w −m)
φ ′−(M)−φ ′

+(m)
M−m

(1.3)

� 1
4
(M−m)(φ ′

−(M)−φ ′
+(m)).

In this paper we shall give new converses of Lah-Ribarič’s and Jessen’s inequal-
ity for positive linear functionals. Also, we shall give applications of these results to
generalized means, power means, Hölder’s inequality, Hadamard’s inequality and to
inequalities of Giaccardi and Petrović.

2. Results

The results in this section are converses of Lah-Ribarič’s and Jessen’s inequality
for positive linear functionals.

THEOREM 2.1. Let φ be a continuous convex function on an interval of real num-

bers I and m,M ∈R , m < M with [m,M]⊂◦
I , where

◦
I is the interior of I . Let L satisfy

conditions L1,L2 on E and let A be any positive linear functional on L with A(1) = 1 .
If f ∈ L satisfies the bounds

−∞ < m � f (t) � M < ∞ for every t ∈ E
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and φ ◦ f ∈ L, then

0 � A(φ( f ))−φ(A( f ))

� (M−A( f ))(A( f )−m)
φ ′−(M)−φ ′

+(m)
M−m

(2.1)

� 1
4
(M−m)(φ ′

−(M)−φ ′
+(m)).

If φ is concave on I , then the inequalities in (2.1) are reversed.

Proof. First we assume that φ is convex.
The first inequality follows directly from Theorem 1.1. By Theorem 1.2, we have

A(φ( f ))−φ(A( f )) � M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−φ(A( f )) =: B .

Then, by the convexity of φ we have the gradient inequality:

φ(t)−φ(M) � φ ′−(M)(t −M)

for any t ∈ [m,M] . If we multiply this inequality with t −m � 0, we deduce

(t−m)φ(t)− (t−m)φ(M) � φ ′
−(M)(t −M)(t−m), t ∈ [m,M]. (2.2)

Similarly, we get

(M− t)φ(t)− (M− t)φ(m) � φ ′
+(m)(t −m)(M− t), t ∈ [m,M]. (2.3)

Adding (2.2) to (2.3) and dividing by m−M , we deduce that for any t ∈ [m,M]

(t −m)φ(M)+ (M− t)φ(m)
M−m

−φ(t) � (M− t)(t−m)
M−m

(φ ′
−(M)−φ ′

+(m)). (2.4)

Substituting t with A( f ) in (2.4), we obtain

B � (M−A( f ))(A( f )−m)
M−m

(φ ′−(M)−φ ′
+(m))

which is the second inequality in (2.1).
To prove the third inequality in (2.1), we notice that for every t ∈ [m,M] , the

inequality
(M− t)(t−m)

M−m
� 1

4
(M−m) is valid, and the proof is completed.

If φ is concave, then −φ is convex, so we can apply (2.1) to function −φ and
obtain reversed inequalities for φ . �

THEOREM 2.2. Let us suppose that the assumptions from Theorem 2.1 hold. If
f ∈ L satisfies the bounds

−∞ < m � f (t) � M < ∞ for every t ∈ E
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and φ ◦ f ∈ L, then

0 � M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

� φ ′−(M)−φ ′
+(m)

M−m
A([M− f ][ f −m])

� φ ′−(M)−φ ′
+(m)

M−m
(M−A( f ))(A( f )−m) (2.5)

� 1
4
(M−m)(φ ′

−(M)−φ ′
+(m)).

If φ is concave, the inequalities in (2.5) are reversed.

Proof. Let us assume that φ is convex.
The first inequality in (2.5) is obtained from (1.2) by subtracting φ(A( f )) from

both sides of the inequality. If we replace t with f (t) in (2.4), we obtain

M− f (t)
M−m

φ(m)+
f (t)−m
M−m

φ(M)−φ( f (t))

� (M− f (t))( f (t)−m)
M−m

(φ ′
−(M)−φ ′

+(m)).

Due to the linearity of A , when we apply it to the previous inequality, the second
inequality in (2.5) follows:

M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

� (φ ′−(m)−φ ′
+(m))

M−m
A([M− f ][ f −m]).

Since the function g(t) = (M− t)(t−m) is concave, from Jessen’s inequality it follows
that A([M− f ][ f −m]) � (M−A( f ))(A( f )−m) , which gives us the third inequality in
(2.5):

(φ ′−(m)−φ ′
+(m))

M−m
A([M− f ][ f −m])

� (φ ′−(m)−φ ′
+(m))

M−m
(M−A( f ))(A( f )−m).

To prove the last inequality in (2.5), we notice that for every t ∈ [m,M] , the inequality
(M− t)(t−m)

M−m
� 1

4
(M−m) is valid, and thus the proof is completed.

If φ is concave, then −φ is convex, so we can apply (2.5) to to function −φ and
obtain reversed inequalities for φ . �
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3. Applications

3.1. Generalized means

DEFINITION 3.1.1. Let I = 〈a,b〉 , −∞ � a < b � ∞ , and let ψ : I → R be con-
tinuous and strictly monotonic. Suppose that L and A satisfy the conditions L1,L2
and A1,A2 with A(1) = 1 on a non-empty set E , and that ψ( f ) ∈ L for some f ∈ L .
Generalized mean with respect to the operator A and ψ for f ∈ L is defined by

Mψ( f ,A) = ψ−1A(ψ( f )). (3.1.1)

We need the following result (generalization to functionals of the general means
inequality found in [4]):

THEOREM 3.1.1. ( [4, p. 75, Theorem 92]) Let I = 〈a,b〉 , −∞ � a < b � ∞ , and
let ψ ,χ : I → R be continuous and strictly monotonic. Suppose that L and A satisfy
the conditions L1,L2 and A1,A2 with A(1) = 1 on a non-empty set E , and let f ∈ L
be such that ψ( f ),χ( f ) ∈ L. Then the following inequality is valid

Mψ ( f ,A) � Mχ( f ,A), (3.1.2)

provided either χ is increasing and φ = χ ◦ψ−1 is convex, or χ is decreasing and
φ = χ ◦ψ−1 is concave.

THEOREM 3.1.2. ( [7, p. 108, Theorem 4.3]) Let L, A, ψ and χ be as in The-
orem 3.1.1, but with I = [m,M] , −∞ < m < M < ∞ . Then for every f ∈ L such that
m � f (t) � M, t ∈ E we have

(ψ(M)−ψ(m))A(χ( f ))− (χ(M)− χ(m))A(ψ( f )) � ψ(M)χ(m)− χ(M)ψ(m),
(3.1.3)

provided that φ = χ ◦ψ−1 is convex. The inequality in (3.1.3) is reversed if φ is
concave.

The following results are converses of the inequality for generalized means:

THEOREM 3.1.3. Let L,A,ψ ,χ satisfy conditions of the Theorem 3.1.1. Let I ⊃
[m,M] , −∞ < m < M < ∞ , and let us assume that the function φ = χ ◦ψ−1 is convex.
Then for every f ∈ L such that m � f (t) � M for t ∈ [m,M] and ψ( f ),χ( f ) ∈ L we
have

0 � χ(Mχ( f ,A))− χ(Mψ( f ,A))

� (Mψ −A(ψ( f )))(A(ψ( f ))−mψ )
[χ ◦ψ−1]′−(Mψ )− [χ ◦ψ−1]′+(mψ )

Mψ −mψ

� 1
4
(Mψ −mψ)([χ ◦ψ−1]′−(Mψ)− [χ ◦ψ−1]′+(mψ)) (3.1.4)

where [mψ ,Mψ ] = ψ([m,M]) . If φ is concave, then the inequalities in (3.1.4) are
reversed.
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Proof. Function φ = χ ◦ψ−1 is obviously continuous. Let us assume that φ is
convex.

Since m � f (t) � M for t ∈ [m,M] , we have mψ � ψ( f (t)) � Mψ for every
t ∈ [m,M] (if ψ is increasing, then mψ = ψ(m) and Mψ = ψ(M) ; if ψ is decreasing,
then mψ = ψ(M) and Mψ = ψ(m)). Conditions of Theorem 2.1 are satisfied, so we
can obtain (3.1.4) by substituting m↔ mψ , M ↔ Mψ , φ ↔ χ ◦ψ−1 and f ↔ ψ ◦ f in
(2.1).

Now let us assume that φ = χ ◦ψ−1 is concave. Then the function −φ = −χ ◦
ψ−1 is convex, so we can obtain reversed inequalities by replacing φ with −φ in
(3.1.4). �

THEOREM 3.1.4. Under the same assumptions as in the previous theorem, if the
function φ = χ ◦ψ−1 is convex, the following inequalities are valid:

0 � ψ(M)−A(ψ( f ))
ψ(M)−ψ(m)

χ(m)+
A(ψ( f ))−ψ(m)

ψ(M)−ψ(m)
χ(M)− χ(Mχ( f ,A))

� [χ ◦ψ−1]′−(Mψ )− [χ ◦ψ−1]′+(mψ )
Mψ −mψ

A([Mψ −ψ( f )][ψ( f )−mψ ])

� [χ ◦ψ−1]′−(Mψ )− [χ ◦ψ−1]′+(mψ )
Mψ −mψ

(Mψ −A(ψ( f )))(A(ψ( f ))−mψ )

� 1
4
(Mψ −mψ)([χ ◦ψ−1]′−(Mψ)− [χ ◦ψ−1]′+(mψ)) (3.1.5)

where [mψ ,Mψ ] = ψ([m,M]) . If φ is concave, the inequalities in (3.1.5) are reversed.

Proof. Function φ = χ ◦ψ−1 is obviously continuous. Let us assume that φ is
convex.

Since m � f (t) � M for t ∈ [m,M] , we have mψ � ψ( f (t)) � Mψ for every
t ∈ [m,M] (if ψ is increasing, then mψ = ψ(m) and Mψ = ψ(M) ; if ψ is decreasing,
then mψ = ψ(M) and Mψ = ψ(m)). Conditions of Theorem 2.2 are satisfied, so we
can obtain (3.1.5) by substituting m↔ mψ , M ↔ Mψ , φ ↔ χ ◦ψ−1 and f ↔ ψ ◦ f in
(2.5).

Now let us assume that φ = χ ◦ψ−1 is concave. Then the function −φ = −χ ◦
ψ−1 is convex, so we can obtain reversed inequalities by replacing φ with −φ in
(3.1.5). �

3.2. Power means

DEFINITION 3.2.1. Suppose that L and A satisfy the conditions L1,L2 and A1,A2
with A(1) = 1, on a non-empty set E . For f ∈ L , the power mean M[r]( f ,A) is defined
for r ∈ R with:

M[r]( f ,A) =
{

(A( f r))1/r : r 
= 0
exp(A(log f )) : r = 0

(3.2.1)

where f (t) > 0 for t ∈ E , f r ∈ L for r ∈ R and log f ∈ L .
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From Theorem 3.1.1 ([4, p. 75, Theorem 92]) it follows as a special case:

THEOREM 3.2.1. Let −∞ < r � s < ∞ and let us assume that the assumptions
from Definition 3.2.1 are valid. Then

M[r]( f ,A) � M[s]( f ,A). (3.2.2)

We can also obtain Goldman’s inequality for positive linear functionals from (3.1.3)
as a special case (see [2, p. 203]):

(Mr −mr)(M[s]( f ,A))s − (Ms−ms)(M[r]( f ,A))r � Mrmr −Msms (3.2.3)

for 0 < r < s or r < 0 < s , and the inequality is reversed for r < s < 0.
Similarly, for r = 0 and s ∈ R we obtain

(M[s]( f ,A))s log
M
m

− (Ms−ms) log(M[0]( f ,A)) � ms logM−Ms logm. (3.2.4)

When we apply theorems 2.1 and 2.2 to the power means, we obtain the following
results:

THEOREM 3.2.2. Suppose that L and A satisfy the conditions L1,L2 and A1,A2
with A(1) = 1 , on a non-empty set E . Let 0 < m � f (t) � M < ∞ for t ∈ E , f r , f s ∈ L
for r,s ∈ R , r < s and log f ∈ L.

If 0 < r < s or r < 0 < s then:

0 � (M[s]( f ,A))s − (M[r]( f ,A))s

� s
r
(Mr −A( f r))(A( f r)−mr)

Ms−r −ms−r

Mr −mr (3.2.5)

� s
4r

(Mr −mr)(Ms−r −ms−r).

If r < s < 0 then:

0 � (M[s]( f ,A))s − (M[r]( f ,A))s

� s
r
(Mr −A( f r))(A( f r)−mr)

Ms−r −ms−r

Mr −mr (3.2.6)

� s
4r

(Mr −mr)(Ms−r −ms−r).

If s = 0 and r < 0 , then:

0 � log(M[0]( f ,A))− log(M[r]( f ,A))

� −1
r

(Mr −A( f r))(A( f r)−mr)
Mrmr (3.2.7)

� − 1
4r

(Mr −mr)2

Mrmr .
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If r = 0 and s > 0 , then:

0 � (M[s]( f ,A))s − (M[0]( f ,A))s

� (logM−A(log f ))(A(log f )− logm)
s(esM − esm)
logM− logm

(3.2.8)

� s
4
(esM − esm) log

M
m

.

Proof. If we put χ(t) = ts and ψ(t) = tr , we have φ(t) = χ(ψ−1(t)) = ts/r ,
which is continuous, and convex for 0 < r < s and r < 0 < s . Function ψ is strictly
increasing for r > 0, and the conditions of Theorem 2.1 are satisfied, so we can obtain
(3.2.5) by replacing m↔ψ(m) = mr , M ↔ ψ(M) = Mr , φ(t)↔ χ ◦ψ−1(t) = ts/r and
f ↔ ψ ◦ f = f r in (2.1). Function ψ is strictly decreasing for r < 0, so we can obtain
(3.2.5) by replacing M ↔ ψ(m) = mr , m ↔ ψ(M) = Mr , φ(t) ↔ χ ◦ψ−1(t) = ts/r

and f ↔ ψ ◦ f = f r in (2.1).

In case r < s < 0, function ψ(t)= tr is strictly decreasing and φ(t)= χ(ψ−1(t))=
ts/r is concave, so we obtain (3.2.6) by making substitutions M ↔ ψ(m) = mr , m ↔
ψ(M) = Mr , φ(t) ↔−χ ◦ψ−1(t) = −ts/r and f ↔ ψ ◦ f = f r in (2.1).

In case r < 0 and s = 0 we put χ(t) = log t and ψ(t) = tr . Then φ(t) =

χ(ψ−1(t)) =
1
r

log t is continuous and convex, and ψ is strictly decreasing for r < 0,

so the conditions of Theorem 2.1 are satisfied and we can obtain (3.2.7) by making

substitutions M ↔ ψ(m) = mr , m ↔ ψ(M) = Mr , φ(t) ↔ χ ◦ψ−1(t) =
1
r

logt and

f ↔ ψ ◦ f = f r in (2.1).

In case r = 0, s > 0, we put χ(t)= ts and ψ(t)= log t . Then φ(t) = χ(ψ−1(t)) =
est is continuous and convex, and ψ is strictly increasing. The inequalities (3.2.8) are
now obtained by replacing m ↔ ψ(m) = logm , M ↔ ψ(M) = logM , φ(t) ↔ χ ◦
ψ−1(t) = est and f ↔ ψ ◦ f = log f in (2.1). �

THEOREM 3.2.3. Under the same hypothesis as in the previous theorem, if 0 <
r < s or r < 0 < s, then:

0 � Mr −A( f r)
Mr −mr ms +

A( f r)−mr

Mr −mr Ms − (M[s]( f ,A))s

� s
r

Ms−r −ms−r

Mr −mr A([Mr − f r][ f r −mr])

� s
r

Ms−r −ms−r

Mr −mr (Mr −A( f r))(A( f r)−mr) (3.2.9)

� s
4r

(Mr −mr)(Ms−r −ms−r).
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If r < s < 0 , then:

0 � Mr −A( f r)
Mr −mr ms +

A( f r)−mr

Mr −mr Ms − (M[s]( f ,A))s

� s
r

Ms−r −ms−r

Mr −mr A([Mr − f r][ f r −mr])

� s
r

Ms−r −ms−r

Mr −mr (Mr −A( f r))(A( f r)−mr) (3.2.10)

� s
4r

(Mr −mr)(Ms−r −ms−r).

If s = 0 and r < 0 , then:

0 � Mr −A( f r)
Mr −mr logm+

s
r
A( f r)−mr

Mr −mr logM− log(M[0]( f ,A))

� −1
r

A([Mr − f r][ f r −mr])
Mrmr

� −1
r

(Mr −A( f r))(A( f r)−mr)
Mrmr (3.2.11)

� 1
4r

(Mr −mr)
(

1
Mr −

1
mr

)
.

If r = 0 and s > 0 , then:

0 � logM−A(log f )
logM− logm

ms +
A(log f )− logm
logM− logm

Ms − (M[s]( f ,A))s

� s
esM − esm

logM− logm
A([logM− log( f )][log( f )− logm])

� s
esM − esm

logM− logm
(logM−A(log( f ))][A(log( f ))− logm]) (3.2.12)

� s
4
(esM − esm) log

M
m

.

Proof. All the inequalities can be obtained directly from (2.5) by making the same
supstitutions as in the proof of the previous theorem. �

THEOREM 3.2.4. Suppose that L and A satisfy the conditions L1,L2 and A1,A2
with A(1) = 1 , on a non-empty set E . Let f (t) > 0 , 0 < m � f (t) � M < ∞ for t ∈ E ,
f r, f s ∈ L for r,s ∈ R , r < s and log f ∈ L.

If r < 0 < s or r < s < 0 , then:

0 � (M[r]( f ,A))r − (M[s]( f ,A))r

� r
s
(Ms −A( f s))(A( f s)−ms)

Mr−s −mr−s

Ms −ms (3.2.13)

� r
4s

(Ms −ms)(Mr−s −mr−s).
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If 0 < r < s, then:

0 � (M[r]( f ,A))r − (M[s]( f ,A))r

� r
s
(Ms −A( f s))(A( f s)−ms)

Mr−s −mr−s

Ms −ms (3.2.14)

� r
4s

(Ms −ms)(Mr−s −mr−s).

If s = 0 and r < 0 , then:

0 � (M[r]( f ,A))r − (M[0]( f ,A))r

� (logM−A(log f ))(A(log f )− logm)
r(Mr −mr)

logM− logm
(3.2.15)

� r
4
(Mr −mr) log

M
m

.

If r = 0 and s > 0 , then:

0 � log(M[0]( f ,A))− log(M[s]( f ,A))

� −1
s
(Ms −A( f s))(A( f s)−ms)

1
Msms (3.2.16)

� 1
4s

(Ms −ms)
(

1
Ms −

1
ms

)
.

Proof. If we put χ(t)= tr and ψ(t)= ts , we have φ(t) = χ(ψ−1(t))= tr/s , which
is a continuous function, convex for r < 0 < s and r < s < 0. Function ψ is strictly
increasing for s > 0 and the conditions of Theorem 2.1 are satisfied, so we can obtain
(3.2.13) by replacing m ↔ ψ(m) = ms , M ↔ ψ(M) = Ms , φ(t) ↔ χ ◦ψ−1(t) = tr/s

and f ↔ ψ ◦ f = f s in (2.1). If r < s < 0, function ψ(t) = ts is strictly decreasing,
so we obtain (3.2.13) by making substitutions M ↔ ψ(m) = ms , m ↔ ψ(M) = Ms ,
φ(t) ↔ χ ◦ψ−1(t) = tr/s and f ↔ ψ ◦ f = f s in (2.1)

In case 0 < r < s function φ(t) = χ(ψ−1(t)) = tr/s is concave and ψ(t) = ts is
strictly increasing, so we obtain (3.2.14) by making substitutions m ↔ ψ(m) = ms ,
M ↔ ψ(M) = Ms , φ(t) ↔−χ ◦ψ−1(t) = −tr/s and f ↔ ψ ◦ f = f s in (2.1).

In case r < 0 and s = 0 we put χ(t) = tr and ψ(t) = logt . Then φ(t) =
χ(ψ−1(t)) = ert is a continuous, convex function and ψ is strictly increasing, so the
conditions of Theorem 2.1 are satisfied and we can obtain (3.2.15) by making sub-
stitutions m ↔ ψ(m) = logm , M ↔ ψ(M) = logM , φ(t) ↔ χ ◦ψ−1(t) = ert and
f ↔ ψ ◦ f = log f in (2.1).

In case r = 0, s > 0, we put χ(t)= log t and ψ(t)= ts . Then φ(t) = χ(ψ−1(t)) =
1
s

log t is a continuous, concave function and ψ is strictly increasing. The inequalities

(3.2.16) are now obtained by replacing m ↔ ψ(m) = ms , M ↔ ψ(M) = Ms , φ(t) ↔
−χ ◦ψ−1(t) = −1

s
log t and f ↔ ψ ◦ f = f s in (2.1). �
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THEOREM 3.2.5. Under the same hypothesis as in the previous theorem, if r <
s < 0 or r < 0 < s, then:

0 � Ms −A( f s)
Ms −ms mr +

A( f s)−ms

Ms −ms Mr − (M[r]( f ,A))r

� r
s
Mr−s −mr−s

Ms −ms A([Ms − f s][ f s −ms])

� r
s
Mr−s −mr−s

Ms −ms (Ms −A( f s))(A( f s)−ms) (3.2.17)

� r
4s

(Ms −ms)(Mr−s −mr−s).

If 0 < r < s, then:

0 � Ms −A( f s)
Ms −ms mr +

A( f s)−ms

Ms −ms Mr − (M[r]( f ,A))r

� r
s
Mr−s −mr−s

Ms −ms A([Ms − f s][ f s −ms])

� r
s
Mr−s −mr−s

Ms −ms (Ms −A( f s))(A( f s)−ms) (3.2.18)

� r
4s

(Ms −ms)(Mr−s −mr−s).

If s = 0 and r < 0 , then:

0 � logM−A(log f )
logM− logm

mr +
A(log f )− logm
logM− logm

Mr − (M[r]( f ,A))r

� r(Mr −mr)
logM− logm

A([logM− log( f )][log( f )− logm])

� r(Mr −mr)
logM− logm

(logM−A(log f ))(A(log f )− logm) (3.2.19)

� r
4
(Mr −mr) log

M
m

.

If r = 0 and s > 0 , then:

0 � Ms −A( f s)
Ms −ms logm+

A( f s)−ms

Ms −ms logM− log(M[0]( f ,A))

� −1
s

1
Msms A([Ms − ( f s)][( f s)−ms])

� −1
s

1
Msms (M

s −A( f s)][A( f s)−ms]) (3.2.20)

� 1
s
(Ms −ms)

(
1

Ms −
1
ms

)
.

Proof. All the inequalities can be obtained directly from (2.5) by making the same
supstitutions as in the proof of the previous theorem. �
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REMARK 3.2.1. It is easy to see that M[r]( f ,A) = (M[−r]( f−1,A))−1 holds for
every f ∈ L and r ∈ R . Using that result, we can obtain Theorem 3.2.4 from Theorem
3.2.2, and Theorem 3.2.5 from Theorem 3.2.3 by replacing f ↔ f−1 , −r ↔ s and
−s ↔ r .

3.3. The Hölder inequality

THEOREM 3.3.1. [7, p. 113] (Hölder’s inequality for positive functionals) Let L
satisfy conditions L1,L2, and A satisfy conditions A1,A2 on a non-empty set E . Let
p > 1 and q = p/(p−1) . If w, f ,g � 0 on E and w f p,wgq,w fg ∈ L, then we have

A(w fg) � A1/p(wf p)A1/q(wgq) (3.3.1)

In case 0 < p < 1 and A(wgq) > 0 (or p < 0 and A(wf p) > 0 ) the inequality in (3.3.1)
is reversed.

THEOREM 3.3.2. [7, p. 114, Theorem 4.14] Let L and A satisfy conditions
L1,L2, and A1,A2 on a non-empty set E . Let p > 1 and q = p/(p−1) , and w, f ,g � 0
on E with w f p,wgq,w fg ∈ L. If 0 < m � f (t)g−q/p(t) � M for t ∈ E , then

(M−m)A(wf p)+ (mMp−Mmp)A(wgq) � (Mp −mp)A(w fg). (3.3.2)

If p < 0 , then (3.3.2) also holds provided either A(wf p) > 0 or A(wgq) > 0 . If 0 <
p < 1 , then the reversed inequality in (3.3.2) holds provided either A(wf p) > 0 or
A(wgq) > 0 .

The following results are converses of Hölder’s inequality:

THEOREM 3.3.3. Let L satisfy conditions L1,L2, and A satisfy conditions A1,A2
on a non-empty set E . Let p > 1 and q = p/(p− 1) . If w, f ,g � 0 on E and
w f p,wgq,w fg ∈ L, A(wgq) > 0 , then we have

0 � A(wf p)Ap/q(wgq)−Ap(w fg)

� (MA(wgq)−A(w fg))(A(w fg)−mA(wgq))
p(Mp−1 −mp−1)

M−m
Ap−2(wgq)

� p
4
(M−m)(Mp−1−mp−1)Ap(wgq) (3.3.3)

where m � f (t)g−q/p(t) � M for t ∈ E . If A(w fg) > 0 , then the inequalities (3.3.3)
also hold for p < 0 . In case 0 < p < 1 the inequalities in (3.3.3) are reversed.

Proof. Function φ(t) = t p is continuous, and convex for p > 1 and p < 0. We

define functional B( f ) =
A(wf )
A(w)

for w ∈ L such that w � 0 and A(w) > 0. B(1) =

A(w)
A(w)

= 1, so B satisfies the conditions of Theorem 2.1. Now we can obtain the in-

equalities (3.3.3) from (2.1) by replacing A ↔ B , w ↔ wgq and f ↔ f g−q/p .
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For 0 < p < 1, φ(t) = t p is concave, so we obtain the reversed inequalities in the
same way as above. �

THEOREM 3.3.4. With the assumptions in Theorem 3.3.3, if p > 1 or p < 0 the
following inequalities are valid

0 � MA(wgq)−A(w fg)
M−m

mp +
A(w fg)−mA(wgq)

M−m
Mp−A(wf p)

� p
Mp−1−mp−1

M−m
A(wgq[M− f g−q/p][ f g−q/p−m])

� p
A(wgq)

Mp−1−mp−1

M−m
(MA(wgq)−A(w fg))(A(w fg)−mA(wgq))

� p
4
(M−m)(Mp−1−mp−1)A(wgq) (3.3.4)

where m � f (t)g−q/p(t) � M for t ∈ E . If 0 < p < 1 , the inequalities in (3.3.4) are
reversed.

Proof. Function φ(t) = t p is continuous, and convex for p > 1 and p < 0. We

define functional B( f ) =
A(wf )
A(w)

for w ∈ L such that w � 0 and A(w) > 0. B(1) =

A(w)
A(w)

= 1, so B satisfies the conditions of Theorem 2.1. We can obtain the inequalities

(3.3.4) from (2.5) by replacing A ↔ B , w ↔ wgq and f ↔ f g−q/p .
For 0 < p < 1, φ(t) = t p is concave, so we obtain the reversed inequalities in the

same way as above. �

THEOREM 3.3.5. Let L satisfy conditions L1,L2, and A satisfy conditions A1,A2
on a non-empty set E . Let 0 < p < 1 and q = p/(p− 1) . If f ,g � 0 on E and
f p,gq, f g ∈ L, A(gq) > 0 , then we have

0 � A( f g)−A1/p( f p)A1/q(gq)

� 1
pA(gq)

(MA(gq)−A( f p))(A( f p)−mA(gq))
M−1/q−m−1/q

M−m

� 1
4p

(M−m)(M−1/q−m−1/q)A(gq) (3.3.5)

where m � f p(t)g−q(t) � M for t ∈ E . If A( f p) > 0 , inequalities (3.3.5) hold for
p < 0 . In case p > 1 the inequalities in (3.3.5) are reversed.

Proof. We define functional B( f ) =
A(wf )
A(w)

for w ∈ L such that w � 0 and

A(w) > 0. B(1) =
A(w)
A(w)

= 1, so B satisfies the conditions of Theorem 2.1. Func-
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tion φ(t) = t1/p is continuous, and for p < 1 convex, so we can obtain the inequalities

(3.3.5) from (2.1) by replacing A ↔ B , w ↔ gq

A(gq)
and f ↔ f p

gq .

For p > 1, the function φ(t) = t1/p is concave, so we obtain the reversed inequal-
ities in the same way as above. �

THEOREM 3.3.6. With the assumptions in Theorem 3.3.5, if p < 1 the following
inequalities are valid

0 � MA(gq)−A( f p)
M−m

m1/p +
A( f p)−mA(gq)

M−m
M1/p−A( f g)

� 1
p

M−1/q−m−1/q

M−m
A(g−q[Mgq − f p][ f p −mgq])

� 1
pA(gq)

M−1/q−m−1/q

M−m
(MA(gq)−A( f p))(A( f p)−mA(gq))

� 1
4p

(M−m)(M−1/q−m−1/q)A(gq) (3.3.6)

where m � f p(t)g−q(t)� M for t ∈E . If p > 1 , the inequalities in (3.3.6) are reversed.

Proof. We define functional B( f ) =
A(wf )
A(w)

for w ∈ L such that w � 0 and

A(w) > 0. B(1) =
A(w)
A(w)

= 1, so B satisfies the conditions of Theorem 2.1. Func-

tion φ(t) = t1/p is continuous, and convex for p < 1, so we can obtain the inequalities

(3.3.6) from (2.5) by replacing A ↔ B , w ↔ gq

A(gq)
and f ↔ f p

gp .

For p > 1, φ(t) = t1/p is concave, so we obtain the reversed inequalities by ap-
plying (3.3.6) to −φ . �

THEOREM 3.3.7. Let L satisfy conditions L1,L2, and A satisfy conditions A1,A2
on a non-empty set E . Let p > 1 or p < 0 and q = p/(p− 1) . If f ,g � 0 on E and
gq, f g ∈ L, A(gq) > 0 , then we have

0 � A( f p)Ap/q(gq)−Ap( f g)

� p(MA(gq)−A( f g))(A( f g)−mA(gq))
Mp−1 −mp−1

M−m
Ap−2(gq)

� p
4
(M−m)(Mp−1−mp−1)Ap(gq) (3.3.7)

where m � f (t)g1−q(t) � M for t ∈ E . In case 0 < p < 1 the inequalities in (3.3.7)
are reversed.
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Proof. Function φ(t) = t p is continuous, and convex for p > 1 and p < 0. We

define functional B( f ) =
A(wf )
A(w)

for w ∈ L such that w � 0 and A(w) > 0. B(1) =

A(w)
A(w)

= 1, so B satisfies the conditions of Theorem 2.1. Now we can obtain the in-

equalities (3.3.7) from (2.1) by replacing A ↔ B , w ↔ gq and f ↔ f g1−q .
For 0 < p < 1, the function φ(t) = t p is concave, so we obtain the reversed in-

equalities in the same way as above. �

THEOREM 3.3.8. With the assumptions in Theorem 3.3.7, if p > 1 or p < 0 the
following inequalities are valid

0 � MA(gq)−A( f g)
M−m

mp +
A( f g)−mA(gq)

M−m
Mp−A( f p)

� p
Mp−1−mp−1

M−m
A(g−q[Mgq − f g][ f g−mgq])

� p
A(gq)

Mp−1−mp−1

M−m
(MA(gq)−A( f g))(A( f g)−mA(gq))

� p
4
(M−m)(Mp−1−mp−1)A(gq) (3.3.8)

where m � f (t)g1−q(t) � M for t ∈ E . If 0 < p < 1 , the inequalities in (3.3.8) are
reversed.

Proof. We define functional B( f ) =
A(wf )
A(w)

for w ∈ L such that w � 0 and

A(w) > 0. B(1) =
A(w)
A(w)

= 1, so B satisfies the conditions of Theorem 2.1. Func-

tion φ(t) = t p is continuous, and convex for p > 1 and p < 0, so we can obtain the
inequalities (3.3.8) from (2.5) by replacing A ↔ B , w ↔ gq and f ↔ f g1−q .

For 0 < p < 1, φ(t) = t p is concave, so we obtain the reversed inequalities by
applying (3.3.8) to −φ . �

REMARK 3.3.1.

(i) Under the assumptions of theorem 3.3.6, for p < 1 from the first inequality in
(3.3.6) we can obtain the inequality

(M−m)A( f g) � A( f p)(M1/p−m1/p)−A(gq)(mM1/p−Mm1/p). (3.3.9)

If p > 1, the inequality (3.3.9) is reversed.

(ii) Analogously, from theorem 3.3.8 for p > 1 or p < 0, we can obtain the following
inequality

(M−m)A( f p)+A(gq)(mMp −Mmp) � A( f g)(Mp −mp). (3.3.10)

If 0 < p < 1, the inequality (3.3.10) is reversed.

This inequality can also be obtained from (3.3.2) for w = 1.
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3.4. Hadamard’s inequality and generalizations

THEOREM 3.4.1. ( [6]) (Hermite−Hadamard′s inequality) Let −∞ < a < b <
∞ and f : [a,b] → R . If f is convex, then

f
(a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2
(3.4.1)

If f is concave, the inequalities in (3.4.1) are reversed.

The following two results are obtained by applying Theorem 2.1 and Theorem 2.2
to Hamadard’s inequality.

THEOREM 3.4.2. Let a < b and let us assume that f is a continuous convex func-
tion on an open interval of real numbers I ⊃ [a,b] . Then

0 � 1
b−a

∫ b

a
f (t)dt− f

(a+b
2

)

� 1
4
(b−a)( f ′−(b)− f ′+(a)). (3.4.2)

If f is concave, the inequalities in (3.4.2) are reversed.

Proof. Inequalities (3.4.2) are obtained from (2.1) by replacing

A( f ) =
1

b−a

∫ b

a
f (t)dt, f (t) ↔ t and φ ↔ f .

If f is concave, the reversed inequalities follow from the convexity of − f . �

THEOREM 3.4.3. Let a < b and let us assume that f is a continuous convex func-
tion on an open interval of real numbers I ⊃ [a,b] . Then

0 � f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (t)dt

� 1
6
(b−a)( f ′−(b)− f ′+(a)). (3.4.3)

If f is concave, the inequalities in (3.4.3) are reversed.

Proof. Inequalities (3.4.3) are obtained from (2.5) by replacing

A( f ) =
1

b−a

∫ b

a
f (t)dt, f (t) ↔ t and φ ↔ f .

If f is concave, the reversed inequalities follow from the convexity of − f . �
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REMARK 3.4.1. Let a < b and let us assume that f is continuous convex function
on an open interval of real numbers I ⊃ [a,b] . By combining the above results, we
obtain

f (a)+ f (b)
2

− 1
6
(b−a)( f ′−(b)− f ′+(a)) � 1

b−a

∫ b
a f (t)dt

� f
(a+b

2

)
+

1
4
(b−a)( f ′−(b)− f ′+(a)).

(3.4.4)

If f is concave, the inequalities in (3.4.4) are reversed.

The following result is a generalization of Hadamard’s inequality for positive lin-
ear functionals given in [8]:

THEOREM 3.4.4. ( [8]) Let φ be a continuous convex function on an interval
I ⊃ [m,M] , where −∞ < m < M < ∞ . Suppose that f : E → R satisfies m � f (t) � M
for every t ∈ E , f ∈ L and φ( f ) ∈ L. Let A : L → R be a positive linear functional
with A(1) = 1 , and let p = p f , q = q f be nonnegative real numbers (with p+q > 0 )
for which

A( f ) =
pm+qM

p+q
. (3.4.5)

Then

φ
( pm+qM

p+q

)
� A(φ( f )) � pφ(m)+qφ(M)

p+q
. (3.4.6)

Applying Theorem 2.1 and Theorem 2.2 to the previous theorem, we obtain:

THEOREM 3.4.5. Let φ be a continuous convex function on an open interval of
real numbers I ⊃ [m,M] , where −∞ < m < M < ∞ . Suppose that f : E → R satisfies
m � f (t) � M for every t ∈ E , f ∈ L and φ( f ) ∈ L. Let A : L→R be a positive linear
functional with A(1) = 1 , and let p = p f , q = q f be nonnegative real numbers (with
p+q > 0 ) for which

A( f ) =
pm+qM

p+q
. (3.4.7)

Then

0 � A(φ( f ))−φ
( pm+qM

p+q

)

� pq
(p+q)2 (M−m)(φ ′

−(M)−φ ′
+(m)) (3.4.8)

� 1
4
(M−m)(φ ′

−(M)−φ ′
+(m)).

If φ is concave, the inequalities in (3.4.8) are reversed.

Proof. We first need to observe that since m � A( f ) � M , there always exist p � 0
and q � 0, p+q > 0 satisfying (3.4.7).

Inequalities (3.4.8) are obtained from (2.1) by replacing A( f ) ↔ pm+qM
p+q

. If φ

is concave, the reversed inequalities follow from the convexity of −φ . �
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THEOREM 3.4.6. Under the same assumptions as in the previous theorem, we
have

0 � pφ(m)+qφ(M)
p+q

−A(φ( f ))

� φ ′−(M)−φ ′
+(m)

M−m
A([M− f ][ f −m])

� pq
(p+q)2 (M−m)(φ ′

−(M)−φ ′
+(m)) (3.4.9)

� 1
4
(M−m)(φ ′

−(M)−φ ′
+(m)).

If φ is concave, the inequalities in (3.4.9) are reversed.

Proof. Inequalities (3.4.9) are obtained from (2.5) by replacing A( f )↔ pm+qM
p+q

.

If φ is concave, the reversed inequalities follow from the convexity of −φ . �

REMARK 3.4.2. Under the same assumptions as in last two theorems, we have

pφ(m)+qφ(M)
p+q

− 1
4
(M−m)(φ ′−(M)−φ ′

+(m)) � A(φ( f ))

� φ
( pm+qM

p+q

)
+

1
4
(M−m)(φ ′−(M)−φ ′

+(m)).
(3.4.10)

If φ is concave, the inequalities in (3.4.10) are reversed.

3.5. The inequalities of Giaccardi and Petrović

THEOREM 3.5.1. (Giaccardi, [10]) Let p be a nonnegative n-tuple and x be a
real n-tuple such that

(xi − x0)(
n

∑
j=1

p jx j − xi) � 0, i = 1, ...,n; (3.5.1)

x0,
n

∑
i=1

pixi ∈ [a,b]

n

∑
k=1

pkxk 
= x0.

If f : [a,b] → R is a convex function, then

n

∑
i=1

pi f (xi) � A f
( n

∑
i=1

pixi

)
+B

( n

∑
i=1

pi−1
)

f (x0) (3.5.2)

where

A =
∑n

i=1 pi(xi − x0)
∑n

i=1 pixi − x0
, B =

∑n
i=1 pixi

∑n
i=1 pixi − x0

. (3.5.3)
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The succeeding results is a converse of Giaccardi’s inequality obtained directly
from Theorem 2.2:

THEOREM 3.5.2. Let [a,b] be a closed interval and let I ⊃ [a,b] be an open
interval of real numbers. Let p be a nonnegative n-tuple and x be a real n-tuple such
that

(xi − x0)(
n

∑
j=1

p jx j − xi) � 0, i = 1, ...,n;
n

∑
k=1

pkxk 
= x0; x0,
n

∑
i=1

pixi ∈ [a,b].

(3.5.4)
If f : I → R is a continuous convex function, then

0 � A f
( n

∑
i=1

pixi

)
+B

( n

∑
i=1

pi −1
)

f (x0)−
n

∑
i=1

pi f (xi)

� f ′−(M)− f ′+(m)
M−m

n

∑
i=1

pi(M− xi)(xi −m)

�
(
M− ∑n

i=1 pixi

∑n
i=1 pi

)(∑n
i=1 pixi

∑n
i=1 pi

−m
) f ′−(M)− f ′+(m)

M−m

n

∑
i=1

pi

� 1
4
(M−m)( f ′−(M)− f ′+(m))

n

∑
i=1

pi (3.5.5)

where m = min{x0,∑n
i=1 pixi} , M = max{x0,∑n

i=1 pixi} , and A, B are defined in (3.5.3).
If f is concave, the inequalities in (3.5.5) are reversed.

Proof. Let f be a convex function. The inequalities (3.5.5) are obtained from

(2.5) by substituting A(x) =
∑n

i=1 pixi

∑n
i=1 pi

and φ ↔ f . If f is concave, then the reversed

inequalities follow from (3.5.5) by substituting f ↔− f which is convex. �

The well-known Petrović’s inequality [9] for convex function f : [0,a] → R is
given by

n

∑
i=1

f (xi) � f
( n

∑
i=1

xi

)
+(n−1) f (0) (3.5.6)

where xi, i = 1, ...,n are nonnegative numbers such that x1, ...,xn,∑n
i=1 xi ∈ [0,a] .

The following result follows directly by applying Theorem 2.2 to Petrović’s in-
equality, but can also be obtained as a special case of Theorem 3.5.2 for p1 = ... =
pn = 1 and x0 = 0.

THEOREM 3.5.3. Let f be a continuous convex function on an open interval of
real numbers I ⊃ [0,a] If x1, ...,xn ∈ [0,a] are real numbers such that ∑n

i=1 xi ∈ 〈0,a] ,
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then

0 � f
( n

∑
i=1

xi

)
+(n−1) f (0)−

n

∑
i=1

f (xi)

� f ′−(∑n
i=1 xi)− f ′+(0)
∑n

i=1 xi

n

∑
i=1

xi(
n

∑
j=1

x j − xi)

� ( f ′−(
n

∑
i=1

xi)− f ′+(0))(
n

∑
i=1

xi− 1
n

n

∑
i=1

xi) (3.5.7)

� n
4
( f ′−(

n

∑
i=1

xi)− f ′+(0))
n

∑
i=1

xi

If f is concave, the inequalities in (3.5.7) are reversed.

Proof. Let f be a convex function. The inequalities (3.5.7) are obtained from

(2.5) by substituting A(x) =
1
n

∑n
i=1 xi and φ ↔ f . If f is concave, then the reversed

inequalities follow from (3.5.7) by substituting f ↔− f which is convex. �

RE F ER EN C ES
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