
Mathematical
Inequalities

& Applications

Volume 17, Number 1 (2014), 269–281 doi:10.7153/mia-17-22

ON THE EXTENSION OF THE ERDÖS–MORDELL TYPE INEQUALITIES

B. MALEŠEVIĆ, M. PETROVIĆ, M. OBRADOVIĆ AND B. POPKONSTANTINOVIĆ

(Communicated by J. Pečarić)

Abstract. We discuss the extension of inequality RA � c
a rb + b

a rc to the plane of triangle �ABC .
Based on the obtained extension, in regard to all three vertices of the triangle, we get the exten-
sion of Erdös-Mordell inequality, and some inequalities of Erdös-Mordell type.

1. Introduction

Let triangle �ABC be given in Euclidean plane. Denote by RA, RB and RC the
distances from the arbitrary point M in the interior of �ABC to the vertices A, B and
C respectively, and denote by ra, rb and rc the distances from the point M to the sides
BC, CA and AB respectively (Figure 1).

Figure 1: Erdös-Mordell inequality

Then Erdös-Mordell inequality is true:

RA +RB +RC � 2(ra + rb + rc) (1)

whereat equality holds if and only if triangle ABC is equilateral and M is its center.
This inequality was conjectured by P. Erdös as Amer. Math. Monthly Problem 3740
in 1935. [9], after his experimental conjecture in 1932. [13]. It was proved by L.J.
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Mordell in 1935. (in Hungarian, according to [13]), and as the solution of the Problem
3740 in 1937. [22].

Considering the Erdös-Mordell inequality (1) the goal of this research is to de-
termine areas in the plane of the triangle, where the following three inequalities are
valid:

RA � c
a
rb +

b
a
rc (2)

RB � c
b
ra +

a
b
rc (3)

RC � b
c
ra +

a
c
rb (4)

where a = |BC| , b = |CA| , c = |AB| .
In this paper we determine a set of points E for which

RA +RB +RC �
(

c
b

+
b
c

)
ra +

( c
a

+
a
c

)
rb +

(
a
b

+
b
a

)
rc (5)

is valid. It is known that the triangular area of �ABC is contained in the set E [3], [4],
[11], [13], [14], [26]. Here we show that the set E is greater than the triangle �ABC ,
and we give a geometric interpretation of the set E.

The proofs of Erdös-Mordell inequality are often based on different proofs of in-
equality (2), as given in [4], [6], [7], [11], [12], [23], [26]. N. Derigades in [8] proved
the inequality (5) valid in the whole plane of the triangle, where ra, rb and rc , are
signed distances. A similar result was given by B. Malešević [20], [21].

Note that V. Pambuccian [24] recently proved that the Erdös-Mordell inequality
is equivalent to non-positive curvature. Overview of recent results on Erdös-Mordell
inequalities and related inequalities is given in [1]–[3], [5], [8], [10], [13]–[21], [24],
[25], [27]–[30] .

2. The main results

In this section we analyze only the inequality (2). Let �ABC be a triangle with
vertices A(0,r) , B(p,0) , C (q,0) , p �= q, r �= 0. Without diminishing generality, let
p < q . We denote by M (x,y) an arbitrary point in the plane of the triangle �ABC .
The distance from the point M to the point A , and the distance from the point M to the
straight lines b and c are given by functions:

RA =
√

x2 +(y− r)2 (6)

rb = |−qy− rx+qr|√
r2 +q2

(7)

rc =
|py+ rx− pr|√

r2 + p2
(8)
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respectively. Consider the inequality (2) related to the vertex A . The analytical notation
of this inequality is:

√
x2 +(y− r)2 �

√
r2 + p2

|q− p|
|−qy− rx+qr|√

r2 +q2
+
√

r2 +q2

|q− p|
|py+ rx− pr|√

r2 + p2
, (9)

i.e.

|q− p|
√

r2 + p2
√

r2 +q2
√

x2 +(y− r)2 �
(
r2 + p2

) |−qy− rx+qr|
+
(
r2 +q2

) |py+ rx− pr|.
(10)

Let y = kx+ r, k ∈ R , then the inequality (10) reads as follows:

|x| |q−p|
√

r2+p2
√

r2+q2
√

1+k2 � |x|
((

r2+p2)|−qk−r|+(r2+q2)|pk+r|
)

(11)

For x = 0, the previous inequality is reduced to an equality which solution is the
point A(0,r) . For x �= 0 we obtain inequality by a single variable k :

|q−p|
√

r2+p2
√

r2+q2
√

1+k2 �
(
r2 + p2)|−qk−r|+ (r2 +q2)|pk+r| . (12)

Solution of the inequality (12) reduces to four cases per parameter k :

(α1) :

{
pk+ r � 0

−qk− r � 0,
(13)

(α2) :

{
pk+ r < 0

−qk− r � 0,
(14)

(α3) :

{
pk+ r � 0

−qk− r < 0,
(15)

(α4) :

{
pk+ r < 0

−qk− r < 0.
(16)

Note that the value k corresponds to the points (x,y) ∈ R2 located on the straight
line y = kx+ r . With its values, the mentioned parameter of the line y = kx+ r decom-
poses R2 on four corner areas. Inquiring the existence of parameter k (i.e. the pencil
of lines y = kx + r through the vertex A) depending on the signs of parameters p, q
and r , we provide the following table of existing corner areas (α1)− (α4) :
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p q r (α1) (α2) (α3) (α4)
1. > 0 > 0 > 0 + + + -
2. < 0 > 0 > 0 + - + +
3. < 0 < 0 > 0 - + + +
4. > 0 > 0 < 0 - + + +
5. < 0 > 0 < 0 + + - +
6. < 0 < 0 < 0 + + + -
7. = 0 > 0 > 0 + - + -
8. = 0 > 0 < 0 - + - +
9. < 0 = 0 > 0 - - + +
10. < 0 = 0 < 0 + + - -

Table 1: The existence of the corner area depending on the parameters p, q and r

The corner areas (α1) and (α4) are always in the interior of �BAC and its cross
angle, while the areas (α2) and (α3) are in the interior of its supplementary angle
(Figure 2).

Figure 2: Existence of the corner area for the vertex A (Cases 1. to 6. in the Table 1)

Let us consider the equation:

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 =
(
r2+p2) |−qk− r|+ (r2+q2) |pk+ r| . (17)
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I) Let k fulfill (α1) or (α4) . Then the previous equation can be rewritten in a way
that follows, with positive sign (+) in the case of area (α1) and negative sign (-) in the
case of area (α4)

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 =±((−qk− r)
(
r2+p2)+(pk+ r)

(
r2+q2)) (18)

i.e.

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 = ±(q− p)
(
r (q+p)+ k

(
pq− r2)) (19)

abbreviated written as

λ
√

1+ k2 = ±βk± γ =

{
βk+ γ, k ∈ (α1)

−βk− γ, k ∈ (α4)
(20)

where at:

λ = (q− p)
√

r2 + p2
√

r2 +q2 and λ > 0 (21)

β =
(
pq− r2)(q− p) (22)

γ = r
(
q2− p2) . (23)

As p < q , the equation (19) can be divided by q− p �= 0 and then squared:(
r2+p2)(r2+q2)(1+ k2)=

(
r (q+ p)+ k

(
pq− r2))2 (24)

which transforms into (
r (p+q)k− (pq− r2))2 = 0. (25)

Based on the above equation, we conclude that there exists the unique solution:

k1 =
pq− r2

r (p+q)
(26)

only if, for k = k1 :
±βk± γ � 0 (27)

is valid.

Hence, the straight line y = k1x+ r is in the interior of �BAC and its cross angle,
or it doesn’t exist. The cases where values k1 from the formula (26) does not meet the
condition (27) are presented in the Table 1 with:

in the case 1: k1>− r/q ⇐⇒ p
(
q2+r2

)
>0 ;

in the case 3: k1>− r/p ⇐⇒ (−q)
(
p2+r2

)
>0;

in the case 4: k1<− r/q ⇐⇒ p
(
q2+r2

)
>0 ;

in the case 6: k1<− r/p ⇐⇒ (−q)
(
p2+r2

)
>0.
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LEMMA 1. For k ∈ (α1) ∪ (α4) inequality (12) is valid, where equality holds for
k = k1 if (27) is fulfilled.

Proof. (12) ⇐⇒ (
r (p+q)k− (pq− r2

))2 � 0. �

COROLLARY 1. Inequality (12) is valid for lines b and c.

II) Let k fulfill (α2) or (α3) . Then equation (17) can be rewritten in a way that
follows, with negative sign (-) in the case of area (α2) and positive sign (+) in the case
of area (α3)

(q− p)
√

r2+p2
√

r2+q2
√

1+k2 = ±((qk+ r)
(
r2+p2)+(pk+ r)

(
r2+q2)) (28)

or abbreviated written as

λ
√

1+ k2 = ±δk± ε =

{
δk+ ε, k ∈ (α3)

−δk− ε, k ∈ (α2)
(29)

with parameters:

λ = (q− p)
√

r2 + p2
√

r2 +q2 and λ > 0

δ =
(
r2 + pq

)
(q+ p) (30)

ε = r
(
2r2 +q2 + p2). (31)

The equation (29) is considered under the following condition:

± δk± ε � 0. (32)

By squaring the equation (29) we obtain

P(k) = λ 2 (1+ k2)− (±δk± ε)2 =
(
λ 2− δ 2)k2 −2δεk+

(
λ 2− ε2)= 0. (33)

For the square trinomial
P(k) = Âk2 + B̂k+ Ĉ (34)

coefficients Â, B̂, Ĉ are determined by:

Â = λ 2− δ 2 = (q− p)2
(
r2+p2)(r2+q2)− (r2 + pq

)2
(q+ p)2 (35)

B̂ = −2δε = −2r
(
r2 + pq

)(
q+ p

)(
2r2 +q2 + p2) (36)

Ĉ = λ 2− ε2 =
(
r2 + pq

)((
pq− r2)(q− p)2 −2r2(2r2 +q2 + p2)

)
. (37)

Let us consider the equation:

Â = −4pqr4 +
(
p4+q4−4pq3−4p3q−2p2q2)r2−4p3q3 = 0. (38)
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It has real solutions for r in the following form:⎧⎪⎪⎨⎪⎪⎩
r1,2 = 1

4
√

pq

(
(q− p)2 ±

√
(q− p)4−16p2q2

)
> 0

r3,4 = − 1

4
√

pq

(
(q− p)2 ±

√
(q− p)4 −16p2q2

)
< 0

(39)

iff (
p � 0 ∧ q � (3+2

√
2)p
)

∨
(

p < 0 ∧ q � (3−2
√

2)p
)
. (40)

REMARK 1. When p < 0 and q > 0 then Â = 4 |p|qr4 +
(
q2−p2

)2
r2 + 4 |p|q(

p2 +q2
)
r2 +4 |p|3 q3 > 0 is valid. Note that the equation Â = 0 is not considered for

p = 0 or q = 0
(
because we obtain the contradictions: p = 0, q �= 0: Â = rq4 = 0 =⇒

r = 0; i.e. p �= 0, q = 0: Â = rp4 = 0 =⇒ r = 0
)
.

We distinguish the cases:

a) Let r = r j for some j = 1, 2, 3, 4, then Â = 0. In this case, B̂ �= 0, because r2 +
pq �= 0 and q+ p �= 0

(
in the case of equilateral triangle, there will be valid q+ p = 0

and then r = ±pi, i =
√−1

)
. Therefore, by solving the linear equation B̂k + Ĉ = 0

we find that:

k2 = − Ĉ

B̂
=

λ 2 − ε2

2δε
=

(q− p)2
(
r2 + p2

)(
r2 +q2

)− r2
(
2r2 +q2 + p2

)2
2r (q+ p)(2r2 +q2 + p2)

. (41)

For p < 0 and q > 0 the case a) is not considered
(
because Â > 0

)
. Let us

examine when the value k2 meet the condition (32). It is valid that:

±δk2± ε � 0 ⇐⇒ ±(δk2 + ε) = ±
(

δ
λ 2− ε2

2δε
+ ε
)

= ±
(

λ 2 + ε2

2ε

)
� 0.

Based on ε = r
(
2r2 +q2 + p2

)
we conclude:

if r > 0 then δk2 +ε � 0 is fulfilled, whereby k2 fulfills condition (32) and k2 ∈ (α3) ;

if r < 0 then −δk2−ε � 0 is fulfilled, whereby k2 fulfills condition (32) and k2 ∈ (α2) .
In this case, the line y = k2x+ r is in the exterior of �BAC and its cross angle.

b) Let r �= r j for each j = 1, 2, 3, 4, then Â �= 0 and in this case, by solving the
quadratic equation (33), we find the values:

k2,3=
−δε ±

√
λ 2 (δ 2+ε2−λ 2)

δ 2−λ 2

=
r(p+q)(r2+ pq)(q2+p2+2r2)±2

(
r2+p2

)(
r2+q2

)
(q−p)

√
r2+ pq

(q−p)2 (r2+p2) (r2+q2)− (r2+ pq)2 (q+p)2
.

(42)
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If r2 + pq � 0 then exists k2,3 ∈ R . Incidence of k2,3 ∈ R to the area (α3) , as to
the area (α2) is determined by the inequality (32). The expression δk2,3 + ε exists
for δ �= ±λ , whereby the expression δk2,3 + ε is either positive or negative (because
δk2,3 + ε = 0 =⇒ δ = ±λ ).

Based on the Corollary 1, the straight lines y = ksx+r,(s = 2, 3) are in the exterior
of �BAC and its cross angle (Figure 3).

Consider the limiting case for k2,3 when r → r j . Note that Â = λ 2 − δ 2−→
r→r j

0 is

valid, whereat from

k2,3 =
−ε

(δ −λ )(δ + λ )
·
(

δ ∓|λ |
√

1+
δ 2 −λ 2

ε2

)
follows

lim
r→r j

k2 =
−ε

(δ + λ )
∧ lim

r→r j
k3 = ∞.

Figure 3: The existence of the lines y = ksx+ r, (s = 2,3) depending on the parameter Â

Related to the �BAC we distinguish the cases:

1. �BAC < π/2 ⇐⇒ r2 + pq > 0 and if Â �= 0 then there are two real and different
values of k2 and k3 . In this case, the following lemma is valid:

LEMMA 2. For �BAC < π/2 , k ∈ (α2)∪ (α3) the inequality (12) is valid, just in
the cases:
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1. Â > 0 ∧ k ∈ [−∞, k2]∪ [k3, +∞] \((α1)∪ (α4)
)
;

2. Â = 0 ∧ k ∈ [−∞, k2]\
(
(α1)∪ (α4)

)
;

3. Â < 0 ∧ k ∈ [k2, k3]\
(
(α1)∪ (α4)

)
;

where the equality holds for k = k2 or k = k3 .

2. If �BAC = π/2 ⇐⇒ r2 + pq = 0 then Â = −qp(q− p)4 , B̂ = 0 and Ĉ = 0, ac-
cording to the equation (42) that k2,3 = 0. Hence is valid:

LEMMA 3. For �BAC = π/2 and k ∈ (α2)∪ (α3) the inequality (12) is valid.
The equality is valid only for k = 0 .

Proof. (12) ⇐⇒ Âk2 + B̂k+ Ĉ � 0 ⇐⇒−qp(q− p)4 k2 � 0. �

3. �BAC > π/2⇐⇒ r2 + pq< 0. In this case, for: r2 <−pq and for the coefficient Â :

Â > 4r6 +
(
p4 +q4

)
r2 +4

(
p2 +q2

)
r4 −2r6 +4p2q2r2

= 2r6 +4
(
p2 +q2

)
r4 +

(
p4 +q4 +4p2q2

)
r2 > 0

is valid. Since k2,3 ∈ C and Â > 0 the inequality (12) is valid, which proves the claim:

LEMMA 4. For �BAC > π/2 and k ∈ (α2)∪ (α3) the inequality (12) is valid in
the strict form.

Based on the previous considerations in I) and II), follows:

STATEMENT 1. The inequality (12) holds in following cases:

k ∈ (α1)∪ (α4)

or

k ∈ (α2)∪ (α3) for �BAC � π/2

i.e.

k ∈ [−∞, k2]∪ [k3, +∞]\((α1)∪ (α4)
) ∧ Â > 0

k ∈ [−∞, k2]\
(
(α1)∪ (α4)

) ∧ Â = 0

k ∈ [k2, k3]\
(
(α1)∪ (α4)

) ∧ Â < 0,

for �BAC < π/2 .
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3. Conclusion

For the vertex A , let us define

EA =
{
(x,y) |RA � c

a
rb + b

a
rc

}
,

and for the vertices B and C , let us define

EB =
{
(x,y) |RB � c

b
ra +

a
b

rc

}
,

EC =
{
(x,y) |RC � b

c
ra + a

c
rb

}
,

respectively. Based on the analysis of the inequalities (2), (3) and (4), the inequality (5)
is valid in the intersection of the areas:

E = EA ∩EB ∩EC. (43)

Therefore follows

STATEMENT 2. Erdös-Mordell inequality is valid in the area E .

Let us define the set M by the intersection of the corner areas formed from EA ,
EB and EC , containing the initial triangle. Then the set of points M is quadrilateral or
hexagonal shape, and is contained the area E (Figure 4).

Figure 4: Extension of the triangle ABC to the area M ⊂ E

Let us define Erdös-Mordell curve in the plane of triangle, by the following equa-
tion:

RA +RB +RC = 2(ra + rb + rc) , (44)

where

RA =
√

x2 +(y− r)2 , RB =
√

(x− p)2 + y2 , RC =
√

(x−q)2 + y2 ,

ra =
|y(q− p)|√

(q− p)2
= |y| , rb =

|−q(y− r)− rx|√
r2 +q2

, rc =
|−p(y− r)− rx|√

r2 + p2
.
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Figure 5: Erdös-Mordell curve and the area E

The curve (44) is a union of parts of algebraic curves of order eight (Figure 5).
Let us denote by E’ the part of the plane R2 bounded by the Erdös-Mordell’s

curve and consisting the triangle �ABC . Thus, according to the fact that inequality
(5) is valid in the area of the triangle �ABC , and based on continuity, it follows that
inequality (5) is valid in the area E’. Remark that the area E’ allows us to precise when,
except for the inequality (5), some of the inequalities (2), (3) and/or (4) are true. For
example, in the area (E’\EA)∩EB ∩EC the inequalities (5), (4), (3) are true and (2) is
not true. At end of this section let us emphasize that the following statement is true.

STATEMENT 3. All geometric inequalities based on the inequalities (2), (3) and
(4) can be extended from the triangle interior to the area E .

EXAMPLE 1. In the area E , the inequality of Child [7] is valid:

RA ·RB ·RC � 8 · ra · rb · rc (45)

because, based on inequality between arithmetic and geometric mean, follows:

a ·RA � b · rc + c · rb � 2
√

b · c · rb · rc (46)

b ·RB � c · ra +a · rc � 2
√

c ·a · rc · ra (47)

c ·RC � a · rb +b · ra � 2
√

a ·b · ra · rb. (48)
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Hence, by multiplying the left and right sides of inequalities (46) - (48), we get the
inequality (45) in the area E . �

At the end of this paper, let us set up an open problem (proposed by anonymous
reviewer): prove or disprove that there exist a positive number ε such that the area of
E’ is bigger than 1+ε times the area of the triangle for every triangle. Thus, we set a
conjecture: for the finite area of E’ the value ε is determined in the case of equilateral
triangle.

Acknowledgement. The authors would like to thank anonymous reviewer for his/her
valuable comments and suggestions, which were helpful in improving the paper.
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