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NEW BOUNDS FOR THE SPREAD OF

THE SIGNLESS LAPLACIAN SPECTRUM

A. DILEK MADEN GÜNGÖR, A. SINAN ÇEVIK AND NADER HABIBI

Abstract. The spread of the singless Laplacian of a simple graph G is defined as SQ(G) =
μ1(G)− μn(G) , where μ1(G) and μn(G) are the maximum and minimum eigenvalues of the
signless Laplacian matrix of G , respectively. In this paper, we will present some new lower and
upper bounds for SQ(G) in terms of clique and independence numbers. In the final section, as
an application of the theory obtained in here, we will also show some new upper bounds for the
spread of the singless Laplacian of tensor products of any two simple graphs.
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