
Mathematical
Inequalities

& Applications

Volume 17, Number 1 (2014), 283–294 doi:10.7153/mia-17-23

NEW BOUNDS FOR THE SPREAD OF

THE SIGNLESS LAPLACIAN SPECTRUM
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Abstract. The spread of the singless Laplacian of a simple graph G is defined as SQ(G) =
μ1(G)− μn(G) , where μ1(G) and μn(G) are the maximum and minimum eigenvalues of the
signless Laplacian matrix of G , respectively. In this paper, we will present some new lower and
upper bounds for SQ(G) in terms of clique and independence numbers. In the final section, as
an application of the theory obtained in here, we will also show some new upper bounds for the
spread of the singless Laplacian of tensor products of any two simple graphs.

1. Introductory material

For an n×n complex matrix M = (mi, j) whose eigenvalues are λ1 , λ2 , · · · , λn ,
the spread S(M) is defined as the diameter of its spectrum:

S(M) = max
i, j

|λi−λ j|,

where the maximum is taken over all pairs of eigenvalues of M . With regard to the
spread of an arbitrary matrix, we refer to [16, 26, 27, 34]. Among these works, in [26],
Mirsky obtained one of the fundamental results for the spread of M as in the following.

PROPOSITION 1.1. There exists the inequality

S(M) �
[
2∑

i, j

|mi, j|2 − 2
n
|∑

i

mi,i|
] 1

2

.

In here, the equality holds if and only if M is a normal matrix with n−2 of its eigen-
values all equal to the average of the remaining two.
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Now let us suppose that M is a Hermitian matrix. In that case, by [27], the eigen-
values λi = λi(M) of M are all real numbers, and they may always be assumed to be
in decreasing order

λ1 � λ2 � · · · � λn .

Then S(M) will be equal to the λ1 −λn , i.e. the distance between the maximum and
minimum eigenvalues λ1 and λn . For unit vectors x,y ∈ Cn , we further have

λ1 � x∗Mx and λn � y∗My . (1)

In (1), the equality holds if and only if x and y are unit eigenvectors associated with λ1

and λn , respectively. Therefore,

S(M) = max
x,y

(x∗Mx− y∗My) = max
x,y ∑

i, j
mi, j(xix j − yiy j) , (2)

where the maximum is taken over all pairs x,y of unit vectors in C
n . If M �= 0, the

maximum is attained if and only if x and y are orthonormal eigenvectors of M corre-
sponding to the eigenvalues λ1 and λn , respectively.

Throughout this paper, unless stated otherwise, all graphs G will be taken undi-
rected and simple with |V (G)| = n vertices and |E(G)| = m edges. Furthermore, for
i = 1,2, · · · ,n , the degree of a vertex vi in V (G) will be denoted by di .

Let A(G) denote the adjacency matrix of G . Since A(G) is symmetric, the eigen-
values of it can be arranged as ρ1(G) � ρ2(G) � · · · � ρn(G) . Then, by [13], the
adjacency spread of the graph G is defined as

SA(G) = ρ1(G)−ρn(G) .

One can be referred to the papers [10, 13, 19, 30, 31] for some studies over adjacency
spread of the graph G . It is known that we also have the Laplacian matrix (cf. [24, 25])
related to the adjacency and diagonal matrices. In fact, for a diagonal matrix D(G)
whose (i, i)-entry is di , the Laplacian matrix L(G) of G is defined as L(G) = D(G)−
A(G) . By [20], since L(G) is positive semidefinite, its eigenvalues can be arranged as

λ1(G) � λ2(G) � · · · � λn−1(G) � λn(G) = 0 .

Thus, by [11], λn(G) = 0 gives the Laplacian spread SL(G) of the graph G which is
defined as

SL(G) = λ1(G)−λn−1(G) .

In the literature, there are so many studies about the Laplacian spread (see, for instance,
[7, 8, 9, 18, 29]).

Additionally to the Laplacian matrix, we also have the signless Laplacian matrix
Q(G) = D(G)+A(G) of G (cf. [3, 4, 5, 6, 21, 22]) which is symmetric, non-negative
and irreducible (while G is connected). We note that, in some papers ([9, 33]), Q(G) is
called the unoriented Laplacian matrix of G . For an n×m vertex-edge incidence ma-
trix M of G , we also write Q(G) = MMt . This implies that Q(G) is positive semidef-
inite and its eigenvalues can be arranged as

μ1(G) � μ2(G) � · · · � μn(G) � 0 . (3)
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In fact, by motivating the definition of adjacency and Laplacian spreads of G , it has
been defined the signless Laplacian spread SQ(G) of the graph G as

SQ(G) = μ1(G)− μn(G)

(cf. [20]). As an example of signless Laplacian spread, one can consider Kn (the
complete graph) and Pn (the path graph). It is known that

SQ(Kn) = n and SQ(Pn) = 2+ cos
π
n

.

Moreover, by [1], for an edge e we have

SQ(Kn− e) =
√

n2 +4n−12.

Also in the same reference, for the star graph and complete bipartite graph, it has been
obtained that

SQ(K1,n) = n and SQ(Kn,n +nK1) = 3n .

In fact, in the literature there is a limited number of papers on this matter (cf. [20]).
The present study has been undertaken bearing this fact in mind.

For simplicity, each of the eigenvalues μi(G) of the signless Laplacian matrix
Q(G) will only be denoted by μi in the rest of this paper.

As a final preliminary material of this section, we note the following two facts
which will be needed in the construction of some results of this paper.

• In Eq. (1), if we set x to be a unit vector with equal entries, then we obtain the
lower bound μ1 � 4m

n such that the equality holds if and only if G is regular.

• We have the following equalities related to the trace of signless Laplacian matrix
Q(G) :

tr(Q(G)) = ∑
i

μi = 2m and tr(Q(G)2) = ∑
i

μ2
i = ∑

i
di +∑

i
d2

i . (4)

2. An upper bound for SQ(G) in terms of first Zagreb index

Before presenting our main results, let us first state the following proposition over
spread of signless Laplacian SQ(G) related to the adjacency spread SA(G) for a k -
regular graph G .

We remind that a graph G is k -regular if d1 = d2 = · · · = dn = k . Moreover, if
G is k -regular, then it is easy to see that μ1(G) = ρ1(G)+ k and μn(G) = ρn(G)+ k .
Hence we get SQ(G) = SA(G) . In addition, if G is k -regular, then

SA(G) = k−ρn = λ1(G) � n

with equality holds if and only if the complement G of G is disconnected. These facts
imply the following proposition.
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PROPOSITION 2.1. For a k -regular graph G, we have

SQ(G) � n .

Moreover SQ(G) = n if and only if the complement G of G is disconnected.

As an example of Proposition 2.1, one can consider G as the generalized Pe-
tersen or Kneser graphs. In fact, the generalized Petersen graphs GP(n,k) are 3-regular
([12]), and so it is easy to see that

SQ(GP(n,k)) = 3− cos

(
2πt
n

)
− cos

(
2πtk

n

)

+

√(
cos

(
2πt
n

)
− cos

(
2πtk

n

))2

+1 ,

where t =
[

n
2k

]
. Moreover, by [32], for k =

(n−r
r

)
-regular Kneser graphs K(n,r) , there

exists

SQ(K(n,r)) =
(

n− r
r

)
+
(

n− r−1
r−1

)
.

Now let us denote ∑
i
d2

i by M1 . Then we obtain the first main result of this paper.

THEOREM 2.2. For a graph G with n vertices and m edges, it is always true that

SQ(G) � μ1 +
√

2m+M1− μ2
1 � 2

√
m+

M1

2
. (5)

Moreover the first inequality becomes equality if and only if G is K2 .

Proof. From equations in (4), it is true that μ2
1 + μ2

n � 2m+M1 . So

SQ(G) = μ1− μn � μ1 + μn � μ1 +
√

2m+M1− μ2
1 ,

as required in the first inequality of (5). Furthermore, by considering μ1 as a func-

tion, we get that the expression μ1 +
√

2m+M1− μ2
1 is strictly increasing when

μ1 �
√

m+ M1
2 , and strictly decreasing when μ1 �

√
m+ M1

2 . These prove the va-
lidity of the second inequality in (5).

Suppose that the first equality holds in (5), in other words,

SQ(G) = μ1− μn = μ1 + μn = μ1 +
√

2m+M1− μ2
1 .

Thus, from the first part of this last equality, we have μn = 0, and so G will be a

bipartite graph ([5, Proposition 2.1]). Also, from the second part, we obtain
n−1

∑
i=2

μ2
i = 0

which implies that G is actually K2 . The sufficient part (⇐) is clear.
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Hence the result. �

By setting suitable variables in Proposition 1.1, we also have the following upper
bound for SQ(G) which is different than the bound presented in Theorem 2.2.

COROLLARY 2.3. The signless Laplacian spread has an upper bound

SQ(G) � 2

√
m+

M1

2
− 2m2

n
. (6)

REMARK 2.4. Since 2
√

m+ M1
2 − 2m2

n � 2
√

m+ M1
2 , it is easy to see that the

bound in (6) is better than the second upper bound in (5) .

We recall that the Perron-Frobenius theorem [2, p. 26] implies that μ1(G) has a
unique positive unit eigenvector if G is connected. Further, by considering μ1(G) has
the monotonicity property ([2, p. 27]), we then get the following lemma.

LEMMA 2.5. If H is a subgraph of G, then μ1(H) � μ1(G) . Nevertheless, if G
is connected and H is a proper subgraph of G, then μ1(H) = μ1(G) .

A subgraph H of G is induced if it is obtained from G by deleting a proper subset
U of the vertices of G . This is often written as H = G\U . Hence, by considering
Lemma 2.5 and the definition of induced subgraph, we can state and prove the following
theorem.

THEOREM 2.6. If H is an induced subgraph of G, then μn(G) � μn(H) . There-
fore SQ(H)� SQ(G) with strict inequality if G is connected and H is a proper induced
subgraph of G.

Proof. If U is a proper subset of the vertex set of G , then the signless Lapla-
cian matrix of H = G\U is a principal submatrix of the signless Laplacian matrix of
G . Thus, by eigenvalue interlacing [4, p. 19], [14] and [15, p. 189], we get μn(G) �
μn(G\U) . Also, by Lemma 2.5, μ1(G) � μ1(G\U) with strict inequality if G is con-
nected and U is proper and non-empty. Thus, SQ(H) � SQ(G) with strict inequality
if H is a proper induced subgraph of connected G , as desired. �

3. Bounds for SQ(G) in terms of clique and independence numbers

Let ω and α denote the clique and independence numbers of G which are defined
as the number of vertices of the largest clique and the largest independence sets in G ,
respectively. Suppose that the graph G has the maximum degree Δ and the minimum
degree δ . Also let us consider the eigenvalues in (3) of the signless Laplacian matrix
Q(G) with the normalized eigenvectors u1 > 0,u2, · · · ,un , respectively. Finally, let us
assume that β ∈ (−1,+1) and e denotes the vector of all ones in R

n . By considering
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these parameters, in [23, Theorem 3.1 and Theorem 3.2], Maden et al. obtained new
lower bounds for ω and α as follows:

ω � max
i=2,3,..,n

n
n− [β 2μi +(1−β 2)μ1−Δ]

(7)

and

α � max
i=2,3,···,n

U2
i

β 2μi +(1−β 2)μ1− δ +U2
i

, (8)

where si = eT ui and Ui = β si + s1

√
1−β 2 .

It can be easily deduced that, for i = 2, · · · ,n , the best bounds of ω and α are the
maximum values of the ratios in (7) and (8), respectively. Therefore, by setting i = n
in these two inequalities, we obtain the following two results as bounds for SQ(G) in
terms of ω and α .

THEOREM 3.1. Let G be a graph with n vertices and maximum degree Δ . Then

SQ(G) �
μ1 + n

ω −n−Δ
β 2 ,

where β ∈ (−1,+1) .

THEOREM 3.2. Let G be a graph with n vertices and minimum degree δ . Then

SQ(G) �
μ1 +U2

i

(
1− 1

α
)− δ

β 2 ,

where, for 1 � i � n, Ui = β si +s1

√
1−β 2 and si = eT ui such that ui is the i-th entry

of the normalized eigenvector u.

In the following, we will present a different bound for SQ(G) in terms of only ω .
In fact this bound is a generalization of Theorem 2.2.

THEOREM 3.3. Let the graph G (with m edges) has a clique of order ω > 1 .
Then

SQ(G) � μ1 +
√

2m+M1− μ2
1 − (n−2)(ω −2)2 . (9)

Moreover, inequality becomes equality if and only if G is K2 .

Proof. When ω = 2, the result follows from Theorem 2.2. So let us suppose that
ω � 3.

Since Kω is an induced subgraph of G which has the signless eigenvalue ω − 2
with multiplicity ω −1, it follows by interlacing [14] or [15, p. 189] that the total ω−1
smallest eigenvalues of G (including μn ) must all be less than or equal to ω −2. Thus,
at least n−2 eigenvalues other than μn must be less than or equal to ω −2. By using
(4), we then have μ2

1 + μ2
n +(n−2)(ω−2)2 � 2m+M1 or, equivalently,

SQ(G) = μ1− μn � μ1 + μn � μ1 +
√

2m+M1− μ2
1 − (n−2)(ω −2)2 .
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Now assume that equality holds in above. Then, by the fact μ1 − μn = μ1 + μn ,
we clearly have μn = 0. So G is actually bipartite, i.e., ω = 2. Therefore, by a similar
idea as in Theorem 2.2, G must be K2 . In fact the reverse part is clear.

Hence the result. �

The upper bound in Theorem 3.3 can also be presented as in the following corol-
lary.

COROLLARY 3.4. With the same conditions as in Theorem 3.3 ,

SQ(G) � 2

√
2m+M1− μ2

1 − (n−2)(ω−2)2

2
. (10)

Proof. By (9), if we consider the function

f (x) = x+
√

2m+M1− x2− μ2
1 − (n−2)(ω−2)2,

then the maximum value of f (x) occurs actually in

x =

√
2m+M 1− μ2

1 − (n−2)(ω−2)2

2
.

This completes the proof. �

REMARK 3.5. We strictly note that while the bound in (9) is better than the first
bound in (5) , the bound in (10) is better than the second bound in (5) . To strengthen
this theory, let us consider the graph G = K4 + e as drawn in Figure 1. It is clear that
SQ(G) = 5.7446. Moreover, while the upper bound in (5) is 9.7478, the bound in (9)
is 7.9195.
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Figure 1: The graph K4 +e
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4. Bounds for SQ(G) in terms of the tensor product of graphs

This section mainly investigates some new upper bounds for the spread of signless
Laplacian over tensor products of simple graphs. We remind that, for any two graphs
G and H , the tensor product G⊗H is a graph such that the vertex set of G⊗H is
the Cartesian product V (G)×V (H) ; and any two vertices (g1,h1) and (g2,h2) are
adjacent in G⊗H if and only if g1 is adjacent with g2 and h1 is adjacent with h2 . It is
also equivalent to the Krönecker product (which is denoted by the same notation “⊗”)
of the adjacency matrices of the graphs ([35]). This connection implies the following
lemma.

LEMMA 4.1. ([6, 35]) Let us consider the graphs G and H with their adjacency
matrices A(G) and A(H) , respectively. Then the adjacency matrix A(G⊗H) of G⊗H
is equal to the A(G)⊗A(H) .

As a next step of Lemma 4.1, by considering the above definition of the tensor
product, one can easily see that

D(G⊗H) = D(G)⊗D(H) , (11)

where D(.) is the diagonal degree matrix.
It is known that, for any two matrices A = [ai j]m×n and B = [bkl]p×q , the Krönecker

product A⊗B is defined as the block matrix [ai jB]mp×nq (see [6, pg. 44]). Hence, for
any matrices X , Y , Z and T , a simple calculation gives that

(X +Y )⊗ (Z +T) = (X ⊗Z)+ (X ⊗T)+ (Y ⊗Z)+ (Y ⊗T ) . (12)

This above material will be needed for the following lemma which will be used in
the proof of the main result of this section.

LEMMA 4.2. Let G and H be two graphs. Then

Q(G⊗H) = Q(G)⊗Q(H)−D(G)⊗A(H)−A(G)⊗D(H) , (13)

where D(.) and Q(.) are the diagonal degree and signless Laplacian matrices, respec-
tively, as previously.

Proof. Since Q(.) = D(.)+A(.) , we clearly have

Q(G⊗H) = D(G⊗H)+A(G⊗H)
= D(G)⊗D(H)+A(G)⊗A(H)

by Eq. (11) and Lemma 4.1.

On the other hand, in Eq. (12), if we replace X by D(G) , Y by A(G) , Z by D(H)
and T by A(H) , then we obtain

[D(G)⊗D(H)]+ [A(G)⊗A(H)] = [D(G)+A(G)]⊗ [D(H)+A(H)]
− [D(G)⊗A(H)+A(G)⊗D(H)].
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Again, by using the definition of Q(.) , we finally obtain

Q(G⊗H) = Q(G)⊗Q(H)−D(G)⊗A(H)−A(G)⊗D(H) ,

as required. �

Let eig(M) denotes the set of eigenvalues of an arbitrary matrix M . Then the
following proposition is obtained.

PROPOSITION 4.3. ([17]) Let Ai and Bi be matrices, where 1 � i � n. For all
1 � i < j � n, if AiA j = AjAi and BiB j = BjBi hold, then

eig

(
n

∑
i=1

Ai ⊗Bi

)
= ∑eig(Ai⊗Bi) .

After all these above material, we can present the following main result of this
section.

THEOREM 4.4. Let G and H be two simple graphs with n and m vertices, re-
spectively. Then there exists an upper bound

SQ(G⊗H) � SQ(G)×SQ(H)+ δ (G)[SQ(H)−SA(H)]+δ (H)[SQ(G)−SA(G)] ,

where δ (.) and SA(.) denote the minimum degree and the adjacency spread of related
graphs, respectively.

Proof. By Proposition 4.3 and taking into account Eq. (13), we have

μ1(G⊗H) = μ1(G)μ1(H)−Δ(G)ρ1(H)−ρ1(G)Δ(H) ,

(where Δ(.) denotes the maximum degree of G) and

μnm(G⊗H) = μn(G)μm(H)− δ (G)ρm(H)−ρn(G)δ (H) .

Then we get

SQ(G⊗H) = μ1(G⊗H)− μnm(G⊗H) (14)

= [μ1(G)− μn(G)][μ1(H)− μm(H)]
+ μn(G)[μ1(H)− μm(H)]+ μn(H)[μ1(G)− μn(G)]
−Δ(G)ρ1(H)−ρ1(G)Δ(H)+ δ (G)ρm(H)+ ρn(G)δ (H).

By the meaning of δ and Δ (in other words, δ � Δ), the above equality can be written
as

SQ(G⊗H) � SQ(G)SQ(H)+ μn(G)SQ(H)+ μm(H)SQ(G)
− δ (G)ρ1(H)−ρ1(G)δ (H)+ δ (G)ρm(H)+ ρn(G)δ (H)

= SQ(G)SQ(H)+ μn(G)SQ(H)+ μm(H)SQ(G)
− δ (G)SA(H)− δ (H)SA(G) .
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Moreover, by using the fact μn(G) � δ (G) and μm(H) � δ (H) (cf. [21, Corollary
2.1]), we obtain the required inequality over SQ(G⊗H) .

Hence the result. �

One can give the following consequences of Theorem 4.4 by considering regular
and bipartite graphs.

COROLLARY 4.5. Suppose that G and H are k and t -regular graphs, respec-
tively. Then

SQ(G⊗H) � SQ(G)SQ(H) .

Proof. By Proposition 2.1, the proof is clear. �

COROLLARY 4.6. Let G be a k -regular and H be a t -regular graphs. Also, let
us suppose that G is bipartite. Then

SQ(G⊗H) = tSQ(G)− kSQ(H) .

Proof. Suppose that G is a k -regular, bipartite graph with n vertices, and H is
a t -regular graph with m vertices. By Eq. (14), since SQ(G⊗H) = μ1(G⊗H)−
μnm(G⊗H) , we get

SQ(G⊗H) = μ1(G)μ1(H)− kλ1(H)− tλ1(G)− μn(G)μm(H)
+kλm(H)+ tλn(G).

Bipartivity assumption on G implies that μn(G) = 0 (cf. [5, Proposition 2.1]). There-
fore the above equality over SQ(G⊗H) can be written as

SQ(G⊗H) = μ1(G)μ1(H)− k(λ1(H)−λm(H))− t(λ1(G)−λn(G)) .

Furthermore, by Proposition 2.1, we conclude that

SQ(G⊗H) = SQ(G)(μ1(H)− t)− kSQ(H) = tSQ(G)− kSQ(H) ,

as required. �
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