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DISCRETE BERNSTEIN INEQUALITIES

FOR POLYNOMIALS

RICHARD FOURNIER

(Communicated by T. Erdélyi)

Abstract. We study discrete versions of some classical inequalities of Berstein for algebraic and
trigonometric polynomials.

1. Introduction and statement of the results

Let Pn denote the class of polynomials p(z) = ∑n
k=0 akzk of degree at most

n with complex coefficients and Tn the class of trigonometric polynomials t(θ ) =
∑n

k=−n akeikθ . According to the famous inequalities of Bernstein and Markov we have
for any p ∈ Pn

|p′|D � n|p|D (1)

and
|p′|[−1,1] � n2|p|[−1,1]. (2)

Here |q|D (resp. |q|[−1,1] ) means the maximum modulus of the analytic function q over
the unit disc D = {z | |z|< 1} (resp. the unit real interval [−1,1]). We refer the reader to
the book of Rahman and Schmeisser [10] concerning the ubiquity of these inequalities
in modern approximation theory. The following discrete versions of (1) and (2) are also
available:

|p′|D � n max
1� j�2n

|p(ei jπ/n)| (3)

|p′|[−1,1] � n2 max
0� j�n

∣∣p(
cos( jπ/n)

)∣∣. (4)

The inequality (4) has been obtained by Duffin and Schaeffer [5] in 1947. Sur-
prisingly, the inequality (3) was only obtained in 1985 by Frappier, Rahman and Rus-
cheweyh [8]. All of the above inequalities are sharp and the extremal polynomials are
known (see [4] concerning in this respect the statement (3)); the number 2n of polyno-
mial values appearing in (3) cannot be replaced, as it is explained in [8], by a smaller
one and any closed subset E of [−1,1] such that

|p′|[−1,1] � n2 max
ζ∈E

|p(ζ )|, p ∈ Pn,
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must contain the point set {cos( jπ/n) | 0 � j � n} . Dryanov [2] has more recently
obtained a refinement of (4).

There are of course other types of Bernstein–Markov inequalities. We mention for
example

|t ′|[0,2π ] � n|t|[0,2π ], t ∈ Tn (5)

or else
|
√

1− x2p′(x)| � n|p|[−1,1], p ∈ Pn, −1 � x � 1. (6)

Both of (5) and (6) are due to Bernstein; concerning their discrete counterparts, we
make the two following observations:

OBSERVATION 1. Given two positive integers n and N and a set of distinct nodes
{θ j}N

j=0 ⊂ [0,2π ] , there exists t ∈ Tn such that |t ′|[0,2π ] > nmax0� j�N |t(θ j)| . It suf-

fices to consider a polynomial of the type t(θ ) = Aeinθ +Be−inθ with properly chosen
complex coefficients A and B .

OBSERVATION 2. Given a positive integer n and a set {x j}n
j=0 ⊂ [−1,1] of dis-

tinct nodes, there exists p∈Pn such that max−1�x�1 |
√

1−x2p′(x)|> nmax0� j�n |p(x j)| .
About the second observation, we assume first that x j = cos(θ j) with 0 � θ0 <

θ1 · · · < θn � π and {cos(θ j)n
j=0 �= {cos( jπ/n)}n

j=0 . By the Lagrange interpolation
formula we have, for any p ∈ Pn ,

p′(z) =
n

∑
j=0

d
dz

w(z)
(z− cosθ j)w′(cosθ j)

p(cosθ j) (7)

where w(z) = ∏n
j=0(z− cosθ j) . We claim that

max
x∈[−1,1]

n

∑
j=0

∣∣∣∣ d
dx

w(x)
(x− cosθ j)w′(cosθ j)

∣∣∣∣ > n2. (8)

If this was not the case, we would obtain from (7)

max
−1�x�1

|p′(x)| � n2 max
0� j�n

|p(cosθ j)|, p ∈ Pn,

and this is impossible, if {θ j}n
j=0 �= { jπ/n}n

j=0 , by the unicity result of Duffin and
Schaeffer [5] (see also [10, p. 574] for a detailed proof). We also claim the existence of
θ̃ ∈ [0,2π) with

n

∑
j=0

∣∣∣∣ d
dθ

w(cosθ )
(cosθ − cosθ j)w′(cosθ j)

∣∣∣∣
θ=θ̃

> n (9)

because otherwise

√
1− x2

∣∣∣∣∣ d
dx

n

∑
j=0

± w(x)
(x− cosθ j)w′(cosθ j)

∣∣∣∣∣ � n, x ∈ [−1,1],
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for any choice of the ± sign structure and by the classical result of Bernstein [10, p.
567] ∣∣∣∣∣ d

dx

n

∑
j=0

± w(x)
(x− cosθ j)w′(cosθ j)

∣∣∣∣∣ � n2, x ∈ [−1,1],

which of course contradicts (8). We now consider a polynomial p defined as

p(x) =
n

∑
j=0

± w(x)
(x− cosθ j)w′(cosθ j)

where the sign structure ± is to be determined such that

sin(θ̃ )p′
(
cos(θ̃ )

)
= − d

dθ
p(cos(θ ))

∣∣
θ=θ̃

=
n

∑
j=0

∓ d
dθ

w(cos(θ ))
(cos(θ )− cos(θ j))w′(cos(θ j))

∣∣∣∣
θ=θ̃

=
n

∑
j=0

∣∣∣∣ d
dθ

w(cos(θ ))
(cos(θ )− cos(θ j))w′(cos(θ j))

∣∣∣∣
θ=θ̃

> n = n max
0� j�n

|p(cos(θ j))|.

This settles our claim except in the situation where {cos(θ j}n
j=0 = {cos( jπ/n)}n

j=0 .
In that case we have [3]

max
p∈Pn

|sin(θ )p′(cosθ )|
max

0� j�n
|p(cos jπ/n)| =

1
2

n

∑
j=0

∣∣∣∣ d
dθ

dn( j;θ )
∣∣∣∣

with

dn( j,θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1) j

2n
sin(nθ )sin(θ )

cos( jπ/n)− cos(θ )
if j = 0,n

(−1) j

n
sin(nθ )sin(θ )

cos( jπ/n)− cos(θ )
if 0 < j < n

and there is numerical evidence that

max
θ

max
P∈Pn

|sin(θ )p′(cosθ )|
max

0� j�n
|p(cos jπ/n)

� n ln(n), n → ∞.

Our aim in this note is to obtain, amongst other results, discrete versions of (5) and
(6). We shall prove:

THEOREM 1. For any p ∈ Pn , θ real,

|sin(θ )p′(cosθ )| � n max
1� j�2n

∣∣∣∣p
(

cos

(
θ +

(2 j−1)π
2n

))∣∣∣∣ .
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Given a set of distinct nodes {θ j}n
j=0 ⊂ [0,π ] , let us define for p ∈ Pn

|p|n = max
0� j�n

∣∣∣∣ p(eiθ j )+ p(e−iθ j)
2

∣∣∣∣ .
It has recently been obtained [7] that

max
p∈Pn

|p′|D
|p|n = O

(
n ln(n)

)
, n → ∞,

in the case of nodes {θ j}n
j=0 = { jπ/n}n

j=0 . This of course can be seen as a discrete
version of (1). Our next result has a similar flavor. We define for p ∈ Pn ,

‖p‖n = max
0� j�n

∣∣p(cos(θ j))
∣∣ .

This is a norm over Pn (as well as | · |n ) and we shall prove :

THEOREM 2. There exist distinct nodes {θ j}n
j=0 ⊂ [0,π ] such that

max
p∈Pn
θ real

|sin(θ )p′(cosθ )|
‖p‖n

= O
(
n ln(n)

)
, n → ∞.

It is a well-known result due to De Bruijn [1] and perhaps others that for p ∈ Pn ,
z ∈ D and |ζ | = 1, ∣∣∣∣p(z)+

ζ −1
n

zp′(z)
∣∣∣∣ � |p|D.

We shall also obtain a discrete version of this inequality :

THEOREM 3. Let {r j}n
j=1 be the n distinct n-roots of unity. Then for p, ζ , as

above and an arbitrary complex number z,∣∣∣∣p(z)+
ζ −1

n
zp′(z)

∣∣∣∣ � max
1� j�n

|p(r jζ 1/nz)|.

2. Proof of Theorem 1

We use the notation

n

∑
j=0

′′
α j :=

α0

2
+

n−1

∑
j=1

α j +
αn

2
.

It has been obtained in [8] that for any q ∈ PN , θ real

q(eiθ )−q(e−iθ)
eiθ − e−iθ =

N

∑
j=0

′′(−1) j (−1) j − cos(Nθ )
N(cos( jπ/N)− cos(θ ))

q(ei jπ/N)+q(e−i jπ/N)
2

. (10)
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A simple computation leads to

q(1)− 2
N

q′(1) =
N

∑
j=1
j odd

′′ 1
N2 sin( jπ/2N)

(
q(ei jπ/N)+q(e−i jπ/N)

)

and more generally for any complex number z ,

q(z)− 2
N

zq′(z) =
N

∑
j=1
j odd

′′ 1
N2 sin( jπ/2N)

(
q(ei jπ/Nz)+q(e−i jπ/Nz)

)
. (11)

Given p ∈ Pn , we define q ∈ P2n by q(z) ≡ znp
(
(z + 1/z)/2

)
and apply (10)

with N = 2n . This yields

sin(θ )p′(cosθ ) =
1
n

2n

∑
k=1

(−1)k p(cos(θ +(2k−1)π/2n))
(2sin((2k−1)π/4n))2 (12)

and choosing p as the n th Chebyshev polynomial we see that

2n

∑
k=1

1/
[
2sin((2k−1)π/(4n))

]2 = n2.

We therefore obtain, 0 � θ � 2π ,

|sin(θ )p′(cosθ )| � n max
1�k�2n

∣∣∣∣p
(

cos(θ +
(2k−1)π

2n

)∣∣∣∣ (13)

and it is easily seen from (12) that equality shall hold for some real θ in (13) if and
only if for all 1 � j � 2n ,

p

(
cos

(
θ +

(2 j−1)π
2n

))
= (−1) j max

1�k�2n

∣∣∣∣p
(

cos

(
θ +

(2k−1)π
2n

))∣∣∣∣.
Since the above already holds for any multiple of the n th Chebyshev polynomial, it is
clear that equality shall hold in (13) only for such polynomials.

Given a trigonometric polynomial t ∈ Tn , we may apply (11) to the polynomial
q∈ P2n defined by q(eiθ ) = einθ t(θ ) and obtain, as a corollary of our argument above

|t ′(θ )| � n max
1�k�2n

∣∣∣∣t
(

θ +
(2k−1)π

2n

)∣∣∣∣, 0 � θ < 2n, (14)

where equality holds, for a given θ , for trigonometric polynomials of the type t(ϕ) ≡
Aeinϕ +Be−inϕ .

The knowledgeable reader of course noticed that the inequalities (13) and (14) are
also direct consequences of the classical Marcel Riesz interpolation for trigonometric
polynomials [11]. This is not surprising since our formula (10) contains the Riesz
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formula; the later is as a matter of fact equivalent, for each even integer n , to the
identity

n

∑
k=0

n−2k
n

zk =
1
n2

n

∑
j=1

λ j,n

1− ζ ,z
+o(zn) (15)

where λ j,n = csc2
(
(2 j−1)π/2n

)
and ζ j = ei(2 j−1)π/n while our formula (10) implies

that (15) holds for any positive integer. It follows in particular that for any complex
number z and any p ∈ Pn ,∣∣∣∣zp′(z)− n

2
p(z)

∣∣∣∣ � n
2

max
1� j�n

|p(ζ jz)|,

which is of course another discrete improvement of the Bernstein inequality (1).
We shall end this section with an “aesthetical” remark. There is something unsat-

isfactory when comparing (3) on (4) with the results we have so far obtained since these
results do not display a uniform estimate for the derivative of a polynomial. We remark
that (3) can be used to provide such an estimate. Let q ∈ Pn and p ∈ P2n defined by
p(z) ≡ znq

(
(z+1/z)/2

)
; it follows (3) that

|p′|D � 2n max
1� j�4n

|p(ei jπ/n)|

or equivalently, for any real θ ,

|nq(cosθ )± i sin(θ )q′(cosθ )| � 2n max
1�k�2n

∣∣∣∣q
(

cos
kπ
2n

)∣∣∣∣.
In particular

|sin(θ )q′(cosθ )|[0,2π ] � 2n max
1�k�2n

∣∣∣∣q
(

cos
kπ
2n

)∣∣∣∣
but equality shall hold if and only if q ≡ 0!

3. Proof of Theorem 2

According to the Lagrange interpolation formula, we have for any p ∈ Pn and
any collection {θ j}n

j=0 of distinct nodes in [0,π ]

p(cosθ ) =
n

∑
j=0

Lj(cosθ )p(cosθ j) (16)

where, together with w(z) = ∏n
j=0(z− cosθ j) , we set

Lj(z) =
w(z)

(z− cosθ j)w′(cosθ j)
.

It is an old result due to Erdös ([13, p. 109]) that nodes {θ j}n
j=0 can be chosen

such that for all real θ ,
n

∑
j=0

|Lj(cosθ )| � M ln(n)
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for some constant M > 2
π . For an arbitrary choice of the ± sign structure, t(θ ) :=

∑n
j=0±Lj(cosθ ) is a trigonometric polynomial in Tn for which |t|[0,2π ] � M ln(n) and

by the Bernstein inequality (5) we obtain

|t ′(θ )| =
∣∣∣∣ d
dθ

n

∑
j=0

±Lj(cosθ )
∣∣∣∣ � Mn ln(n)

and ∑n
j=0 |d/dθLj(cosθ )| � Mn ln(n) . The conclusion follows from (16). There is

computer evidence that the order of growth O(n lnn) is sharp and {θ j}n
j=0 = { jπ/n}n

j=0
is a set of extremal nodes.

4. Proof of Theorem 3

After the work of Ruscheweyh [12, chapter 4] we may interpret the inequality of
De Bruinj as meaning that the polynomial

bn(z) :=
n

∑
k=0

(
1+

(
ζ −1

n

)
k

)
zk

is bound-preserving over Pn ; that is to say

|bn � p|D � |p|D, p ∈ Pn

where � stands for the Hadamard product of the polynomials bn and p . Any such
bound-preserving polynomial admits a representation

bn(z) = F(z)+o(zn)

where F is a function analytic in D with real part greater than half there. Further,
because the leading coefficient of bn equals ζ which has modulus 1, we obtain [9,
chapter 7]

bn(z) =
n

∑
j=1

� j

1− ζ 1/nr jz
+o(zn), |z| < 1 (17)

where ζ 1/n is an arbitrary n th root of ζ and � j � 0. It follows from (17) that for any
p ∈ Pn

p(z)+
ζ −1

n
zp′(z) =

n

∑
j=1

� j p(ζ 1/nr jz)

and this last identity must extend to all complex numbers z and we therefore obtain∣∣∣∣p(z)+
ζ −1

n
zp′(z)

∣∣∣∣ � max
1� j�n

|p(ζ 1/nr jz)|. (18)

A discussion of equality cases in (18) shall be possible once an explicit represen-
tation of the coefficients � j becomes available. We have to solve the linear system

n

∑
j=1

rk
j� j =

(
1+

ζ −1
n

k

)
ζ

k/n
, k = 0,1, . . . ,n−1.
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This clearly involves the inverse of the Vandermonde matrix

(rk
j)0�k�n−1, 1� j�n.

We shall state the result (details may be found in [6]) without proof when ζ �= 1:

� j =
−|1− ζ |2

n2

r jζ 1/n

(1− r jζ 1/n)2
, 1 � j � n.

It is in particular clear that each � j is strictly positive and in that case equality shall hold
in (18) for a given z if and only if p(ζ 1/nr jz) is constant for 1 � j � n . This implies
of course that p(Z) ≡ AZn +B for some complex constants A , B . The case ζ = −1 is
of special interest since it leads again to the Marcel Riesz interpolation formula while
the case ζ = 1 is of course degenerated, every p ∈ Pn being in that case extremal!

RE F ER EN C ES

[1] N. G. DE BRUIJN, Inequalities concerning polynomials in the complex domain, Indigationes Mathe-
maticae 9 (1947), 591–598.

[2] D. DRYANOV, A refinement of an inequality of R. J. Duffin and A. C. Schaeffer, in Advances in con-
structive approximation: Vanderbilt 2003, Nashboro Press, Brentwood, 2004, 165–176.

[3] D. DRYANOV, R. FOURNIER, AND ST. RUSCHEWEYH, Some extensions of the Markov inequality for
polynomials, Rocky Mountain J. Math. 37 (2007), 1155–1165.

[4] D. DRYANOV AND R. FOURNIER, On a discrete variant of Bernstein’s polynomial inequality, Anal-
ysis (Munich) 25 (2005), 73–77.

[5] R. J. DUFFIN AND A. C. SCHAEFFER, A refinement of an inequality of the brothers Markov, Trans.
Amer. Math. Soc. 50 (1941), 517–528.

[6] R. FOURNIER, Case of equality for a class of bound-preserving operators of Pn , Comput. Methods
Funct. Theory 4 (2004), 183–188.

[7] R. FOURNIER, ST. RUSCHEWEYH, AND L. SALINAS, On a discrete norm for polynomials, to appear
in Journal of Mathematical Analysis and Applications,(2012).

[8] C. FRAPPIER, Q. I. RAHMAN, AND ST. RUSCHEWEYH, New inequalities for polynomials, Trans.
Amer. Math. Soc. 288 (1985), 69–99.

[9] D. J. HALLENBECK AND T. H. MACGREGOR, Linear Problems and Convexity Techniques in Geo-
metric Function Theory, Pitman, Boston, 1984.

[10] Q. I. RAHMAN AND G. SCHMEISSER, Analytic Theory of Polynomials, Oxford University Press,
Oxford, 2002.

[11] M. RIESZ, Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome,
Jahresber. Deutsch. Math. Ver. 23 (1914), 354–368.

[12] ST. RUSCHEWEYH, Convolutions in Geometric Function Theory, Les Presses de l’Université de
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