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Abstract. In this paper we give a new and direct proof of local Lq estimates for the non-
homogeneous p(x) -Laplacian elliptic equation under some proper conditions on p(x) > 1 . We
prove that

|f|p(x) ∈ Lq
loc =⇒ |∇u|p(x) ∈ Lq

loc for any q � 1

for weak solutions of

div
(
|∇u|p(x)−2∇u

)
= div

(
|f|p(x)−2f

)
in Ω.

1. Introduction

In this paper we discuss the non-homogeneous p(x)-Laplacian elliptic equation of
the following form

div
(
|∇u|p(x)−2∇u

)
= div

(
|f|p(x)−2f

)
in Ω, (1.1)

where p ∈W 1,s(Ω) for some s > n satisfies

1 < p1 = inf
Ω

p(x) � p(x) � sup
Ω

p(x) = p2 < ∞. (1.2)

We denote by Lp(x)(Ω) the variable exponent Lebesgue-Sobolev spaces

Lp(x)(Ω) =
{

g : Ω → R | g is measurable and
∫

Ω
|g|p(x) dx < ∞

}
(1.3)

with the Luxemburg type norm

‖g‖Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣ gλ
∣∣∣p(x)

dx � 1

}
. (1.4)

Furthermore, we define

W 1,p(x)(Ω) =
{

g ∈ Lp(x)(Ω) : |∇g| ∈ Lp(x)(Ω)
}

(1.5)
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with the norm
‖g‖W1,p(x)(Ω) = ‖g‖Lp(x)(Ω) +‖∇g‖Lp(x)(Ω). (1.6)

By W 1,p(x)
0 (Ω) we denote the closure of C∞

0 (Ω) in W 1,p(x)(Ω) . Actually, the

Lp(x)(Ω) , W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) spaces are Banach spaces. There have been many

investigations (see for example [9, 11, 12, 13]) on properties of such variable exponent
Sobolev spaces.

Now we state the definition of local weak solutions for (1.1).

DEFINITION 1.1. Assume that f∈ Lp(x)
loc (Ω) . A function u∈W 1,p(x)

loc (Ω) is a local

weak solution of (1.1) in Ω if for any ϕ ∈W 1,p(x)
0 (Ω) , we have∫

Ω
|∇u|p(x)−2∇u ·∇ϕ dx =

∫
Ω
|f|p(x)−2f ·∇ϕ dx.

When p(x) is a constant, Lq , q � p , gradient estimates for weak solutions of
quasilinear elliptic equations of p -Laplacian type have been studied by many authors
[4, 8, 15, 14]. When p(x) is not a constant, such elliptic problems (1.1) appear in
mathematical models of various physical phenomena, such as the electro-rheological
fluids (see, e.g., [1, 17, 18]). There have been many investigations [7, 10, 16] on
Hölder estimates for the p(x)-Laplacian elliptic equation (1.1) and the more general
case. Moreover, Acerbi and Mingione [2] have proved that

|f|p(x) ∈ Lq
loc(Ω) =⇒ |∇u|p(x) ∈ Lq

loc(Ω) for any q > 1

for weak solutions of (1.1) under the following assumptions

p(x) ∈C(Ω), 1 < γ1 � p(x) � γ2 < ∞, |p(x)− p(y)|� w(|x− y|), (1.7)

where

lim
R→0

w(R) ln

(
1
R

)
= 0.

We assume that p(x) ∈ W 1,s(Ω) for some s > n . Therefore, it follows from
Sobolev embedding theorem that p(x) is Hölder continuous with the exponent α =
1− n

s . Especially, the hypothesis (1.7) is satisfied. Now let us state the main result of
this work.

THEOREM 1.2. Let u ∈ W 1,p(x)
loc (Ω) be a local weak solution of (1.1) in Ω with

B2 ⊂Ω under the assumptions (1.2). Then for all f with |f|p(x) ∈ Lq
loc(Ω) for any q � 1 ,

we have |∇u|p(x) ∈ Lq
loc(Ω) with the estimate

∫
B1

(
|∇u|p(x)

)q
dx � C

[(∫
B2

|u|p(x)dx

)q

+
∫

B2

(
|f|p(x)

)q
dx

]
,

where the constant C only depends on n, p1, p2 .
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1.1. Preliminary tools

We use the Hardy-Littlewood maximal function which controls the local behavior
of a function.

DEFINITION 1.3. Let v be a locally integrable function. The Hardy-Littlewood
maximal function M v(x) is defined as

M v(x) = sup
r>0

∫
Br(x)

|v(y)|dy.

If v is not defined outside Ω , then we define

MΩv(x) = M (v ·XΩ)(x),

where the indicator function XΩ of Ω satisfies

XΩ(x) =
{

1, if x ∈ Ω,
0, if x /∈ Ω.

For maximal functions, they satisfy strong p - p estimate and weak 1-1 estimate.

LEMMA 1.4. ([19]) (i) If v ∈ Lp(Rn) for p > 1, then M v ∈ Lp(Rn) with the
estimate

‖M v‖Lp(Rn) � C‖v‖Lp(Rn).

(ii) If v ∈ L1(Rn) , then

|{x ∈ R
n : M v(x) > λ}| � C

λ
‖v‖L1(Rn).

Moreover, in this paper we need the following version of the modified Vitali cov-
ering lemma.

LEMMA 1.5. ([3, 4, 20]) Assume that R > 0 and 0 < ε < 1 . Let C ⊂ D ⊂ BR be
two measurable sets. We suppose further that |C| < ε|BR| and for all x ∈ BR and for
all r ∈ (0,R] with |C∩Br(x)| � ε|Br| , Br(x)∩BR ⊂ D. Then |C| � 10nε|D| .

We end this subsection by introducing the following standard measure theory.

LEMMA 1.6. ([3, 4, 5]) Assume that g is a nonnegative and measurable function
in Ω and 0 < p < ∞ . Let θ > 0 and m > 1 be two constants. Then we have

g ∈ Lp(Ω) iff S := ∑
i�1

mip|{x ∈ Ω : g(x) > θmi}| < ∞

and
1
C

S � ‖g‖p
Lp(Ω) � C(|Ω|+S).

Here C > 0 does not depend on g.
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1.2. Final proof

In this section we shall finish the proof of the main result, Theorem 1.2. When
q = 1, the proof of Theorem 1.2 is trivial. We first present the corresponding proof of
this result.

LEMMA 1.7. Let u ∈ W 1,p(x)
loc (Ω) be a local weak solution of (1.1) in Ω with

B2R ⊂ Ω . Then we have∫
BR

|∇u|p(x)dx � C

(∫
B2R

|u|p(x)dx+
∫
B2R

|f|p(x)dx

)
,

where C only depend on n, p1, p2,R.

Proof. Without loss of generality we may assume that R = 1. We may as well

select the test function ϕ = ζ p2u∈W 1,p(x)
0 (B2) , where ζ ∈C∞

0 (Rn) is a cut-off function
satisfying

0 � ζ � 1, ζ ≡ 1 in B1, ζ ≡ 0 in R
n \B2.

Then by Definition 1.1, we have∫
B2

|∇u|p(x)−2 ∇u ·∇(ζ p2u)dx =
∫

B2

|f|p(x)−2f ·∇(ζ p2u)dx

and write the resulting expression as

I1 = I2 + I3 + I4,

where

I1 =
∫
B2

ζ p2 |∇u|p(x) dx, I2 = −
∫

B2

p2ζ p2−1u |∇u|p(x)−2 ∇u ·∇ζ dx,

I3 =
∫
B2

ζ p2 |f|p(x)−2f ·∇u dx, I4 =
∫

B2

p2ζ p2−1u|f|p(x)−2f ·∇ζ dx.

Estimate of I2 . From Young’s inequality with τ we have

I2 � C
∫

B2

ζ p(x)−1|∇u|p(x)−1|u| dx

� τ
∫

B2

ζ p2 |∇u|p(x) dx+C(τ)
∫

B2

|u|p(x) dx.

Estimate of I3 . From Young’s inequality with τ we have

I3 � τ
∫

B2

ζ p2 |∇u|p(x) dx+C(τ)
∫

B2

|f|p(x) dx.

Estimate of I4 . From Young’s inequality we have

I4 � C

(∫
B2

|u|p(x) dx+
∫
B2

|f|p(x) dx

)
.
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Combining all the estimates of Ii (1 � i � 4) and selecting τ = 1/3, we deduce that∫
B2

ζ p2 |∇u|p(x) dx � C

(∫
B2

|u|p(x) dx+
∫
B2

|f|p(x) dx

)
,

which completes the proof. �
Now we recall the following L∞

loc estimates (see [6], Theorem 2.1).

LEMMA 1.8. Let v be a local weak solution of

div
(
|∇v|p(x)−2∇v

)
= 0 in Ω, (1.8)

under the assumptions (1.2). Then there exists a positive constant R0 , depending on
n, p1, p2,s,Ω , and

∫
Ω |∇v|p(x) dx , such that for any R � 2R0 and ρ ∈ (0,R0] we have

sup
Bρ

|∇v|p(x) � C

[∫
B2R

|∇v|p(x) dx+
(∫

B8R

(
1+ |∇v|p(x)

)
dx

)1+δ0
]

, (1.9)

where δ0 depends on s,n, and C depends on n, p1, p2,s,‖p‖W1,s , and
∫

Ω |∇v|p(x) dx .

REMARK 1.9. From the corresponding proof in [6] we may as well assume that∫
Ω |∇v|p(x)dx � 1, and then R0,C are no longer dependent on

∫
Ω |∇v|p(x) dx . In fact,

we can easily prove that

sup
Bρ

|∇v|p(x)

λ
� C

⎡
⎣∫

B2R

|∇v|p(x)

λ
dx+

(∫
B8R

(
1+

|∇v|p(x)

λ

)
dx

)1+δ0
⎤
⎦ , (1.10)

if we consider
1
λ

div
(
|∇v|p(x)−2∇v

)
= 0.

Thus, we get the desired result by choosing λ =
∫

Ω |∇v|p(x) dx .

Next, we give two lemmas which are very important to obtain the main result,
Theorem 1.2.

LEMMA 1.10. Assume that 0 < r � 16R0 , where R0 is defined in Lemma 1.8. For
any ε > 0 , there exists a small δ = δ (ε) > 0 such that if u is a local weak solution of
(1.1) in Ω , ∫

Br

|∇u|p(x)dx � 1 and
∫

Br

|f|p(x)dx � δ , (1.11)

then there exists N0 > 1 such that

sup
Br/16

|∇v|p(x) � N0 (1.12)

and ∫
Br

|∇(u− v)|p(x)dx � ε, (1.13)

where v is the weak solution of (1.8) in Br with v = u on ∂Br .
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Proof. The conclusion (1.12) follows from Lemma 1.8, (1.11) and (1.13), since u
and v are the weak solutions of (1.1) in Ω and (1.8) in Br , respectively.

We may as well choose the test function ϕ = v−u∈W 1,p(x)
0 (Br) for u and v , and

then a direct calculation shows the resulting expression as

I1 =:
∫

Br

(
|∇u|p(x)−2 ∇u−|∇v|p(x)−2 ∇v

)
·∇(u− v) dx

=
∫

Br

|f|p(x)−2f ·∇(u− v) dx =: I2,

Estimate of I1 . We divide into two cases.
Case 1. p(x) � 2. Using the elementary inequality

C|ξ −η |p �
(|ξ |p−2ξ −|η |p−2η

) · (ξ −η) ,

for every ξ ,η ∈ R
n with C =C(p,n) , we have

I1 � C
∫

Br

|∇(u− v)|p(x)dx.

Case 2. 1 < p(x) < 2. Using the elementary inequality

|ξ −η |p � Cτ(p−2)/p (|ξ |p−2ξ −|η |p−2η
) · (ξ −η)+ τ|η |p

for every ξ ,η ∈ R
n and every τ ∈ (0,1) with C =C(p,n) , we have

I1 + τ
∫

Br

|∇u|p(x)dx � C(τ)
∫

Br

|∇(u− v)|p(x)dx.

Estimate of I2 . Using Young’s inequality and (1.11), we have

I2 � τ
∫

Br

|∇(u− v)|p(x)dx+C(τ)δ |Br| .

Combing the estimates above, (1.11) and selecting τ,δ small enough, we can
finish the proof. �

Next, we shall prove an important result.

LEMMA 1.11. Let R1 = R0/4 and B18R0 ⊂ Ω . There is a constant N1 > 1 so that
for any ε > 0 , there exists a small δ = δ (ε) > 0 and if u is a local weak solution of
(1.1) in Ω , with{

M
(
|f|p(x)

)
� δ
}
∩
{

M
(
|∇u|p(x)

)
� 1
}
∩BR1 	= /0, (1.14)

then ∣∣∣{M
(
|∇u|p(x)

)
> N1

}
∩BR1

∣∣∣< ε |BR1 | .
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Proof. From (1.14) there exists x0 ∈ BR1 such that

M (|f|p(x))(x0) � δ and M (|∇u|p(x))(x0) � 1, (1.15)

which implies that

1
|Br(x0)|

∫
Br(x0)∩Ω

|∇u|p(x)dx � 1 and
1

|Br(x0)|
∫

Br(x0)∩Ω
|f|p(x)dx � δ (1.16)

for any r > 0. Since x0 ∈BR1 , R1 = R0/4 and B64R1 = B16R0 ⊂B17R0(x0)⊂B18R0 ⊂Ω ,
from the inequality above we have

1∣∣B64R1

∣∣
∫

B64R1

|∇u|p(x) dx � C∣∣B17R0

∣∣
∫

B17R0
(x0)∩Ω

|∇u|p(x) dx � C.

Similarly, we deduce that

1
|B64R1 |

∫
B64R1

|f|p(x)dx � Cδ .

Using Lemma 1.4 (ii) and Lemma 1.10, we have

sup
B4R1

|∇v|p(x) � N0 (1.17)

and ∣∣∣{x ∈ BR1 : M
(
|∇(u− v)|p(x)

)
> N0

}∣∣∣� C
N0

∫
BR1

|∇(u− v)|p(x)dx � ε|BR1 |

by taking N0 large enough. So, it is sufficient to prove the following formula to finish
the proof{

x ∈ BR1 : M (|∇u|p(x)) > N1

}
⊂
{

x ∈ BR1 : M (|∇(u− v)|p(x)) > N0

}
, (1.18)

where N1 = max
{
2p2+1N0,2n

}
. To do this, fix any

x1 ∈
{

x ∈ BR1 : M (|∇(u− v)|p(x)) � N0

}
. (1.19)

Then we divide into two cases.
Case 1. 0 < r � 2R1 . Then Br(x1) ⊂ B3R1 . Therefore, from (1.17) and (1.19)

we have

1
|Br|

∫
Br(x1)∩Ω

|∇u|p(x)dx � 2p2

|Br|
∫

Br(x1)∩Ω

(
|∇v|p(x) + |∇(u− v)|p(x)

)
dx

� 2p2

(
M (|∇(u− v)|p(x))(x1)+N0

)
� 2p2+1N0.
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Case 2. r > 2R1 . Then x0 ∈ Br(x1) ⊂ B2r(x0) . Thus, from the first inequality of
(1.16) we have

1
|Br|

∫
Br(x1)∩Ω

|∇u|p(x)dx � 2n

|B2r|
∫

B2r(x0)∩Ω
|∇u|p(x)dx � 2n.

Therefore, Case 1 and Case 2 imply that

M (|∇u|p(x))(x1) � N1,

and then (1.18) is true. This completes our proof. �

REMARK 1.12. As mentioned in Remark 1.9, the results in Lemma 1.10 and 1.11

still hold when we replace |∇u|p(x), |f|p(x), |∇(u− v)|p(x) by |∇u|p(x)

λ , |f|
p(x)

λ , |∇(u−v)|p(x)

λ
for any positive constant λ .

Furthermore, we can get the following result.

COROLLARY 1.13. Let R1 = R0/4 and B18R0 ⊂ Ω . If u is a local weak solution
of (1.1) in Ω with ∣∣∣{M

(
|∇u|p(x)

)
> N1

}
∩BR1

∣∣∣< ε|BR1 |, (1.20)

then for ε1 = 10nε we have∣∣∣BR1 ∩
{
M
(
|∇u|p(x)

)
> Nk

1

}∣∣∣
�

k

∑
i=1

ε i
1

∣∣∣BR1 ∩
{
M
(
|f|p(x)

)
> δNk−i

1

}∣∣∣+ εk
1

∣∣∣BR1 ∩
{
M
(
|∇u|p(x)

)
> 1
}∣∣∣ .

Proof.
Case 1. k = 1. The result above is an immediate consequence of Lemma 1.5 and

Lemma 1.11 by selecting

C =BR1 ∩
{
M
(
|∇u|p(x)

)
> N1

}
,

D=
(
BR1 ∩

{
M
(
|∇u|p(x)

)
> 1
})

∪
(
BR1 ∩

{
M
(
|f|p(x)

)
> δ
})

.

Case 2. k � 2. Recalling Remark 1.12, we complete the proof after an iteration
by choosing λ = Ni

1,1 � i � k−1. �
Now we are ready to prove the main result, Theorem 1.2.

Proof. Without loss of generality, from Lemma 1.4, Lemma 1.6, Lemma 1.7 and
Remark 1.9 we may assume that∣∣∣∣∣

{
M

(
|∇u|p(x)

λ

)
> N1

}
∩BR1

∣∣∣∣∣< ε|BR1 |
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and

∞

∑
k=1

Nqk
1

∣∣∣∣∣
{

x ∈ BR1 : M

(
|f|p(x)

λ

)
> δNk

1

}∣∣∣∣∣� 1. (1.21)

by choosing

λ =C

⎧⎨
⎩
∫

B18R0

|u|p(x)dx+

(∫
B18R0

(
|f|p(x)

)q
dx

)1/q
⎫⎬
⎭

where C is large enough. Then according to Corollary 1.13 and (1.21), we can find that

∞

∑
k=1

Nqk
1

∣∣∣∣∣
{

x ∈ BR1 : M

(
|∇u|p(x)

λ

)
> Nk

1

}∣∣∣∣∣
�

∞

∑
k=1

Nqk
1

k

∑
i=1

ε i
1

∣∣∣∣∣
{

x ∈ BR1 : M

(
|f|p(x)

λ

)
> δNk−i

1

}∣∣∣∣∣
+

∞

∑
k=1

Nqk
1 εk

1

∣∣∣∣∣
{

x ∈ BR1 : M

(
|∇u|p(x)

λ

)
> 1

}∣∣∣∣∣
�

∞

∑
i=1

(
Nq

1 ε1
)i ∞

∑
k=i

Nq(k−i)
1

∣∣∣∣∣
{

x ∈ BR1 : M

(
|f|p(x)

λ

)
> δNk−i

1

}∣∣∣∣∣
+C

∞

∑
k=1

(
Nq

1 ε1
)k � C

∞

∑
k=1

(
Nq

1 ε1
)k � C,

by choosing ε1 small enough such that Nq
1 ε1 < 1. Then from Lemma 1.6 we have

M

(
|∇u|p(x)

λ

)
∈ Lq(BR1), and then

|∇u|p(x)

λ
∈ Lq(BR1),

with the estimate

∫
BR1

(
|∇u|p(x)

)q
dx � C

{∫
B18R0

(
|f|p(x)

)q
dx+

(∫
B18R0

|u|p(x)dx

)q}
.

Without loss of generality we assume that R1 = R0/4 � 1/36. Thus we can complete
the proof by the finite covering lemma. �
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