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OPERATOR INEQUALITIES ON HILBERT C*-MODULES
VIA THE CAUCHY-SCHWARZ INEQUALITY

JUN IcHI Fuilll, MASATOSHI FuJil AND YUKI SEO

(Communicated by M. S. Moslehian)

Abstract. By means of a new Cauchy-Schwarz inequality in the framework of a semi-inner prod-
uct C* -module over a unital C* -algebra, we discuss some operator inequalities on a Hilbert C* -
module, for example, Kantorovich inequaity, Polya-Szego inequality, the covariance-variance in-
equality, Ozeki-Izumino-Mori-Seo inequality, Wielandt inequality, Hienz-Kato-Furuta inequal-
ity and Malamud inequality.

1. Introduction

Hilbert C*-modules are mathematical objects which generalize the notions of a
Hilbert space and a C*-algebra. The theory of Hilbert C*-modules is different from
that of Hilbert spaces, for example, not all bounded linear operator between Hilbert
C*-modules is adjointable and not all closed submodule of a Hilbert C*-module is
complemented, see [24]. The theory of Hilbert C*-modules over commutative C*-
algebras was first appeared in a work of Kaplansky [23] in 1953. Since then it has
grown rapidly and has played significant roles in the theory of operator algebras and
noncommutative geometry, also see [24].

The Cauchy-Schwarz inequality is one of the most important inequalities in math-
ematics. Spreading out the idea of Kantorovich inequality, Dragomir [4] proposed
several additive and multiplicative type reverses of the Cauchy—Schwarz inequality in
a pre-inner product space. Niculescu [29], IliSevi¢-Varosanec [20] and J.I. Fujii [6],
Moslehian—Persson [27] and Arambasi¢c-Baki¢—Moslehian [2] have investigated some
Cauchy—-Schwarz type inequalities and its various reverses in the framework of semi-
inner product C*-modules. In [7], we gave some reverse Cauchy—Schwarz inequali-
ties and presented some Klamkin—Mclenaghan, Shisha—Mond, Cassels and Griiss type
inequalities on semi-inner product C*-modules. In [8], we presented a new Cauchy-
Schwarz inequality in the framework of a semi-inner product C*-module over a uni-
tal C*-algebra, and as an application we obtained a Kantorovich type inequality on a
Hilbert C*-module.
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Keywords and phrases: Hilbert C* -modules, operator geometric mean, Cauchy-Schwarz inequality,
operator inequality, Plya-Szego inequality, covariance-variance inequality, Wielandt inequality, Kantorovich
inequality, Hienz-Kato-Furuta inequality, Malamud inequality.
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In this paper, as a continuation of [8], by means of a new Cauchy-Schwarz in-
equality in a semi-inner product C*-module, we discuss some operator inequalities on
a Hilbert C*-module, for example, Kantorovich inequality, Pélya-Szego inequality, the
covariance-variance inequality, Ozeki-Izumino-Mori-Seo inequality, Wielandt inequal-
ity, Hienz-Kato-Furuta inequality and Malamud inequality.

2. Preliminaries

Let us fix our notation and terminology. Let %(H) be the C*-algebra of all
bounded linear operators on a Hilbert space H, and <7 be a unital C* -algebra of #(H)
with the center 2°(.«7). Since a unit of </ differs from the identity operator of #(H),
we denote the unit element of o/ by e. For a € o7, we denote the real part of a by
Re a = % (a+a*), and the absolute value of a by |a| = (a*a)% . For positive elements
a,b € o7 , the operator geometric mean of a and b is defined by

atb — a2 (aiéba7%> *az

for invertible a. If a and b are non invertible, then a £ b € &/" C %(H), where
/" is the double commutant or equivalently the closure of .2/ in the strong operator
topology on A(H). In fact, since a f b satisfies the upper semicontinuity, it follows that
afb=1limg_ o(a+¢ee)t (b+ €e) in the strong operator topology. If <7 is monotone
complete, in the sense that every bounded increasing net in the self-adjoint part has a
supremum with respect to the usual partial order, then we have a f b € o7, see [18].
The operator geometric mean has the symmetric property: a § b = b § a. In the case
that ¢ and b commute, we have a # b = v/ab. The operator geometric mean has the
following characterization (see [1]):

aﬁb:max{XEd”Cﬂ(H):X:X*, <§§)>0}. 2.1)

A complex linear space 2 is said to be an inner product .27 -module (or a pre-
Hilbert .7 -module) if 2" is aright .7 -module together with a C*-valued map (x,y) —
(x,y) : Z x Z — < such that

() (xay+Pz) =alxy)+Bxz) (nyxeZ apecC),
(i) (x,ya)={x,y)a (x,y€ Z,a€ ),
(i) (»x) = (xy)" (KyeZ),
@iv) (x,x) >0 (xe Z") and if (x,x) =0, then x =0.

The linear structures of .« and 2~ are assumed to be compatible. If 2" satisfies
all conditions for an inner-product .7 -module except for the second part of (iv), then
we call 2" a semi-inner product .7 -module. For such modules, the following Cauchy-
Schwarz inequality [24, Proposition 1.1] holds:

) () || ex) || (nyy  forallx,ye 2. (2.2)
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In this case, we write || x ||:= /]| (x,x) ||, where the latter norm denotes the C*-norm
of o . It follows from (2.2) that if 2" is an inner-product <7 -module, then || - || is a
norm on 2. If 2 is complete with respect to this norm, then 2" is called a Hilbert
& -module.

In [8], from a viewpoint of operator theory, we presented the following new Cauchy-
Schwarz inequality in the framework of a semi-inner product C*-module over a unital
C* -algebra:

THEOREM 2.1. (Cauchy-Schwarz inequality) Let 2 be a semi-inner product
&/ -module over a unital C*—algebra </ . If x,y € X such that the inner product
(x,y) has a polar decomposition (x,y) = u|(x,y)| with a partial isometry u € </, then

[y < W nxjut (3y). (2.3)

Under the assumption that 2 is an inner product <7 -module and (y,y) is invertible,
the equality in (2.3) holds if and only if xu = yb for some b € < .

REMARK 2.2. Let a be an element in a unital C*-algebra <7 . We have the polar
decomposition a = u|a|, where |a| € o and u € /" . In general, u ¢ </ . We present
an example of an infinite dimensional C*-algebra </ such that u € & (of course, it is
known that if < is the full matrix algebra .#,(C), then u € </ is a unitary ), see [28].

For n=1,2,---, let H, be a finite dimensional Hilbert space. Put

A ={(tn)y=1 | tn € B(Hp), sup || 1, || < +oo}.

Then &/ is a unital C*-algebra. For each a = (,,);;_, € </, since %(H,) is finite
dimensional, we have the polar decomposition #, = u,|t,| with a unitary u, € %(H,).
Put u = (u,);_,. Then u is unitary in <. Since |a| = (|t,|);7_,, it follows that a = ula|
with a unitary u € o7.

We now review the basic concepts of adjointable operators on a Hilbert C*-module.
Let 2" be a Hilbert C*-module over a unital C*-algebra 7. We define £ (Z") to be
the set of all maps 7 : 2" +— 2 for which there is a map T* : 2" +— 2  such that
(Tx,y) = (x,T*y) for x,y € 2". For T € £ (), using the closed graph theorem, it is
easy to see that 7 is o7 -linear and bounded. We call .£(2") the set of adjointable op-
erators on 2. Moreover, we define its norm by || T ||= sup{|| (T'x, Tx) ||%|| x||< 1},
Then £ (%) isaC*-algebra. As usual, the symbol [ stands for the identity operator in
Z(Z). In addition, T is positive in .£(2") if and only if (x,Tx) >0 forall x € 2.
For each element a € Z (<), we define R, : 2" +— 2 by Rux =xa forall x € 2.
Then it follows that R, € £(%") and TR, =R,T .

By virtue of Theorem 2.1, we obtain the following generalized Cauchy—Schwarz
inequality on a Hilbert C*-module:

THEOREM 2.3. (generalized Cauchy-Schwarz inequality) Let T be a positive op-
eratorin (2. If x,y € 2" such that (x,Ty) has a polar decomposition (x,Ty) =
u| {x, Ty) | with a partial isometry u € <7, then

|, Ty) | <u* (x,Tx)utt (y,Ty). (2.4)
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Under the assumption that (y,Ty) is invertible, the equality in (2.4) holds if and only if
T3 (xu) = T? (yb) for some b € o .

Proof. We have this theorem by replacing x and y by T3xand T2 y, respectively
in Theorem 2.1. [J

Throughout the paper we follow the terminology and nonation of the book [24].

3. Kantorovich inequality

In this section, we discuss Kantorovich type inequalities on a Hilbert C*-module
2" over a unital C*-algebra <7 and present its applications. We refer to [22, 17, 16] on
the Kantorovich inequality on a Hilbert space. Let T be a positive invertible operator
in £ (). Then it follows from Theorem 2.1 that

(x,x) < (x,Tx) <x,T_1x> (3.1)

for all x € 2. Asreverses of (3.1), we show the following Kantorovich type inequal-
ities on a Hilbert C*-module by means of the operator geometric mean, also see [8,
Theorem 3.3]:

THEOREM 3.1. (Kantorovich inequality) Let T be a positive invertible operator
in L(Z") suchthat R, < T < Ry, for some positive invertible elements a,b € % (7).
Then

(x,Tx) t <x,T71x> < =(a+b)(ab) "% (x,x) (3.2)

N —

and

(¢, Tx) ¢ (x,T"'x) — (x,x) < (a—b)*(a(a+b))~! (3.3)

1
4
forall xe 2.
Proof. Since (R, —T)(T —Ry)T~" >0, we have T+ Ry T~ ' < R(,p) and this
implies
(x,Tx) +ab (x,T"'x) < (a+b) (x,x) (3.4

for all x € 2". For a given € > 0, it follows from the arithmetic-geometric mean
inequality [16, Theorem 1.27] that

Vab ((x,Tx) +€e) t (x,T™'x) = ({x,Tx) +€e) §ab{x,T 'x)

< % ((x, Tx) +ab (x,T"'x) + ee) < %((‘H‘b) (x,x) + €e).

Since the operator geometric mean satisfies the upper semicontinuity, we have (3.2) as
el0.
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To prove (3.3), we may assume that <x7 T‘1x> is invertible by observation above,
since (x,T~'x) + €e is invertible for all £ > 0.

_1 1
Ifweput X = (x, T 'x) 2 (x,Tx) (x,T~'x) 2, then it follows from (3.4) and the
symmetric property of the operator geometric mean that

(x,Tx) 4 (x, T_1x> —(e,x) = (x, T7'x) ¢ (x,Tx) — (x,x)

<(x, T~ x> X? (x, T x>2 (a+b) " (x,Tx) —ab(a+b) " {x,T"'x)
1 1 a 2 1
=(x,T"'x)? (—(a—!—b)1 <X7 — —;b) + %(a—b)2(a—|—b)l> (x, T 'x)?

(a—D) (a+b)7l<x7T71x>

<

< —(a—b)*(a(a+b))!

-I>I>—-I>I>—‘

and whence we have (3.3). 0O

REMARK 3.2. We point out that there are some cases where the equality holds for
(3.3) in Theorem 3.1. As a matter of fact, suppose that there exist y,z € 2 such that
Ty=ya and Tz =zb, and (y,y) = (z,z) = e and (y,z) = 0. For example, let <% be a
unital C*-algebra of B(Hy). Let 2" = @/ ® o and &/ = <% ® M, . For two positive
invertible elements a,b € 2 (%) such that a < b, put T =R, ®R;, y = e®0 and
z=0@e. Then T is positive invertible and R,p, < T < Rpqp. In this case, y,z € 2
satisfies the desired conditions. Now, if we put

_ Vbva+vB)

2Yava+b +2)

then we have

VBWa VB oy (Jat VB
A ST

Hence it follows that

vb(va+vb)®

and (x,x) = 2 Vaath)

(x,Tx) =

(6, Tx) § (x,T"'x) — (x,x) = %(a —b)*(a(a+b))""

as desired. Similarly we have some cases where the equality holds for (3.2), also see
[8, Remark 4.5].

As an application, we discuss a Cauchy type inequality and its reverses on a Hilbert
C*-module by means of the operator geometric mean. Let A and B be positive in
Z(Z). Then we have the following Cauchy type inequality on a Hilbert C*-module:

<x,A2 f Bzx> < <x,A2x> i <x, Bzx> (3.5)
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for all x € 2. In fact, we have (3.5) by replacing x and T by (A~'B2A~!)2Ax and
(A"'B2A=1)% in (3.1), respectively.

As applications of the Kantorovich inequality in Theorem 3.1, we show a Pdlya-
Szegd type inequality and an Ozeki-Izumino-Mori-Seo type inequality in the setting of
Hilbert C* -modules by means of the operator geometric mean. We refer to [31, 30, 21]
on the Pélya-Szego inequality and the Ozeki-Izumino-Mori-Seo inequality on a Hilbert
space.

THEOREM 3.3. (P6lya-Szegd inequality) Let A and B be positive invertible op-
erators in L (2") such that Ry, <A < Ry, and R,, < B < Ry, for some positive
invertible elements ay,by,a,,by € (/). Then

<x,A2x> f <x,B2x> < z(aap —i—blbg)(alazblbg)*% <x,A2 tiBzx> (3.6)

1
2
forall xe 2.

Proof. Let T be a positive invertible element in £ (2") such that R, < T <R,

for some positive invertible elements a,b € Z°(<7). If we replace x by Tixin (3.2) of
Theorem 3.1, then we get

(x,T%x) £ (x,x) < (a—l—b)(ab)_% (x, Tx) 3.7

N =

1
for all x € 2. Moreover, replacing x and T by Ax and (A~'B>A™")? in (3.7) respec-

1
tively, we get the desired inequality (3.0) since R, 1 < (A71B2A71) 7 < Ry D
1

THEOREM 3.4. (Ozeki-Izumino-Mori-Seo inequality) Let A and B be positive
invertible operators in £ (%) such that Rqyy KA Ry, and Ry, < B < Ry, for some

positive invertible elements ay,by,ay,by € (7). Then

1

1 (biby — araz)*(araz(a1az + bi1b2)) ™" (3.8)

<x,A2x> i <x, B2x> — <x,A2 tiBzx> <
forall xe Z .

Proof. 1f we replace x by T3xin (3.3) of Theorem 3.1, then we get

(x, T2x> t (x,x) — (x, Tx) < —(a—b)*(a(a+b))~" (3.9)

E

1
forall x € 2". Moreover, replacing x and 7 by Ax and (A~'B?A™")? in (3.9), respec-

1
tively, we get the desired inequality (3.8) since R, 1 < (A7'B?A71)? < R, - O
1 1
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4. Covariance-variance inequality
Let S and T be two operators in .Z(Z"). The covariance of S and T at x € 2~
with (x,x) = e is introduced by
Covy(S,T) = (x,5"Tx) — (x,8x)" {x, Tx) 4.1)
and the variance of S at x € 2" with (x,x) = e by
Var,(S) = (x,5*Sx) — | (x,8x) |%; (4.2)

also see [2, 10, 11, 32]. Notice that Var,(S) is a positive element in <7 . In fact, it
follows from (2.2) that

| (x, 8x) [2 = (x, Sx)* (x, 8%) <|| (x,x) || (Sx,Sx) = (x,5*Sx).

By the new Cauchy-Schwarz inequality (Theorem 2.1) on a Hilbert C*-module,
we have the following covariance-variance inequality:

THEOREM 4.1. (Covariance-variance inequality) Let S and T be two operators
in L(X7). Suppose that x € 2~ with (x,x) = e such that the covariance Covy(S,T)
has a polar decomposition Covy(S,T) = u|Covy(S,T)| with a partial isometry u € < .
Then

[Covy(S,T)| < u*Vary(S)u § Var,(T). 4.3)

Under the assumption that Var(T) is invertible, the equality in (4.3) holds if and
only if (Sx—x{x,5x))u = (Tx —x(x,Tx))b for some b € o .

Proof. By the definition (4.2) and (x,x) = e, we have
Var,(S) = (Sx — x (x,Sx),Sx — x (x, Sx))
and hence it follows from (4.1) and Theorem 2.1 that
[Covy(S,T)| = | (x,S"Tx) — (x,Sx)" (x,Tx) |
= | {(Sx—x{x,Sx), Tx —x{x,Tx))|
< (Sx—x{x,8x),Sx —x{(x,Sx))ulf (Tx—x{x,Tx),Tx—x(x,Tx))
= u"Var,(S)u § Var,(T). O

REMARK 4.2. The variance of S at x € 2" with (x,x) = e has the following
characterization:
Var,(S) = inf (Sx —xc,Sx —xc).

ceol
In fact, for each ¢ € &7

(8x — xc,Sx — xc) — Vary(S) = ({x,Sx) —¢)" ({x,8x) —¢) =0

and hence
Var,(S) < (Sx —xc,Sx — xc) 4.4)

forall x € 2" with (x,x) = e. If we put ¢ = (x,Sx), then the equality in (4.4) holds.
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An operator S € Z(Z) is said to be accretive if Re (x,Sx) >0 for all x € 2 .
The symbol C,;(S) stands for C,;(S) = (S —R4)*(Rp — S) for some a,b € Z (o),
also see [4, 5].

LEMMA 4.3. (Variance inequality) Let S be an operator in £ (Z") and a,b €
Z (). The operator C,,(S) is accretive if and only if

1 a+bl|’ 1
Var,(S) < Z|a—b|2— ‘(x,Sx)— 2 << Z|a—b|2)
Sforall xe X with (x,x) =e.
Proof. If C,;,(S) is accretive, then
Re (x,C.5(S)x) =Re[(a+b)" (x,5x)] — (Sx,Sx) —Re(a"b) > 0. 4.5)

We therefore have

Var,(S) = (Sx,Sx) — (x,5x)" (x, Sx)
< Rel(a+b)* (x,Sx)] — Re(a*b) — (x,Sx)" (x, Sx)

_ <<x,5x>_ “;b)* <<x,sx>— “”’) +%|a+b|2—Re(a*b)

2
{x,Sx) —

a+bl?

2

1
= Z|a—b|2—

The converse implication can be easily proved. [

By the accretivity, we have the following corollary which is regarded as a ratio
type reverse of (4.2)

COROLLARY 4.4. Let S be an operator in £ (Z") and a,b € % (<) such that
Re(a*b) > 0. If Cop(S) is accretive, then

(x, I5P) < %\a+b|2(Re a*b)1| (x, Sx) |2
forall x € Z with (x,x) =e.
Proof. Since C, 5 (S) is accretive and
%|a—|— b>(Re a*b) ! (x,Sx)* (x,Sx) — Re[(a+b)* (x,Sx)] + Re(a*b)
- <%(a+b)*(\/lW)_l (x, Sx) — M)

*

y (%(a—k b (VRe@h)~" (x,5%) — VRe a*b)

>0,
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it follows from (4.5) that
(x,5"Sx) <Re[(a+D)* (x,5x)] —Re(a"b) < %\a—k b*(Re a*b) ! (x,Sx)" (x,Sx)
as desired. [
THEOREM 4.5. Let S and T be two operators in £ (Z") and a,b,c,d € Z ()
such that Cy4(S) and C.4(T) are accretive. Suppose that x € 2~ with (x,x) = e such

that the covariance Covy(S,T) has a polar decomposition Covy(S,T) = u|Cov,(S,T)|
with a partial isometry u € </ . Then

Covy(8,T)|
<5 (wla=bPutle—dP) = (u] (x,(S = Rags)) Put | {x,(T = Resa)x) )

1
al :
<< % (u*\a—b\2uﬁ |c—d2)).

Proof. Tt follows from Theorem 4.1 and Lemma 4.3 that

2
) . <§|c—d2—

Since the operator geometric mean is subadditive, we have

|Cov(S,T)| < u*Vary(S)u § Var,(T)

c+d
2

a+b

(x,8x) — 7

(x,Tx) —

1
< (Zu*|a—b|2u —u"

)

1
Z(u*|a—b|2uﬁ lc—dJ?)
1 b’ b|®

— (Zu*la—blzu—u* <x,Sx>—% u+u* <x75x>—a+ ”)

1 ’ ’

8| =le—d)?— (x,Tx)—c+d + (x7Tx>—c+d
4 2
a-+b

1
> (Zu*|a—b|2u— u” | {x,Sx) —

2
u) il (%c—d|2— '(x,Tx)—c—;d

+ (u*\ <x, (S—RM)x> ut |<x,(T—Rﬂ)x> |2> .

2 2

2)
Therefore, combining two results above, we have Theorem 4.5. [J

As a corollary, we have the following Kantorovich type inequality on a Hilbert
C*-module which somewhat differs from (3.2) in Theorem 3.1:

COROLLARY 4.6. Let A be a positive invertible operator in £ (Z") such that
R, <A <R, for some positive invertible elements a and b in % (/). Suppose that x €
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2 with (x,x) = e such that the covariance Covy(A,A~") has a polar decomposition
Covy(A,A™Y) = u|Cov,(A,A~Y)| with a partial isometry u € <7 . Then

le — (x,Ax) (x,A"'x)| < (b a)*(ab) ™!
In particular, if <7 is an abelian C* -algebra, then

(x,Ax) (x,A” x> (a+b)*(ab)~. (4.6)

Proof. The assumption R, < A < R, and a,b € Z (/) implies C,,(A) and
Cpi1 41 (A~1) are accretive. Hence it follows from Theorem 4.5 that

le — (x,Ax) (x,A"'x) | = |Cov,(A,A7")| < (u*(b—a)zuﬁ (b1 —ail)z)

N

1 _
= ;(b—a?(a)”!

If o/ is abelian, then the fact e = (x,x) < (x,Ax) (x,A"'x) implies the desired
inequality (4.6). [

By virtue of Lemma 4.3 (Variance inequality), we obtain the following Ozeki-
Izumino-Mori-Seo type inequality which somewhat differs from Theorem 3.4 (see also

[26]):

THEOREM 4.7. Let A and B be positive invertible operators in £ (%) such that
Ry, <A <Ry, and Ry, < B < Ry, for some positive invertible ay,by,az,by € Z ().
Then

| <x,Bzx>% <x,A2x>% - <x,A2x>7% <x,A2ﬁBzx> <x,A2x>% ? < %(alag — b1b2)2af2b%
Sforevery x € 2" with (x,x) =e.
In particular, if o7 is an abelian C* -algebra, then
<x,A2x> <x, Bzx> < A2ﬁ32x> alag - blbz) zb%.

Proof. If C is a positive operator in .Z(.Z") such that R, < C < R;, for some pos-
itive invertible a,b € Z(./), then C,;(C) is accretive and it follows from Lemma 4.3
(the variance inequality) that

1

{x,C%x) — (x, Cx)? < Z(a —b)? 4.7)

for every x € 2 with (x,x) = e. If we replace x by x(x,x)” 2 in (4.7) where (x,x) is
invertible, then we have

(x, C2x> — (x,Cx) (6, x) " (x,Cx) < = (a—b)? (x,x) . (4.3)

Bl



OPERATOR INEQUALITIES ON HILBERT C * -MODULES 305

Since A is positive invertible in (%), it follows that A > 81 > 0 for some positive
scalar & > 0 and this implies (x,A%x) > 62 (x,x) = 6% >0 forall x € 2 with (x,x) =
e. Hence (x,A%x) is invertible. If we replace C by (A~1B2A~1)2 and x by Ax with
(x,x) = e in (4.8), then R, -1 < (A7'B?A™)3 <R, 1 and we have
(a1a — b1by)?

<x,Bzx> — <x,A2ﬁB2x> <x,A2x>_1 <x,A2ﬁBzx> < % 22 <x,A2x> . 4.9
arby

1

1
Multiplying (x,A%x)? - (x,A%x)? on both sides of (4.9), we have

|<X’Bzx>% <x’A2x>% 2= <x7A2x>_% (x,A4B’x) <x,A2x>% K

D=

= <x,A2x>% <x,Bzx> <x,A2x>% — <x,A2x>% <x7A2ﬁBzx> <x,A2x>_1 <x7A2ﬁBzx> <x,A2x>
1 (ayaz — b1by)? 2 1 _
< Z% (1 A%)" < S(@az—bib2)-a; b} O

5. Wielandt inequality

In this section, we consider a Wielandt type inequality on a Hilbert C*-module
[19, 12], which is regarded as an improvement of the generalized Cauchy-Schwarz
inequality (Theorem 2.3):

THEOREM 5.1. (Wielandt inequality) Let T be a positive invertible operator in
L(Z") such that R, < T < Ry, for positive invertible a,b € % (/). Suppose that
x,y € X" suchthat (x,Ty) has a polar decomposition (x,Ty) = u|{(x, Ty) | with a partial
isometry u € o . If x and y are an orthogonal pair, then

[(x,Ty) | < (b—a)(b+a)~" (u" (x,Tx)ut (y,Ty)). (5.1)

Proof. By the assumption R, < T < R, we have
a{xc+yd,xc+yd) < (xc+yd, T (xc+yd)) < b(xc+yd,xc+yd) (5.2)
for all ¢,d € o/ . Then it follows from the orthogonality of x and y that
0< " ((x,Tx) —a(x,x))c+d" (y,Tx)c+c* (x,Tyyd+d" ((y, Ty) —a{y,y))d (5.3)
and
0< ™ (b{x,x) — (x,Tx))c+d" (y,Tx)c+ " (x, Tyyd +d* (b {y,y) — (3, Ty))d (5.4)
forall ¢,d € o/ . Calculating (5.3) xb + (5.4) xa, we have

c*(b—a){x,Tx)c+ (b+a)(d (y,Ty)c+c" (x,Ty)d)+ (b—a)d* (y,Ty)d > 0
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v o [((D—a)(x,Tx) (b+a){x,Ty)\ (¢
() <<b+a> (e.1y)" (b—a) <y,Ty>) (d) -
forall ¢,d € </ . Therefore, we have

(b—a)(x,Tx) (b+a)(x,Ty)
((b+a) (e, Ty)* (b—a) (y7Ty>) = 0.

Since (x,Ty) = u| (x,Ty)| and (x,Ty)" = |(x,Ty) |u*, we have
((b —a)u* (x,Tx)u (b+a)|{x,Ty) |)
Ty)

P AR ek
- (o S) (fzf e e gi) (3 S) =0

By the property (2.1) of the operator geometric mean, we have the desired inequality
¢.1). O

and hence

@‘@‘

The second proof of the Wielandt inequality is along with the one stated in [3].
Proof 2. If we put ¢ = 2ab(b+a)~' € (<), then

1 TY) | = | (e, T) — (6, )e| = | (x, (T — R)Y) |
%x,Tf%(T—RC)T*%T%y> _ ’<T%x, (I_RcTil)T%y>’

< (I—-R.T™ ,(I—RCT—I)T%y>.
<

Since 0 <R, < T < Rp, implies R,—1 < T~ L<R .1, it follows that

Ry ayprar-t — T = Roupora) 1 T") = Ry ay(pray-1—e+2ab(b+a)-15-1 = O-
By the commutativity, we have (I —R.T~!)? < R(p—a)2(p+a)-2 and this implies
1 1
<(1 _RCT71)2T7y7 T7y> < <R(b—a)2(b+a)*2T%ya T%)’>
= (b—a)*(b+a)*(y,Ty).
Hence we have
|, Ty) | <o <T%x, T%x> ut <(1 —RTNHTy, (I - RCT’l)T%y>

<u” <T%x,T%x> ut <R(b_a)z(b+a)72T%y,T%y>
=(b—a)(b+a) ' (u (x,Tx)ut (y,Ty)). O

Based on a proof in Theorem 5.1, we can generalize the Wielandt inequality with-
out assumption on the orthogonality of vectors.
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THEOREM 5.2. (generalized Wielandt inequality) Let T be a positive invertible
operator in L (") such that 0 < R, < T < Ry, for positive invertible a,b € % (/).
Suppose that x,y € X such that (b+ a) (x,Ty) —2ab (x,y) has a polar decomposition
(b+a)(x,Ty) —2ab (x,y) = u|(b+ a) (x,Ty) — 2ab (x,y) | with a partial isometry u €
. Then

[ (0, Ty) —2ab(b+a) " (x| < (b-a)(b+a) " (0 (rTx)ut (1 Ty).  (5.5)

Proof. Without assumption on the orthogonality of x and y, the inequality (5.2)
implies the following two inequalities

0 < ¢"((x,Tx) —a(x,x))c+d"({y,Tx) — a(y,x))c+c"((x,Ty)
—a(x,y))d+d*((y,Ty) —a(y,y))d

and

0 < *(b{x,x) — {(x,Tx))c+d*({y,Tx) — b {y,x))c+ c*({x,Ty)
—b(x,y))d+d"(b(y,y) = (»,Ty))d

for all ¢,d € <7 . Hence we have

o g (b—a)(x,Tx) (b+a)(x,Ty) —2ab{x,y)\ (¢
(dm@MWﬂ%M%m* (b—a) (n.Ty) ﬂ@>°

forall c,d € o/. A similar argument as in the proof of Theorem 5.1 induce the desired

inequality (5.5). O

REMARK 5.3. In the case that 7 is an abelian unital C*-algebra, we consider
relations among the Wielandt inequality, the Cauchy-Schwarz inequality and the Kan-
torovich inequality on a Hilbert C*-module. Let T be a positive invertible operator in
ZL(4) such that R, < T < R, for positive invertible a,b € 7. For given x and y in
2 with (x,x) =e, we put z=y—x{x,y). Since (x,z) =0, it follows from Theorem 5.1
that

[0, T2) > < (b—a)*(b+a) 2 (x,Tx) (2, T2)

and hence
|, Ty) P < (0, Tx) (0, Ty) —dab(b —a) % (x, Tx) (x,y) — (e, Ty) |,
Moreover, if we replace y by 7~ 'x, then we have the Kantorovich inequality
(x,Tx) <x, T71x> < (b+a)?(4ab)™!

forall x € 2" with (x,x) =e.
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6. Heinz-Kato-Furuta inequality

In this section, we discuss a Heinz-Kato-Furuta type inequality on a Hilbert C*-
module.

For T € (%), we denote the range of T and the kernel of T by R(T) and
N(T), respectively. A closed submodule .# of 2" is said to be complemented if
2 = ./ @ .#~+. Suppose that the closures of the ranges of T and T* are both com-
plemented. Then it follows from [24, Proposition 3.8] that 7" has a polar decomposition
T =U|T| with a partial isometry U € .Z(.Z"). We have the following lemma, also see
[14, 15]:

LEMMA 6.1. Let T be an operatorin £ (Z") such that the closures of the ranges
of T and T* are both complemented. Then the following hold:

(i) N(IT|) =N(T).

(ii) |T*|9=U|T|7U* for any positive number q.

Proof. For (i), since (|T|x,|T|x) = (x,|T|’x) = (x,T*Tx) = (Tx,Tx), we have
|T|x=0<= Tx=0 and hence N(|T|) = N(T).

For (ii), since N(|T|9) = N(|T|) forall ¢ > 0 and U*U is the initial projection on
R(|T|), it follows that R(|T|7) = N(|T|9)* = N(|T|)* =R(|T|) and U*U|T|4 = |T|9.
Since |T*|> = (U|T|U*)?, it follows from U*U|T| = |T| that

pa(|IT* ) = Upa(|IT U

for any polynomial p,(¢). If p,(t) — +/t, then we have |T*| = U|T|U*. By in-
duction, |T*|m = U|T|= holds for any positive integer m and n. Hence we have
|T*|9=U|T|U" as & —q. [

THEOREM 6.2. (Heinz-Kato-Furuta inequality) Let T be an operatorin £ (%)
such that the closures of the ranges of T and T* are both complemented. Let A and
B be positive operators in L (Z) such that (T*x,T*x) < (Ax,Ax) and (Ty,Ty) <
(By,By) forall x,y € Z . If x,y € Z" such that <x7 T|T|°‘+/3_1y> has a polar decomp-
sition (x,T|T|*P=1y) = u| (x,T|T|*"P=1y) | with a partial isometry u € < , then the
following inequality holds

‘<x,T\T|a+ﬁ*1y>‘ <u <x,A2°‘x>u it <y,Bzﬁy> (6.1)

forany o, €[0,1] and oo+ > 1.

Proof. By the assumption, we have |7*|> < A? and |T|> < B2. It follows from
the Léwner-Heinz inequality that (x, |T*|*®x) < (x,A*%x) and (y, \T|2ﬁy> < Bzﬁy>
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for each o, 3 € [0,1]. In the case o, € [0,1] such that § >0 and oo+ f§ > 1, by
Lemma 6.1 we have |T*|*# = U|T|?PU* for any B > 0. Then for all x,y € 2

(eI | = (T eBy )| = (710 s, 71|

Su™{|T|%U*x,|T|*U*x)u t <|T|I3y, |T|ﬁy>

w (UITPeU s, x)ut (0T Py)
= (T Pyt (0 ITPPy) <u' (vA%%x)ut (3, B%y)

and the result is trivial in the case § =0. O

Next we discuss Wielandt type variations of the Heinz-Kato-Furuta inequality on
a Hilbert C*-module, also see [13].

THEOREM 6.3. Let T be an operator in £ (%) such that the closures of the
ranges of T and T* are both complemented, and satisfying R, < |T| < Ry, for some
positive invertible a,b € % (). Suppose that x,y € Z and 'y > 0 such that

(5 TIT| =Bty ) = 2b7a (b7 + @)~ (o, Ty )
= u‘<x,T|T|°‘+ﬁ*1y> —2b7a (bY +a¥) ! <x,T\T\°‘+ﬁ*7*1y>’
has a polar decomposition with a partial isometry u € &/ . Then
(i) )
< @7 = a7 +a") " (" (e TPyt (3 T1Py))
Sforall a,B € R.

Proof. Let T = U|T| be the polar decomposition of 7 with a partial isometry
Uec.Z(Z). Forgiven x,y € 2", we put x; = |T|* "2U*x and y; = |T|P~7/%y. Thus
we use Theorem 5.2 for xy,y; and T = |T|". Since 0 < Ry < |T|Y < Rpy for y>0
and U|T|PU* = |T*|P by Lemma 6.1, we have the desired inequality. [

In particular, we take Y = o+ B in above.
COROLLARY 6.4. Let T, a,b, x,y be as in Theorem 6.3. Then
‘<x,T|T|°‘+ﬁ*1y> —2p BB (path 4 qotBy-1 <x,T|T|*1y>‘
< (0P = aPY 5P 4 a7 (w (| TPyt (TP )

forall o, € R with a+ 3 > 0.
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Next we obtain the following Wielandt type Heinz-Kato-Furuta inequalities by the
Lowner-Heinz inequality.

THEOREM 6.5. Let T, a,b, x,y be as in Theorem 6.3. If A and B are positive

invertible operatorsin £ (Z") such that {T*x,T*x) < (Ax,Ax) and (Ty,Ty) < (By,By)
Sforall x,y € Z°, then each y> 0

‘<x,T\T|a+ﬁ71y> —2b%a"(b" +a") ! <x,T|T|°‘+ﬁ*7’*1y>‘
< @7 —anB ) (i (et (nBy))

forall a,B €10,1].
In particular,

)<x,T|T|°‘+ﬁ_1y> _Zba+/3aa+/3(ba+/3 _|_aa+/3)—1 <x,T|T|_1y>)
<P — @B P P (' (%) u g (3. 8%y))
forall a,B €10,1].

COROLLARY 6.6. Let T,A,B, a,b, x,y be as in Theorem 6.5, and o, € [0,1]
and y > 0 be given. If x,y € 2~ moreover satisfy

TIT|*B=""1x£0 and <x,T\T|a+ﬁ*7’71y> =0,
then
‘<x,T\T\°‘+ﬁ*1y>’ < (ba+ﬁ _aa+ﬁ)(ba+ﬁ +a°‘+ﬁ)*1 (u* <x,A2°‘x>uﬁ <y,Bzﬁy>> '

Finally we mention some corollaries of Theorem 6.2 which are generalizations of
the Wielandt inequality.

COROLLARY 6.7. Let T =U|T| be an operatorin £ (Z") with a partial isome-
try U € Z(X) suchthat R, < |T| < Ry for some positive invertible a,b € % (). If
x,y € X such that (x,Ty) —2ab(a+b)~! (x,Uy) has a polar decomposition (x,Ty) —
2ab(a+b)~ (x,Uy) = u| (x,Ty) —2ab(a+b)~' (x,Uy)| with a partial isometry u €
o , then

| (x,Ty) = 2ab(a+b)~ (x,Uy)| < (b—a)(a+b) ™" (" (x,[T*x)ut (3,|T]y)).

COROLLARY 6.8. Let T =U|T| be an operator in £ (Z") with a partial isom-
etry U € L(Z) such that R, < |T| < Ry, for some positive invertible a,b € % ().
If x,y € & such that (x,Ty) has a polar decomposition (x,Ty) = u|{x,Ty)| and
(x,Uy) =0, then

| (e Ty) [ < (b—a)(a+b) " (u" (x,|T )t (3,|T1y)).
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7. Malamud inequality

Let A be a positive invertible operator in .Z(.2") such that R, < A < R, for some
positive invertible a,b € Z(7). Here we call the operator constant (b — a)?(b+a) 2
Wielandt’s operator constant for A which is denoted by W,,(A), that is,

Win(A) = (b—a)*(b+a) 2 e Z (),

see also [25]. As in the proof of Theorem 5.1, the Wielandt inequality is represented as
follows:

Wielandt Theorem. 1If A is a positive invertible operator in £ (£") such that
R, <A <R, for some positive invertible a,b € Z°(/), then

Win(A) (x,Ax) (x,Ay)
( (x,Ay)" (y,Ay)) >0 (7.1)

for every orthogonal pair x and y.

In this section, we show the equivalence theorem including the Malamud and the
Wielandt ones on a Hilbert C*-module, also see [25, 9]. Let P be a projection in
ZL(Z). Tt follows that the range of P is orthogonally complemented, that is, R(P) &
R(I-P)=2.Forx,ye 2 ,define 0,,: 2 — 2 by 0,,(z) =x(y,2) (z€ Z") and
Oy € L (). If xe 2 with (x,x) =e, then 6y, is a projection in .Z(Z"). Firstly,
we have the following lemma:

LEMMA 7.1. Let A be a positive invertible operatorin £ (Z") and ¢ € Z ()
a positive element. Then the following conditions are mutually equivalent:

(i) A+ (c—e)PAP > 0 for all projections P;

(i) c¢PAP PAPt
PLAP PLAP*

) > 0 for all projections P;

(i) (cPAP PAQ

QAP QAQ> 2 0 for all mutually orthogonal projections P and Q;

. ¢ (x,Ax) (x,Ay)
() ((y,AX> (,Ay)

where PL =T1—P.

) > 0 for all orthogonal pairs x and y in 2,

Proof. 1dentifying an operator A on 2~ as

PAP PAPt
PLAP PrAP
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on the orthogonal direct sum R(P) & R(P*), we have A+ (c —e)PAP > 0 correspond-
ing to the operator matrix in (ii). Thus (i) and (ii) are equivalent. If P and Q are
mutually orthogonal, then QP+ = Q and hence the equation

10\ (cPAP PAP*+\ (1 0\ _(cPAP PAQ
00/ \PtAP PLAP+ ) \0 Q) ~ \ QAP QAQ
assures that (ii) implies (iii), which shows the equivalence.
Suppose that (iii) holds. For all orthogonal pair x and y, we may assume that

(x,x) = e and (y,y) = e. We put two orthogonal projections P and Q in .£(Z") such
that P = 6, and Q = 6, ,. Then for all v,w € &/

(Go)-(anm on2) ()

=v'c(x,Ax) v+ (x,Ay) w4+ w" (y,Ax) v+ w" (y,Ay) w

() (8 Ba) () =

and hence we have (iv). Conversely, suppose that (iv) holds. For all orthogonal pro-
jections P and Q, put x; = Px and y; = Qy for each x,y € 2" and we have x| L y;.
Then

x\ (cPAP PAP*\ (x
<<y) ) (PLAP PLAPL> <y>> = C<xlanl> + <x17A)’1>+ <)’1an1> + <)’17A)’1>

_ <<e) (c (x1,Ax1) (thyl)) (e)> >0
e)’\ On,Ax1) (y,An)) \e)/ ™
and hence we have (iii). Therefore we have the equivalence (iii) and (iv). [

Let A be a positive invertible operator in .Z(.2") such that R, <A < R, for some
positive invertible a,b € 2°(</). The set {(x,Ax) : (x,x) = e} is called the operator
range of A. Suppose that a and b are the least bounds for the operator range of A
in the sense that there exist two sequences {x,} and {y,} in 2" such that (x,,x,) =
(Yn,yn) = e and (x,,y,) =0 forall n, and {x,,Ax,) — a and (y,,Ay,) — b as n — .
For example, let .7 be a unital C* -algebra. Put Z; = &/ forall i € Z. We define 2" =
Picz i to be the set of all sequences x = (x;), with x; in 2}, such that >,z (x;,x;)
convergesin <7 . It follows that 2" is a Hilbert C*-module. Take {a,};"_, and {b,};_,
such that a, | a and b, | b, and a,,b, € Z (/). Put ¢; = a;+; for i =0,1,2,--- and
c_i=b;fori=1,2,---. Put A=R; for ¢ = (¢;). Since ¢; € Z (), it follows that A
is a positive invertible operator in .Z(2") such that R; < A < Rj;, where d = (a;) and
b= (b;) for a;=a and b; =b forall i € Z. For n € N, x, = (x})icz and y, = (! )iez
are defined by

d_le if i=n and i Je if i=-n
" 10 otherwise Y1 =10 otherwise.

In this case, two sequences {x,} and {y,} in 2 satisfies the desired conditions.
Now, we have the following Malamud type theorem:
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THEOREM 7.2. Let A be a positive invertible operatorin £ (Z") suchthat R, <
A < Ry, for some positive invertible a,b € % (/). If a and b are the least bounds
Sfor the operator range of A, then for a positive element ¢ € 2 (<), the following
assertions are equivalent:

(i) A+ (c—e)PAP > 0 for all projections P;

(ii) = Wpu(A).

Proof. Suppose that (ii) holds. By (7.1), we have

¢ (x,Ax) (x,Ay)
<<x,Ay>* <y,Ay>> >0

for every orthogonal pair x and y. By Lemma 7.1, we have (i).
Conversely, suppose that (i) holds. Since 0 <7—R;,-1A <1, we have (I —Rb—lA)z <
I —R,—1A and it follows that
0 < ((Ry— A)yn, (R — A)yn) = b* (I = Ry-1A)yn, (I = Ry-1A)yn)
< B (s (I = Ry-1A)yn) = b (yn, (R — A)yn)

and hence we have

1 Gms Ay (1= Cons (Ro — Ay 1< Gonrn) 112 (R — A)yins (R — A)ya) |12
< B2 (s (R — Ay} |2 0.

If we put u, = x, +y, and v, = x, —y,,, then we have || u, || =/ v, ||= V2 and (u,,v,,) =
0. Now, it follows that

| (un,Avn) — (a+D) ||
< ns Axn) =@ || + || nyAvn) =D || + [ Gy Avn) || + || (Vs Axn) [[— 0

as n — oo, Similarly, we have (v,,Av,) — a+b and (u,,Av,) —a—b as n — oo. Since
x, and y, are orthogonal for all n, it follows from Lemma 7.1 that

C<xn7Axn> <xn7Ayn>
( (Y, Axn) <yn7Ayn>) 70

and hence this implies

cla+b)a—>b
( a—b a+b> 20

Therefore, we have the desired inequality (ii). [

Acknowledgement. The authors would like to express their cordial thanks to the
referee for his/her valuable suggestions.
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