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LOCAL GRADIENT ESTIMATES FOR THE
p(x)-LAPLACIAN ELLIPTIC EQUATIONS

FENGPING YAO

(Communicated by J. Pecari¢)

Abstract. In this paper we give a new and direct proof of local L estimates for the non-
homogeneous p(x)-Laplacian elliptic equation under some proper conditions on p(x) > 1. We

prove that
‘ﬂp()f) el

loc

= |Vul’W e L1

loc

forany g > 1

for weak solutions of

div (\W\PWZW) = div (\f\WHf) inQ.

1. Introduction

In this paper we discuss the non-homogeneous p(x)-Laplacian elliptic equation of

the following form
div (\Vu\l’@*zvu) = div <|f|1’(")*2f) in Q,
where p € W!*(Q) for some s > n satisfies
l<pi= i%fp(x) <px) < s%pp(x) = p2 <ee.
We denote by L) (Q) the variable exponent Lebesgue-Sobolev spaces
LPY(Q) = {g :Q — R | g is measurable and/Q |g|P™) dx < oo}

with the Luxemburg type norm

. ] g P
T p— {A s0: 18" aes 1}.
Furthermore, we define
wlre)(Q) = {g e L’ (Q) : Vgl e Lp(x)(Q)}
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with the norm
HgHWLI’(X)(Q) = ”g”LP(X)(Q) + ||VgHLI’(X)(Q)' (1.6)

By W,” ™(Q) we denote the closure of Cy(Q) in WhPH(Q). Actually, the

LPO(Q), WP (Q) and W, ” () spaces are Banach spaces. There have been many
investigations (see for example [9, 11, 12, 13]) on properties of such variable exponent
Sobolev spaces.

Now we state the definition of local weak solutions for (1.1).

DEFINITION 1.1. Assume that f € L™ (Q). A function u € ;""" (Q) is a local

loc loc

weak solution of (1.1) in Q if for any @ € W, ” ™)(Q), we have
/ |Vul[PD =2V -V dx:/ £PX)2¢. Vo dx.
Q Q

When p(x) is a constant, L9, g > p, gradient estimates for weak solutions of
quasilinear elliptic equations of p-Laplacian type have been studied by many authors
[4, 8, 15, 14]. When p(x) is not a constant, such elliptic problems (1.1) appear in
mathematical models of various physical phenomena, such as the electro-rheological
fluids (see, e.g., [1, 17, 18]). There have been many investigations [7, 10, 16] on
Holder estimates for the p(x)-Laplacian elliptic equation (1.1) and the more general
case. Moreover, Acerbi and Mingione [2] have proved that

|f|P(X) eld

loc

Q) = |VufWerL!

loc

(Q) forany g >1
for weak solutions of (1.1) under the following assumptions
p(x) €C(Q), 1<n<pk)<n<e, [px)—pO)<wlx—y), A7

where

lim w(R) In <l> =0.
R—0 R

We assume that p(x) € W!*(Q) for some s > n. Therefore, it follows from
Sobolev embedding theorem that p(x) is Holder continuous with the exponent o =
1 — . Especially, the hypothesis (1.7) is satisfied. Now let us state the main result of
this work.

THEOREM 1.2. Let u € WP (Q) be a local weak solution of (1.1) in Q with

loc
B> C Q under the assumptions (1.2). Then for all £ with |fP®) € LI (Q) forany ¢ >1,

loc
we have |VulP®W € LI (Q) with the estimate

q
/ (Vup(x)>qugc[</ u|p(")dx> +/ <|fp(x)>qu},
B By By

where the constant C only depends on n,py,p>.
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1.1. Preliminary tools

We use the Hardy-Littlewood maximal function which controls the local behavior
of a function.

DEFINITION 1.3. Let v be a locally integrable function. The Hardy-Littlewood
maximal function .#v(x) is defined as

Av(x) = sup EV(y) |dy.

r>0 Br(x
If v is not defined outside Q, then we define
Mov(x) = M (v- Za)(x),
where the indicator function Zq of Q satisfies

1, if xeQ,
Za(x) = {0, if x¢ Q.

For maximal functions, they satisfy strong p-p estimate and weak 1-1 estimate.

LEMMA 1.4.([191) (i) If v € LP(R") for p > 1, then #v € LP(R") with the
estimate

|2 V|| Lo (rry < ClV || L (mry-

(ii) If v € L' (R"), then
; C
‘{XER : %V()C)>A,}‘<I”VHLI(R”.

Moreover, in this paper we need the following version of the modified Vitali cov-
ering lemma.

LEMMA 1.5.([3, 4, 20]) Assume that R >0 and 0 < e < 1. Let C C D C Bg be
two measurable sets. We suppose further that |C| < €|Bg| and for all x € Bg and for
all r € (0,R] with |CNB(x)| > €|B;|, B/(x) NBgr C D. Then |C| < 10"¢|D].

We end this subsection by introducing the following standard measure theory.

LEMMA 1.6. ([3,4, 5]) Assume that g is a nonnegative and measurable function
in Qand 0 < p <oo. Let 0 >0 and m > 1 be two constants. Then we have

gel’(Q) iff S:zEmip|{xEQ:g(x)>6mi}|<<x>
i>1

and

1
ES < ”g”Z)(Q) < C(|Q‘ +5).

Here C > 0 does not depend on g.
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1.2. Final proof

In this section we shall finish the proof of the main result, Theorem 1.2. When
q =1, the proof of Theorem 1.2 is trivial. We first present the corresponding proof of
this result.

LEMMA 1.7. Let u € Wli’cp(x)(Q) be a local weak solution of (1.1) in Q with
By C Q. Then we have

/ VulPWdx < C ( / ]PD dx + / f|1’(")dx) ,
Bg Bog Bog
where C only depend on n,p1,p2,R.

Proof. Without loss of generality we may assume that R = 1. We may as well

select the test function ¢ = {P2u € W, ” ™)(B,), where € Cg(R™) is a cut-off function
satisfying
0<¢<1, {=1inB;, =0 inR"\B,.

Then by Definition 1.1, we have
/ VPO 2V V(EPu)dx = / 117002 V(P20 dx
B B

and write the resulting expression as
L =L+ 5L+1,
where

L= [y 07 |VulP® ax, b= _/ 2l P Va2V VE dx,
By
L= [p, 2P0 Vudx, I =/ P2l u|fP9 28V dx.
By
Estimate of I,. From Young’s inequality with T we have
L < C/ CPO=N Y POy dx
By
<7 / P2 |VulP™ dx+C(7) / P dx.
B, By
Estimate of I3. From Young’s inequality with T we have
I3 < T/ £P2 |V P dx+C(T)/ |£1P0) dx.
B B>

Estimate of 14. From Young’s inequality we have

L < c(/ [P dx+/ £ dx) .
B, B,
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Combining all the estimates of I; (1 <i< 4) and selecting T = 1/3, we deduce that

/C”Z\Vu\p(x) dx<c</ [P dx+/ P dx),
By B By

which completes the proof. [

oo

Now we recall the following L . estimates (see [6], Theorem 2.1).

LEMMA 1.8. Let v be a local weak solution of
div (|VV\P<X>*2VV) -0 in Q (1.8)

under the assumptions (1.2). Then there exists a positive constant Ry, depending on
n,p1,p2,s,Q, and [o \Vv|PY) dx, such that for any R < 2Rg and p € (0,Rg] we have

148
][ V[P dx + (][ (1 + |Vv\p(x)> dx)
Bar Bgr

where & depends on s,n, and C depends on n,p1,pa,s, ||pllwis, and [o|Vv|PY) dx.

o (19)

sup |[Vv]P¥ < €
Bp

REMARK 1.9. From the corresponding proof in [6] we may as well assume that
Jo IVv|P®dx < 1, and then Ry, C are no longer dependent on [, |[Vv[?®) dx. In fact,
we can easily prove that

1+8
Vy|P) Vy|P) Vy|p()
sup‘ VJL gc][ | VJL dx + ][ 1] VJL dx . (1.10)
By Bog Bsr

if we consider

%div <\Vv|p(x)72Vv> =0.

Thus, we get the desired result by choosing A = [, |Vv[P™) dx.

Next, we give two lemmas which are very important to obtain the main result,
Theorem 1.2.

LEMMA 1.10. Assume that 0 < r < 16R(, where Ry is defined in Lemma 1.8. For
any € > 0, there exists a small § = 6(€) > 0 such that if u is a local weak solution of
(1.1)in Q,

][ VulPYdx <1 and ][ 7@ dx < 5, (1.11)
By By
then there exists Ny > 1 such that
sup [Vv]P™) < Ny (1.12)
B,/16
and
][ IV (u—v)[PWdx < g, (1.13)

r

where v is the weak solution of (1.8) in B, with v=u on 0B,.
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Proof. The conclusion (1.12) follows from Lemma 1.8, (1.11) and (1.13), since u
and v are the weak solutions of (1.1) in Q and (1.8) in B,, respectively.

We may as well choose the test function ¢ = v—u € W, " ®)(B,) for u and v, and
then a direct calculation shows the resulting expression as

(VY 92 V) V() d
B,

|02V dx =

B,

Estimate of I;. We divide into two cases.

Case 1. p(x) > 2. Using the elementary inequality

I

ClE—nP < (P26 —InP*n)-(E—n),

forevery £,m € R" with C = C(p,n), we have

I > C/ IV (1 —v)|PYdx.
B

Case 2. 1 < p(x) < 2. Using the elementary inequality

E—nlP <P (|EP2E—n|P~ ) - (E—n) +1in|?

forevery £,m € R" and every 7 € (0,1) with C = C(p,n), we have

I +1/ \Vu\”(x)dx>c(r)/ |V (1 —v)[PWdx.
By B,

Estimate of I. Using Young’s inequality and (1.11), we have

L<t| |Vu—v)|"Wdx+C(1)8|B,|.
By

Combing the estimates above, (1.11) and selecting 7,8 small enough, we can
finish the proof. [

Next, we shall prove an important result.

LEMMA 1.11. Let Ry =Ry /4 and Biggr, C Q. There is a constant N\ > 1 so that
Sfor any € > 0, there exists a small 6 = 6(€) >0 and if u is a local weak solution of
(1.1) in Q, with

{j/ (\f|1’(")) < 6} n {// <|Vu|p(")> < 1} NBg, #0, (1.14)
then

H/// <|Vu|”(")) >N1}OBR1

<8|BR1|.
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Proof. From (1.14) there exists xo € Bg, such that
A (P (xo0) < & and . (|Vu|"™) (xo) < 1, (1.15)

which implies that

1

1B(x0)] JB,(x0)n2 fPWdx <8 (1.16)
r r(Xo

VulPWdx <1 and ———
[Vl Bo(w0)] i,

forany r>0. Since xg € BR1 , Ry =R0/4 and B64R| :B16R0 - BnRO(xO) C BISRO cQ,
from the inequality above we have

1 C
—/ IVu|P™ dx < —/ IVuP™ dx < C.
|Bé4R1| Bear, |BI7RO| By7R, (30)NQ2

Similarly, we deduce that

1

— fPWdx < C8.
‘3641?1 | Boar,
Using Lemma 1.4 (ii) and Lemma 1.10, we have

sup [Vv[P®) < N (1.17)

Bag,

and

’{xGBRl s M <|V(u—v)|p(x)> >N0}’ < N£0/BR1 V(1 —v)[PWdx < €|Bg, |

by taking Ny large enough. So, it is sufficient to prove the following formula to finish
the proof

{x € Bg, + A (|Vu|PW) > Nl} c {x € Bg, + M (|V(u—v)PW) > NO} . (1.18)
where Ny = max {27271Ny,2"} . To do this, fix any
x € {xeBR1 L (Y (u—v)|P9) <N0}. (1.19)
Then we divide into two cases.

Case 1. 0 <r<2R;. Then B,(x;) C Bsg,. Therefore, from (1.17) and (1.19)
we have

1
|By| JB,(x1)n02

o
B[ JB,(x)n02
<27 (A (V=)D (x1) +No ) <27 N,

|Vu|PWdx <

N

<|Vv|p(x) +|V(u— v)|p(x)> dx
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Case 2. r>2R;. Then xy € B/(x1) C By, (x0). Thus, from the first inequality of
(1.16) we have

1
|Br‘ Br(xl)ﬁQ

2"
|Vu|PWdx <
|Bar| /By (xo)n02

IVu|PWdx < 2"
Therefore, Case 1 and Case 2 imply that

M (V") (1) < N
and then (1.18) is true. This completes our proof. [

REMARK 1.12. As mentioned in Remark 1.9, the results in Lemma 1.10 and 1.11

. (x (x _ (x

still hold when we replace V| PO PO |V (1 — v)[PX) by W”/‘lp ),w, [V AVW )
for any positive constant A .

Furthermore, we can get the following result.

COROLLARY 1.13. Let Ry = Ro/4 and Bigr, C Q. If u is a local weak solution
of (1.1) in Q with

H///(\Vu\”(x)> >N1}OBR1 < &|B, |, (1.20)

then for € = 10"€ we have

’BRI m{/// (\vu\ﬂ<x>) >N{‘H

< ie{ ’BRI n{ (1) > 5N{""H ek ’BRI n{ (1Vul"®) > 1}’ .
=1

Proof.
Case 1. k= 1. The result above is an immediate consequence of Lemma 1.5 and
Lemma 1.11 by selecting

C=Bg, N {//1 (|Vu|p(")) > N } :

D= (BRI N {/// (|vu|1’<x)) > 1}) U (BR1 N {/// (\f|”(")> > 5}) .

Case 2. k> 2‘. Recalling Remark 1.12, we complete the proof after an iteration
by choosing A =Nj,1 <i<k—1. O

Now we are ready to prove the main result, Theorem 1.2.

Proof. Without loss of generality, from Lemma 1.4, Lemma 1.6, Lemma 1.7 and
Remark 1.9 we may assume that

p(x)
Lo (P22 o)

<£|BR1‘
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‘f|P(X) "
XEBg, M 1 > 0N}

1/q
A=C / \M|p(x)dx+ </ <f|P(X)>qu>
Bisr, Bisr,

where C is large enough. Then according to Corollary 1.13 and (1.21), we can find that

p(x)
{xeBR1 :///('V”)'L ) >N{‘H

PR S |f[P) i
<Y NI Y ef|Ax€Bg, : M | >N
k=1 =1

p(x)
{xeBRl :///('Vu/l' ) > l}l
P(x) .
{xeBR1 ://4’<|f7L ) >6N{”}'

by choosing & small enough such that Nfsl < 1. Then from Lemma 1.6 we have

and

<. (1.21)

Y Nt
k=1

by choosing

¥ Nk
k=1

< gk
+ Y Nief
=1

P(x) P(x)
M (Vuk ) € LY(Bg,), and then % € LY(Bg,),

with the estimate

q
/ (vul’<x))qu<c{/ (f|P(")>qu+</ u|p(")dx> }
Br, Bisr, Bigr,,

Without loss of generality we assume that Ry = Ry/4 < 1/36. Thus we can complete
the proof by the finite covering lemma. [J
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