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OPERATOR INEQUALITIES ON HILBERT C∗ –MODULES

VIA THE CAUCHY–SCHWARZ INEQUALITY

JUN ICHI FUJII, MASATOSHI FUJII AND YUKI SEO

(Communicated by M. S. Moslehian)

Abstract. By means of a new Cauchy-Schwarz inequality in the framework of a semi-inner prod-
uct C ∗ -module over a unital C∗ -algebra, we discuss some operator inequalities on a Hilbert C ∗ -
module, for example, Kantorovich inequaity, Pólya-Szegö inequality, the covariance-variance in-
equality, Ozeki-Izumino-Mori-Seo inequality, Wielandt inequality, Hienz-Kato-Furuta inequal-
ity and Malamud inequality.

1. Introduction

Hilbert C∗ -modules are mathematical objects which generalize the notions of a
Hilbert space and a C∗ -algebra. The theory of Hilbert C∗ -modules is different from
that of Hilbert spaces, for example, not all bounded linear operator between Hilbert
C∗ -modules is adjointable and not all closed submodule of a Hilbert C∗ -module is
complemented, see [24]. The theory of Hilbert C∗ -modules over commutative C∗ -
algebras was first appeared in a work of Kaplansky [23] in 1953. Since then it has
grown rapidly and has played significant roles in the theory of operator algebras and
noncommutative geometry, also see [24].

The Cauchy-Schwarz inequality is one of the most important inequalities in math-
ematics. Spreading out the idea of Kantorovich inequality, Dragomir [4] proposed
several additive and multiplicative type reverses of the Cauchy–Schwarz inequality in
a pre-inner product space. Niculescu [29], Ilišević-Varošanec [20] and J.I. Fujii [6],
Moslehian–Persson [27] and Arambasić–Bakić–Moslehian [2] have investigated some
Cauchy–Schwarz type inequalities and its various reverses in the framework of semi-
inner product C∗ -modules. In [7], we gave some reverse Cauchy–Schwarz inequali-
ties and presented some Klamkin–Mclenaghan, Shisha–Mond, Cassels and Grüss type
inequalities on semi-inner product C∗ -modules. In [8], we presented a new Cauchy-
Schwarz inequality in the framework of a semi-inner product C∗ -module over a uni-
tal C∗ -algebra, and as an application we obtained a Kantorovich type inequality on a
Hilbert C∗ -module.
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In this paper, as a continuation of [8], by means of a new Cauchy-Schwarz in-
equality in a semi-inner product C∗ -module, we discuss some operator inequalities on
a Hilbert C∗ -module, for example, Kantorovich inequality, Pólya-Szegö inequality, the
covariance-variance inequality, Ozeki-Izumino-Mori-Seo inequality, Wielandt inequal-
ity, Hienz-Kato-Furuta inequality and Malamud inequality.

2. Preliminaries

Let us fix our notation and terminology. Let B(H) be the C∗ -algebra of all
bounded linear operators on a Hilbert space H , and A be a unital C∗ -algebra of B(H)
with the center Z (A ) . Since a unit of A differs from the identity operator of B(H) ,
we denote the unit element of A by e . For a ∈ A , we denote the real part of a by
Re a = 1

2 (a+a∗) , and the absolute value of a by |a| = (a∗a)
1
2 . For positive elements

a,b ∈ A , the operator geometric mean of a and b is defined by

a � b = a
1
2

(
a−

1
2 ba−

1
2

) 1
2
a

1
2

for invertible a . If a and b are non invertible, then a � b ∈ A ′′ ⊂ B(H) , where
A ′′ is the double commutant or equivalently the closure of A in the strong operator
topology on B(H) . In fact, since a � b satisfies the upper semicontinuity, it follows that
a � b = limε→+0(a+ εe) � (b+ εe) in the strong operator topology. If A is monotone
complete, in the sense that every bounded increasing net in the self-adjoint part has a
supremum with respect to the usual partial order, then we have a � b ∈ A , see [18].
The operator geometric mean has the symmetric property: a � b = b � a . In the case
that a and b commute, we have a � b =

√
ab . The operator geometric mean has the

following characterization (see [1]):

a � b = max

{
X ∈ A ′′ ⊂ B(H) : X = X∗,

(
a X
X b

)
� 0

}
. (2.1)

A complex linear space X is said to be an inner product A -module (or a pre-
Hilbert A -module) if X is a right A -module together with a C∗ -valued map (x,y) �→
〈x,y〉 : X ×X → A such that

(i) 〈x,αy+ β z〉 = α〈x,y〉+ β 〈x,z〉 (x,y,x ∈ X ,α,β ∈ C) ,

(ii) 〈x,ya〉 = 〈x,y〉a (x,y ∈ X ,a ∈ A ) ,

(iii) 〈y,x〉 = 〈x,y〉∗ (x,y ∈ X ) ,

(iv) 〈x,x〉 � 0 (x ∈ X ) and if 〈x,x〉 = 0, then x = 0.

The linear structures of A and X are assumed to be compatible. If X satisfies
all conditions for an inner-product A -module except for the second part of (iv), then
we call X a semi-inner product A -module. For such modules, the following Cauchy-
Schwarz inequality [24, Proposition 1.1] holds:

〈x,y〉∗ 〈x,y〉 �‖ 〈x,x〉 ‖ 〈y,y〉 for all x,y ∈ X . (2.2)
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In this case, we write ‖ x ‖:=√‖ 〈x,x〉 ‖ , where the latter norm denotes the C∗ -norm
of A . It follows from (2.2) that if X is an inner-product A -module, then ‖ · ‖ is a
norm on X . If X is complete with respect to this norm, then X is called a Hilbert
A -module.

In [8], from a viewpoint of operator theory, we presented the following new Cauchy-
Schwarz inequality in the framework of a semi-inner product C∗ -module over a unital
C∗ -algebra:

THEOREM 2.1. (Cauchy-Schwarz inequality) Let X be a semi-inner product
A -module over a unital C∗ –algebra A . If x,y ∈ X such that the inner product
〈x,y〉 has a polar decomposition 〈x,y〉 = u|〈x,y〉| with a partial isometry u ∈ A , then

|〈x,y〉| � u∗〈x,x〉u � 〈y,y〉. (2.3)

Under the assumption that X is an inner product A -module and 〈y,y〉 is invertible,
the equality in (2.3) holds if and only if xu = yb for some b ∈ A .

REMARK 2.2. Let a be an element in a unital C∗ -algebra A . We have the polar
decomposition a = u|a| , where |a| ∈ A and u ∈ A

′′
. In general, u �∈ A . We present

an example of an infinite dimensional C∗ -algebra A such that u ∈ A (of course, it is
known that if A is the full matrix algebra Mn(C) , then u ∈ A is a unitary) , see [28].

For n = 1,2, · · · , let Hn be a finite dimensional Hilbert space. Put

A = {(tn)∞
n=1 | tn ∈ B(Hn), sup ‖ tn ‖< +∞}.

Then A is a unital C∗ -algebra. For each a = (tn)∞
n=1 ∈ A , since B(Hn) is finite

dimensional, we have the polar decomposition tn = un|tn| with a unitary un ∈ B(Hn) .
Put u = (un)∞

n=1 . Then u is unitary in A . Since |a|= (|tn|)∞
n=1 , it follows that a = u|a|

with a unitary u ∈ A .

We now review the basic concepts of adjointable operators on a Hilbert C∗ -module.
Let X be a Hilbert C∗ -module over a unital C∗ -algebra A . We define L (X ) to be
the set of all maps T : X �→ X for which there is a map T ∗ : X �→ X such that
〈Tx,y〉 = 〈x,T ∗y〉 for x,y ∈ X . For T ∈ L (X ) , using the closed graph theorem, it is
easy to see that T is A -linear and bounded. We call L (X ) the set of adjointable op-

erators on X . Moreover, we define its norm by ‖ T ‖= sup{‖ 〈Tx,Tx〉 ‖ 1
2 :‖ x ‖� 1} .

Then L (X ) is a C∗ -algebra. As usual, the symbol I stands for the identity operator in
L (X ) . In addition, T is positive in L (X ) if and only if 〈x,Tx〉 � 0 for all x ∈ X .
For each element a ∈ Z (A ) , we define Ra : X �→ X by Rax = xa for all x ∈ X .
Then it follows that Ra ∈ L (X ) and TRa = RaT .

By virtue of Theorem 2.1, we obtain the following generalized Cauchy–Schwarz
inequality on a Hilbert C∗ -module:

THEOREM 2.3. (generalized Cauchy-Schwarz inequality) Let T be a positive op-
erator in L (X ) . If x,y ∈ X such that 〈x,Ty〉 has a polar decomposition 〈x,Ty〉 =
u| 〈x,Ty〉 | with a partial isometry u ∈ A , then

| 〈x,Ty〉 | � u∗ 〈x,Tx〉u � 〈y,Ty〉 . (2.4)
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Under the assumption that 〈y,Ty〉 is invertible, the equality in (2.4) holds if and only if

T
1
2 (xu) = T

1
2 (yb) for some b ∈ A .

Proof. We have this theorem by replacing x and y by T
1
2 x and T

1
2 y , respectively

in Theorem 2.1. �

Throughout the paper we follow the terminology and nonation of the book [24].

3. Kantorovich inequality

In this section, we discuss Kantorovich type inequalities on a Hilbert C∗ -module
X over a unital C∗ -algebra A and present its applications. We refer to [22, 17, 16] on
the Kantorovich inequality on a Hilbert space. Let T be a positive invertible operator
in L (X ) . Then it follows from Theorem 2.1 that

〈x,x〉 � 〈x,Tx〉 �
〈
x,T−1x

〉
(3.1)

for all x ∈ X . As reverses of (3.1), we show the following Kantorovich type inequal-
ities on a Hilbert C∗ -module by means of the operator geometric mean, also see [8,
Theorem 3.3]:

THEOREM 3.1. (Kantorovich inequality) Let T be a positive invertible operator
in L (X ) such that Ra � T � Rb for some positive invertible elements a,b ∈ Z (A ) .
Then

〈x,Tx〉 �
〈
x,T−1x

〉
� 1

2
(a+b)(ab)−1/2〈x,x〉 (3.2)

and

〈x,Tx〉 �
〈
x,T−1x

〉−〈x,x〉 � 1
4
(a−b)2(a(a+b))−1 (3.3)

for all x ∈ X .

Proof. Since (Rb −T)(T −Ra)T−1 � 0, we have T +RabT−1 � R(a+b) and this
implies

〈x,Tx〉+ab
〈
x,T−1x

〉
� (a+b) 〈x,x〉 (3.4)

for all x ∈ X . For a given ε > 0, it follows from the arithmetic-geometric mean
inequality [16, Theorem 1.27] that

√
ab(〈x,Tx〉+ εe) �

〈
x,T−1x

〉
= (〈x,Tx〉+ εe) � ab

〈
x,T−1x

〉
� 1

2

(〈x,Tx〉+ab
〈
x,T−1x

〉
+ εe

)
� 1

2
((a+b)〈x,x〉+ εe) .

Since the operator geometric mean satisfies the upper semicontinuity, we have (3.2) as
ε ↓ 0.
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To prove (3.3), we may assume that
〈
x,T−1x

〉
is invertible by observation above,

since
〈
x,T−1x

〉
+ εe is invertible for all ε > 0.

If we put X =
〈
x,T−1x

〉− 1
2 〈x,Tx〉〈x,T−1x

〉− 1
2 , then it follows from (3.4) and the

symmetric property of the operator geometric mean that

〈x,Tx〉 �
〈
x,T−1x

〉−〈x,x〉 =
〈
x,T−1x

〉
� 〈x,Tx〉− 〈x,x〉

�
〈
x,T−1x

〉 1
2 X

1
2
〈
x,T−1x

〉 1
2 − (a+b)−1 〈x,Tx〉−ab(a+b)−1〈x,T−1x

〉
=
〈
x,T−1x

〉 1
2

(
−(a+b)−1

(
X

1
2 − a+b

2

)2

+
1
4
(a−b)2(a+b)−1

)〈
x,T−1x

〉 1
2

� 1
4
(a−b)2(a+b)−1〈x,T−1x

〉
� 1

4
(a−b)2(a(a+b))−1

and whence we have (3.3). �

REMARK 3.2. We point out that there are some cases where the equality holds for
(3.3) in Theorem 3.1. As a matter of fact, suppose that there exist y,z ∈ X such that
Ty = ya and Tz = zb , and 〈y,y〉 = 〈z,z〉 = e and 〈y,z〉 = 0. For example, let A0 be a
unital C∗ -algebra of B(H0) . Let X = A0 ⊕A0 and A = A0⊕M2 . For two positive
invertible elements a,b ∈ Z (A0) such that a < b , put T = Ra ⊕Rb , y = e⊕ 0 and
z = 0⊕ e . Then T is positive invertible and Ra⊕a � T � Rb⊕b . In this case, y,z ∈ X
satisfies the desired conditions. Now, if we put

x =
4
√

b(
√

a+
√

b)
2 4
√

a
√

a+b
(y+ z),

then we have

〈x,Tx〉 =
√

b(
√

a+
√

b)2

4
√

a
,
〈
x,T−1x

〉
=

(
√

a+
√

b)2

4a
√

ab
and 〈x,x〉 =

√
b(
√

a+
√

b)2

2
√

a(a+b)
.

Hence it follows that

〈x,Tx〉 �
〈
x,T−1x

〉−〈x,x〉 =
1
4
(a−b)2(a(a+b))−1

as desired. Similarly we have some cases where the equality holds for (3.2), also see
[8, Remark 4.5].

As an application, we discuss a Cauchy type inequality and its reverses on a Hilbert
C∗ -module by means of the operator geometric mean. Let A and B be positive in
L (X ) . Then we have the following Cauchy type inequality on a Hilbert C∗ -module:〈

x,A2 � B2x
〉

�
〈
x,A2x

〉
�
〈
x,B2x

〉
(3.5)
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for all x ∈ X . In fact, we have (3.5) by replacing x and T by (A−1B2A−1)
1
2 Ax and

(A−1B2A−1)
1
2 in (3.1), respectively.

As applications of the Kantorovich inequality in Theorem 3.1, we show a Pólya-
Szegö type inequality and an Ozeki-Izumino-Mori-Seo type inequality in the setting of
Hilbert C∗ -modules by means of the operator geometric mean. We refer to [31, 30, 21]
on the Pólya-Szegö inequality and the Ozeki-Izumino-Mori-Seo inequality on a Hilbert
space.

THEOREM 3.3. (Pólya-Szegö inequality) Let A and B be positive invertible op-
erators in L (X ) such that Ra1 � A � Rb1 and Ra2 � B � Rb2 for some positive
invertible elements a1,b1,a2,b2 ∈ Z (A ) . Then

〈
x,A2x

〉
�
〈
x,B2x

〉
� 1

2
(a1a2 +b1b2)(a1a2b1b2)−

1
2
〈
x,A2 � B2x

〉
(3.6)

for all x ∈ X .

Proof. Let T be a positive invertible element in L (X ) such that Ra � T � Rb

for some positive invertible elements a,b ∈Z (A ) . If we replace x by T
1
2 x in (3.2) of

Theorem 3.1, then we get

〈
x,T 2x

〉
� 〈x,x〉 � 1

2
(a+b)(ab)−

1
2 〈x,Tx〉 (3.7)

for all x ∈X . Moreover, replacing x and T by Ax and
(
A−1B2A−1

) 1
2 in (3.7) respec-

tively, we get the desired inequality (3.6) since Ra2b
−1
1

�
(
A−1B2A−1

) 1
2 � Rb2a

−1
1

. �

THEOREM 3.4. (Ozeki-Izumino-Mori-Seo inequality) Let A and B be positive
invertible operators in L (X ) such that Ra1 � A � Rb1 and Ra2 � B � Rb2 for some
positive invertible elements a1,b1,a2,b2 ∈ Z (A ) . Then

〈
x,A2x

〉
�
〈
x,B2x

〉− 〈x,A2 � B2x
〉

� 1
4

(b1b2−a1a2)2(a1a2(a1a2 +b1b2))−1 (3.8)

for all x ∈ X .

Proof. If we replace x by T
1
2 x in (3.3) of Theorem 3.1, then we get

〈
x,T 2x

〉
� 〈x,x〉− 〈x,Tx〉 � 1

4
(a−b)2(a(a+b))−1 (3.9)

for all x∈X . Moreover, replacing x and T by Ax and
(
A−1B2A−1

) 1
2 in (3.9), respec-

tively, we get the desired inequality (3.8) since Ra2b
−1
1

�
(
A−1B2A−1

) 1
2 � Rb2a

−1
1

. �
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4. Covariance-variance inequality

Let S and T be two operators in L (X ) . The covariance of S and T at x ∈ X
with 〈x,x〉 = e is introduced by

Covx(S,T ) = 〈x,S∗Tx〉− 〈x,Sx〉∗ 〈x,Tx〉 (4.1)

and the variance of S at x ∈ X with 〈x,x〉 = e by

Varx(S) = 〈x,S∗Sx〉− |〈x,Sx〉 |2; (4.2)

also see [2, 10, 11, 32]. Notice that Varx(S) is a positive element in A . In fact, it
follows from (2.2) that

| 〈x,Sx〉 |2 = 〈x,Sx〉∗ 〈x,Sx〉 �‖ 〈x,x〉 ‖ 〈Sx,Sx〉= 〈x,S∗Sx〉 .
By the new Cauchy-Schwarz inequality (Theorem 2.1) on a Hilbert C∗ -module,

we have the following covariance-variance inequality:

THEOREM 4.1. (Covariance-variance inequality) Let S and T be two operators
in L (X ) . Suppose that x ∈ X with 〈x,x〉 = e such that the covariance Covx(S,T )
has a polar decomposition Covx(S,T ) = u|Covx(S,T )| with a partial isometry u ∈A .
Then

|Covx(S,T )| � u∗Varx(S)u � Varx(T ). (4.3)

Under the assumption that Varx(T ) is invertible, the equality in (4.3) holds if and
only if (Sx− x〈x,Sx〉)u = (Tx− x〈x,Tx〉)b for some b ∈ A .

Proof. By the definition (4.2) and 〈x,x〉 = e , we have

Varx(S) = 〈Sx− x〈x,Sx〉 ,Sx− x〈x,Sx〉〉
and hence it follows from (4.1) and Theorem 2.1 that

|Covx(S,T )| = | 〈x,S∗Tx〉− 〈x,Sx〉∗ 〈x,Tx〉 |
= | 〈Sx− x〈x,Sx〉 ,Tx− x〈x,Tx〉〉 |
� u∗ 〈Sx− x〈x,Sx〉 ,Sx− x〈x,Sx〉〉u � 〈Tx− x〈x,Tx〉 ,Tx− x〈x,Tx〉〉
= u∗Varx(S)u � Varx(T ). �

REMARK 4.2. The variance of S at x ∈ X with 〈x,x〉 = e has the following
characterization:

Varx(S) = inf
c∈A

〈Sx− xc,Sx− xc〉.
In fact, for each c ∈ A

〈Sx− xc,Sx− xc〉−Varx(S) = (〈x,Sx〉− c)∗ (〈x,Sx〉− c) � 0

and hence
Varx(S) � 〈Sx− xc,Sx− xc〉 (4.4)

for all x ∈ X with 〈x,x〉 = e . If we put c = 〈x,Sx〉 , then the equality in (4.4) holds.
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An operator S ∈ L (X ) is said to be accretive if Re〈x,Sx〉 � 0 for all x ∈ X .
The symbol Ca,b(S) stands for Ca,b(S) = (S−Ra)∗(Rb − S) for some a,b ∈ Z (A ) ,
also see [4, 5].

LEMMA 4.3. (Variance inequality) Let S be an operator in L (X ) and a,b ∈
Z (A ) . The operator Ca,b(S) is accretive if and only if

Varx(S) � 1
4
|a−b|2−

∣∣∣∣〈x,Sx〉− a+b
2

∣∣∣∣
2 (

� 1
4
|a−b|2

)

for all x ∈ X with 〈x,x〉 = e.

Proof. If Ca,b(S) is accretive, then

Re
〈
x,Ca,b(S)x

〉
= Re [(a+b)∗ 〈x,Sx〉]−〈Sx,Sx〉−Re(a∗b) � 0. (4.5)

We therefore have

Varx(S) = 〈Sx,Sx〉− 〈x,Sx〉∗ 〈x,Sx〉
� Re [(a+b)∗ 〈x,Sx〉]−Re(a∗b)−〈x,Sx〉∗ 〈x,Sx〉

= −
(
〈x,Sx〉− a+b

2

)∗(
〈x,Sx〉− a+b

2

)
+

1
4
|a+b|2−Re(a∗b)

=
1
4
|a−b|2−

∣∣∣∣〈x,Sx〉− a+b
2

∣∣∣∣
2

.

The converse implication can be easily proved. �
By the accretivity, we have the following corollary which is regarded as a ratio

type reverse of (4.2)

COROLLARY 4.4. Let S be an operator in L (X ) and a,b ∈ Z (A ) such that
Re(a∗b) > 0 . If Ca,b(S) is accretive, then

〈
x, |S|2x〉� 1

4
|a+b|2(Re a∗b)−1| 〈x,Sx〉 |2

for all x ∈ X with 〈x,x〉 = e.

Proof. Since Ca,b(S) is accretive and

1
4
|a+b|2(Re a∗b)−1 〈x,Sx〉∗ 〈x,Sx〉−Re [(a+b)∗ 〈x,Sx〉]+Re(a∗b)

=
(

1
2
(a+b)∗(

√
Re a∗b)−1 〈x,Sx〉−

√
Re a∗b

)∗

×
(

1
2
(a+b)∗(

√
Re a∗b)−1 〈x,Sx〉−

√
Re a∗b

)
� 0,
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it follows from (4.5) that

〈x,S∗Sx〉 � Re [(a+b)∗ 〈x,Sx〉]−Re(a∗b) � 1
4
|a+b|2(Re a∗b)−1 〈x,Sx〉∗ 〈x,Sx〉

as desired. �

THEOREM 4.5. Let S and T be two operators in L (X ) and a,b,c,d ∈ Z (A )
such that Ca,b(S) and Cc,d(T ) are accretive. Suppose that x ∈ X with 〈x,x〉 = e such
that the covariance Covx(S,T ) has a polar decomposition Covx(S,T ) = u|Covx(S,T )|
with a partial isometry u ∈ A . Then

|Covx(S,T )|
� 1

4

(
u∗|a−b|2u � |c−d|2)−(u∗|〈x,(S−Ra+b

2
)x
〉
|2u � |

〈
x,(T −Rc+d

2
)x
〉
|2
)

(
� 1

4

(
u∗|a−b|2u � |c−d|2)) .

Proof. It follows from Theorem 4.1 and Lemma 4.3 that

|Covx(S,T )| � u∗Varx(S)u � Varx(T )

�
(

1
4
u∗|a−b|2u−u∗

∣∣∣∣〈x,Sx〉− a+b
2

∣∣∣∣
2

u

)
�

(
1
4
|c−d|2−

∣∣∣∣〈x,Tx〉− c+d
2

∣∣∣∣
2
)

.

Since the operator geometric mean is subadditive, we have

1
4

(
u∗|a−b|2u � |c−d|2)

=

(
1
4
u∗|a−b|2u−u∗

∣∣∣∣〈x,Sx〉− a+b
2

∣∣∣∣
2

u+u∗
∣∣∣∣〈x,Sx〉− a+b

2

∣∣∣∣
2

u

)

�

(
1
4
|c−d|2−

∣∣∣∣〈x,Tx〉− c+d
2

∣∣∣∣
2

+
∣∣∣∣〈x,Tx〉− c+d

2

∣∣∣∣
2
)

�
(

1
4
u∗|a−b|2u−u∗

∣∣∣∣〈x,Sx〉− a+b
2

∣∣∣∣
2

u

)
�

(
1
4
|c−d|2−

∣∣∣∣〈x,Tx〉− c+d
2

∣∣∣∣
2
)

+
(
u∗|
〈
x,(S−Ra+b

2
)x
〉
|2u � |

〈
x,(T −Rc+d

2
)x
〉
|2
)

.

Therefore, combining two results above, we have Theorem 4.5. �
As a corollary, we have the following Kantorovich type inequality on a Hilbert

C∗ -module which somewhat differs from (3.2) in Theorem 3.1:

COROLLARY 4.6. Let A be a positive invertible operator in L (X ) such that
Ra � A � Rb for some positive invertible elements a and b in Z (A ) . Suppose that x∈
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X with 〈x,x〉 = e such that the covariance Covx(A,A−1) has a polar decomposition
Covx(A,A−1) = u|Covx(A,A−1)| with a partial isometry u ∈ A . Then

|e−〈x,Ax〉〈x,A−1x
〉 | � 1

4
(b−a)2(ab)−1.

In particular, if A is an abelian C∗ -algebra, then

〈x,Ax〉〈x,A−1x
〉

� 1
4
(a+b)2(ab)−1. (4.6)

Proof. The assumption Ra � A � Rb and a,b ∈ Z (A ) implies Ca,b(A) and
Cb−1,a−1(A−1) are accretive. Hence it follows from Theorem 4.5 that

|e−〈x,Ax〉〈x,A−1x
〉 | = |Covx(A,A−1)| � 1

4

(
u∗(b−a)2u � (b−1−a−1)2)

=
1
4
(b−a)2(ab)−1.

If A is abelian, then the fact e = 〈x,x〉 � 〈x,Ax〉〈x,A−1x
〉

implies the desired
inequality (4.6). �

By virtue of Lemma 4.3 (Variance inequality), we obtain the following Ozeki-
Izumino-Mori-Seo type inequality which somewhat differs from Theorem 3.4 (see also
[26]):

THEOREM 4.7. Let A and B be positive invertible operators in L (X ) such that
Ra1 � A � Rb1 and Ra2 � B � Rb2 for some positive invertible a1,b1,a2,b2 ∈ Z (A ) .
Then

|〈x,B2x
〉 1

2
〈
x,A2x

〉 1
2 |2−|〈x,A2x

〉− 1
2
〈
x,A2�B2x

〉〈
x,A2x

〉 1
2 |2 � 1

4
(a1a2−b1b2)2a−2

1 b2
1

for every x ∈ X with 〈x,x〉 = e.
In particular, if A is an abelian C∗ -algebra, then

〈
x,A2x

〉〈
x,B2x

〉− 〈x,A2�B2x
〉2 � 1

4
(a1a2−b1b2)2a−2

1 b2
1.

Proof. If C is a positive operator in L (X ) such that Ra �C � Rb for some pos-
itive invertible a,b ∈ Z (A ) , then Ca,b(C) is accretive and it follows from Lemma 4.3
(the variance inequality) that

〈
x,C2x

〉−〈x,Cx〉2 � 1
4
(a−b)2 (4.7)

for every x ∈ X with 〈x,x〉 = e . If we replace x by x〈x,x〉− 1
2 in (4.7) where 〈x,x〉 is

invertible, then we have

〈
x,C2x

〉−〈x,Cx〉 〈x,x〉−1 〈x,Cx〉 � 1
4
(a−b)2 〈x,x〉 . (4.8)
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Since A is positive invertible in L (X ) , it follows that A � δ I > 0 for some positive
scalar δ > 0 and this implies

〈
x,A2x

〉
� δ 2 〈x,x〉 = δ 2 > 0 for all x ∈X with 〈x,x〉 =

e . Hence
〈
x,A2x

〉
is invertible. If we replace C by (A−1B2A−1)

1
2 and x by Ax with

〈x,x〉 = e in (4.8), then Ra2b
−1
1

� (A−1B2A−1)
1
2 � Rb2a

−1
1

and we have

〈
x,B2x

〉− 〈x,A2�B2x
〉〈

x,A2x
〉−1 〈

x,A2�B2x
〉

� 1
4

(a1a2−b1b2)2

a2
1b

2
1

〈
x,A2x

〉
. (4.9)

Multiplying
〈
x,A2x

〉 1
2 · 〈x,A2x

〉 1
2 on both sides of (4.9), we have

|〈x,B2x
〉 1

2
〈
x,A2x

〉 1
2 |2 −|〈x,A2x

〉− 1
2
〈
x,A2�B2x

〉〈
x,A2x

〉 1
2 |2

=
〈
x,A2x

〉 1
2
〈
x,B2x

〉〈
x,A2x

〉 1
2 − 〈x,A2x

〉 1
2
〈
x,A2�B2x

〉〈
x,A2x

〉−1 〈
x,A2�B2x

〉〈
x,A2x

〉 1
2

� 1
4

(a1a2−b1b2)2

a2
1b

2
1

〈
x,A2x

〉2 � 1
4
(a1a2−b1b2)2 ·a−2

1 b2
1. �

5. Wielandt inequality

In this section, we consider a Wielandt type inequality on a Hilbert C∗ -module
[19, 12], which is regarded as an improvement of the generalized Cauchy-Schwarz
inequality (Theorem 2.3):

THEOREM 5.1. (Wielandt inequality) Let T be a positive invertible operator in
L (X ) such that Ra � T � Rb for positive invertible a,b ∈ Z (A ) . Suppose that
x,y∈X such that 〈x,Ty〉 has a polar decomposition 〈x,Ty〉= u| 〈x,Ty〉 | with a partial
isometry u ∈ A . If x and y are an orthogonal pair, then

| 〈x,Ty〉 | � (b−a)(b+a)−1(u∗ 〈x,Tx〉u � 〈y,Ty〉) . (5.1)

Proof. By the assumption Ra � T � Rb , we have

a〈xc+ yd,xc+ yd〉� 〈xc+ yd,T(xc+ yd)〉� b〈xc+ yd,xc+ yd〉 (5.2)

for all c,d ∈ A . Then it follows from the orthogonality of x and y that

0 � c∗(〈x,Tx〉−a〈x,x〉)c+d∗ 〈y,Tx〉c+ c∗ 〈x,Ty〉d +d∗(〈y,Ty〉−a〈y,y〉)d (5.3)

and

0 � c∗(b〈x,x〉− 〈x,Tx〉)c+d∗ 〈y,Tx〉c+ c∗ 〈x,Ty〉d +d∗(b〈y,y〉− 〈y,Ty〉)d (5.4)

for all c,d ∈ A . Calculating (5.3) ×b + (5.4) ×a , we have

c∗(b−a)〈x,Tx〉c+(b+a)(d∗ 〈y,Ty〉c+ c∗ 〈x,Ty〉d)+ (b−a)d∗ 〈y,Ty〉d � 0
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and hence (
c∗ d∗)( (b−a)〈x,Tx〉 (b+a)〈x,Ty〉

(b+a)〈x,Ty〉∗ (b−a)〈y,Ty〉
)(

c
d

)
� 0

for all c,d ∈ A . Therefore, we have(
(b−a)〈x,Tx〉 (b+a)〈x,Ty〉
(b+a)〈x,Ty〉∗ (b−a)〈y,Ty〉

)
� 0.

Since 〈x,Ty〉 = u| 〈x,Ty〉 | and 〈x,Ty〉∗ = | 〈x,Ty〉 |u∗ , we have(
(b−a)u∗ 〈x,Tx〉u (b+a)| 〈x,Ty〉 |
(b+a)| 〈x,Ty〉 | (b−a)〈y,Ty〉

)

=
(

u∗ 0
0 e

)(
(b−a)〈x,Tx〉 (b+a)〈x,Ty〉
(b+a)〈x,Ty〉∗ (b−a)〈y,Ty〉

)(
u 0
0 e

)
� 0.

By the property (2.1) of the operator geometric mean, we have the desired inequality
(5.1). �

The second proof of the Wielandt inequality is along with the one stated in [3].

Proof 2. If we put c = 2ab(b+a)−1 ∈ Z (A ) , then

| 〈x,Ty〉 | = | 〈x,Ty〉− 〈x,y〉c| = | 〈x,(T −Rc)y〉 |
=
∣∣∣〈T 1

2 x,T− 1
2 (T −Rc)T− 1

2 T
1
2 y
〉∣∣∣= ∣∣∣〈T

1
2 x,(I−RcT

−1)T
1
2 y
〉∣∣∣

� u∗
〈
T

1
2 x,T

1
2 x
〉

u �
〈
(I−RcT

−1)T
1
2 y,(I−RcT

−1)T
1
2 y
〉

.

Since 0 < Ra � T � Rb implies Rb−1 � T−1 � Ra−1 , it follows that

R(b−a)(b+a)−1 − (I−R2ab(b+a)−1T−1) � R(b−a)(b+a)−1−e+2ab(b+a)−1b−1 = 0.

By the commutativity, we have (I−RcT−1)2 � R(b−a)2(b+a)−2 and this implies

〈
(I−RcT

−1)2T
1
2 y,T

1
2 y
〉

�
〈
R(b−a)2(b+a)−2T

1
2 y,T

1
2 y
〉

= (b−a)2(b+a)−2 〈y,Ty〉 .
Hence we have

| 〈x,Ty〉 | � u∗
〈
T

1
2 x,T

1
2 x
〉

u �
〈
(I−RcT

−1)T
1
2 y,(I−RcT

−1)T
1
2 y
〉

� u∗
〈
T

1
2 x,T

1
2 x
〉

u �
〈
R(b−a)2(b+a)−2T

1
2 y,T

1
2 y
〉

= (b−a)(b+a)−1(u∗ 〈x,Tx〉u � 〈y,Ty〉) . �

Based on a proof in Theorem 5.1, we can generalize the Wielandt inequality with-
out assumption on the orthogonality of vectors.
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THEOREM 5.2. (generalized Wielandt inequality) Let T be a positive invertible
operator in L (X ) such that 0 < Ra � T � Rb for positive invertible a,b ∈ Z (A ) .
Suppose that x,y ∈ X such that (b+a)〈x,Ty〉−2ab〈x,y〉 has a polar decomposition
(b+ a)〈x,Ty〉− 2ab〈x,y〉 = u|(b+ a)〈x,Ty〉− 2ab〈x,y〉 | with a partial isometry u ∈
A . Then

| 〈x,Ty〉−2ab(b+a)−1〈x,y〉 | � (b−a)(b+a)−1(u∗ 〈x,Tx〉u � 〈y,Ty〉) . (5.5)

Proof. Without assumption on the orthogonality of x and y , the inequality (5.2)
implies the following two inequalities

0 � c∗(〈x,Tx〉−a〈x,x〉)c+d∗(〈y,Tx〉−a〈y,x〉)c+ c∗(〈x,Ty〉
−a〈x,y〉)d +d∗(〈y,Ty〉−a〈y,y〉)d

and

0 � c∗(b〈x,x〉− 〈x,Tx〉)c+d∗(〈y,Tx〉−b〈y,x〉)c+ c∗(〈x,Ty〉
−b〈x,y〉)d +d∗(b〈y,y〉− 〈y,Ty〉)d

for all c,d ∈ A . Hence we have

(
c∗ d∗)( (b−a)〈x,Tx〉 (b+a)〈x,Ty〉−2ab〈x,y〉

((b+a)〈x,Ty〉−2ab〈x,y〉)∗ (b−a)〈y,Ty〉
)(

c
d

)
� 0

for all c,d ∈ A . A similar argument as in the proof of Theorem 5.1 induce the desired
inequality (5.5). �

REMARK 5.3. In the case that A is an abelian unital C∗ -algebra, we consider
relations among the Wielandt inequality, the Cauchy-Schwarz inequality and the Kan-
torovich inequality on a Hilbert C∗ -module. Let T be a positive invertible operator in
L (X ) such that Ra � T � Rb for positive invertible a,b ∈ A . For given x and y in
X with 〈x,x〉= e , we put z = y−x〈x,y〉 . Since 〈x,z〉= 0, it follows from Theorem 5.1
that

| 〈x,Tz〉 |2 � (b−a)2(b+a)−2 〈x,Tx〉〈z,Tz〉
and hence

| 〈x,Ty〉 |2 � 〈x,Tx〉 〈y,Ty〉−4ab(b−a)−2| 〈x,Tx〉〈x,y〉− 〈x,Ty〉 |2.

Moreover, if we replace y by T−1x , then we have the Kantorovich inequality

〈x,Tx〉〈x,T−1x
〉

� (b+a)2(4ab)−1

for all x ∈ X with 〈x,x〉 = e .
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6. Heinz-Kato-Furuta inequality

In this section, we discuss a Heinz-Kato-Furuta type inequality on a Hilbert C∗ -
module.

For T ∈ L (X ) , we denote the range of T and the kernel of T by R(T ) and
N(T ) , respectively. A closed submodule M of X is said to be complemented if
X = M ⊕M⊥ . Suppose that the closures of the ranges of T and T ∗ are both com-
plemented. Then it follows from [24, Proposition 3.8] that T has a polar decomposition
T =U |T | with a partial isometry U ∈ L (X ) . We have the following lemma, also see
[14, 15]:

LEMMA 6.1. Let T be an operator in L (X ) such that the closures of the ranges
of T and T ∗ are both complemented. Then the following hold:

(i) N(|T |) = N(T ) .

(ii) |T ∗|q =U |T |qU∗ for any positive number q.

Proof. For (i), since 〈|T |x, |T |x〉 =
〈
x, |T |2x〉 = 〈x,T ∗Tx〉 = 〈Tx,Tx〉 , we have

|T |x = 0 ⇐⇒ Tx = 0 and hence N(|T |) = N(T ) .
For (ii), since N(|T |q) = N(|T |) for all q > 0 and U∗U is the initial projection on

R(|T |) , it follows that R(|T |q) = N(|T |q)⊥ = N(|T |)⊥ = R(|T |) and U∗U |T |q = |T |q .
Since |T ∗|2 = (U |T |U∗)2 , it follows from U∗U |T | = |T | that

pn(|T ∗|2) = U pn(|T |2)U∗

for any polynomial pn(t) . If pn(t) �→
√

t , then we have |T ∗| = U |T |U∗ . By in-
duction, |T ∗| n

m = U |T | n
m holds for any positive integer m and n . Hence we have

|T ∗|q = U |T |qU∗ as n
m → q . �

THEOREM 6.2. (Heinz-Kato-Furuta inequality) Let T be an operator in L (X )
such that the closures of the ranges of T and T ∗ are both complemented. Let A and
B be positive operators in L (X ) such that 〈T ∗x,T ∗x〉 � 〈Ax,Ax〉 and 〈Ty,Ty〉 �
〈By,By〉 for all x,y ∈ X . If x,y ∈ X such that

〈
x,T |T |α+β−1y

〉
has a polar decomp-

sition
〈
x,T |T |α+β−1y

〉
= u|〈x,T |T |α+β−1y

〉 | with a partial isometry u ∈A , then the
following inequality holds∣∣∣〈x,T |T |α+β−1y

〉∣∣∣� u∗
〈
x,A2αx

〉
u �
〈
y,B2β y

〉
(6.1)

for any α,β ∈ [0,1] and α + β � 1 .

Proof. By the assumption, we have |T ∗|2 � A2 and |T |2 � B2 . It follows from
the Löwner-Heinz inequality that

〈
x, |T ∗|2αx

〉
�
〈
x,A2αx

〉
and

〈
y, |T |2β y

〉
�
〈
y,B2β y

〉
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for each α,β ∈ [0,1] . In the case α,β ∈ [0,1] such that β > 0 and α + β � 1, by
Lemma 6.1 we have |T ∗|2β = U |T |2βU∗ for any β > 0. Then for all x,y ∈ X∣∣∣〈x,T |T |α+β−1y

〉∣∣∣= ∣∣∣〈x,U |T |α+β y
〉∣∣∣= ∣∣∣〈|T |αU∗x, |T |β y

〉∣∣∣
� u∗ 〈|T |αU∗x, |T |αU∗x〉u �

〈
|T |β y, |T |β y

〉
= u∗

〈
U |T |2αU∗x,x

〉
u �
〈
y, |T |2β y

〉
= u∗

〈|T ∗|2αx,x
〉
u �
〈
y, |T |2β y

〉
� u∗

〈
x,A2αx

〉
u �
〈
y,B2β y

〉
and the result is trivial in the case β = 0. �

Next we discuss Wielandt type variations of the Heinz-Kato-Furuta inequality on
a Hilbert C∗ -module, also see [13].

THEOREM 6.3. Let T be an operator in L (X ) such that the closures of the
ranges of T and T ∗ are both complemented, and satisfying Ra � |T | � Rb for some
positive invertible a,b ∈ Z (A ) . Suppose that x,y ∈ X and γ > 0 such that〈

x,T |T |α+β−1y
〉
−2bγaγ(bγ +aγ)−1

〈
x,T |T |α+β−γ−1y

〉
= u

∣∣∣〈x,T |T |α+β−1y
〉
−2bγaγ(bγ +aγ)−1

〈
x,T |T |α+β−γ−1y

〉∣∣∣
has a polar decomposition with a partial isometry u ∈ A . Then∣∣∣〈x,T |T |α+β−1y

〉
−2bγaγ(bγ +aγ)−1

〈
x,T |T |α+β−γ−1y

〉∣∣∣
� (bγ −aγ)(bγ +aγ)−1

(
u∗
〈
x, |T ∗|2αx

〉
u �
〈
y, |T |2β y

〉)
for all α,β ∈ R .

Proof. Let T = U |T | be the polar decomposition of T with a partial isometry
U ∈L (X ) . For given x,y ∈X , we put x1 = |T |α−γ/2U∗x and y1 = |T |β−γ/2y . Thus
we use Theorem 5.2 for x1,y1 and T = |T |γ . Since 0 < Raγ � |T |γ � Rbγ for γ > 0
and U |T |βU∗ = |T ∗|β by Lemma 6.1, we have the desired inequality. �

In particular, we take γ = α + β in above.

COROLLARY 6.4. Let T , a,b, x,y be as in Theorem 6.3. Then∣∣∣〈x,T |T |α+β−1y
〉
−2bα+βaα+β (bα+β +aα+β )−1 〈x,T |T |−1y

〉∣∣∣
� (bα+β −aα+β )(bα+β +aα+β )−1

(
u∗
〈
x, |T ∗|2αx

〉
u �
〈
y, |T |2β y

〉)
for all α,β ∈ R with α + β > 0 .
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Next we obtain the following Wielandt type Heinz-Kato-Furuta inequalities by the
Löwner-Heinz inequality.

THEOREM 6.5. Let T , a,b, x,y be as in Theorem 6.3. If A and B are positive
invertible operators in L (X ) such that 〈T ∗x,T ∗x〉� 〈Ax,Ax〉 and 〈Ty,Ty〉� 〈By,By〉
for all x,y ∈ X , then each γ > 0∣∣∣〈x,T |T |α+β−1y

〉
−2bγaγ(bγ +aγ)−1

〈
x,T |T |α+β−γ−1y

〉∣∣∣
� (bγ −aγ)(bγ +aγ)−1

(
u∗
〈
x,A2αx

〉
u �
〈
y,B2β y

〉)
for all α,β ∈ [0,1] .

In particular,∣∣∣〈x,T |T |α+β−1y
〉
−2bα+βaα+β (bα+β +aα+β)−1 〈x,T |T |−1y

〉∣∣∣
� (bα+β −aα+β)(bα+β +aα+β)−1

(
u∗
〈
x,A2αx

〉
u �
〈
y,B2β y

〉)
for all α,β ∈ [0,1] .

COROLLARY 6.6. Let T,A,B, a,b, x,y be as in Theorem 6.5, and α,β ∈ [0,1]
and γ > 0 be given. If x,y ∈ X moreover satisfy

T |T |α+β−γ−1x �= 0 and
〈
x,T |T |α+β−γ−1y

〉
= 0,

then∣∣∣〈x,T |T |α+β−1y
〉∣∣∣� (bα+β −aα+β)(bα+β +aα+β)−1

(
u∗
〈
x,A2αx

〉
u �
〈
y,B2β y

〉)
.

Finally we mention some corollaries of Theorem 6.2 which are generalizations of
the Wielandt inequality.

COROLLARY 6.7. Let T =U |T | be an operator in L (X ) with a partial isome-
try U ∈ L (X ) such that Ra � |T | � Rb for some positive invertible a,b ∈ Z (A ) . If
x,y ∈ X such that 〈x,Ty〉−2ab(a+b)−1〈x,Uy〉 has a polar decomposition 〈x,Ty〉−
2ab(a+ b)−1 〈x,Uy〉 = u| 〈x,Ty〉− 2ab(a+ b)−1 〈x,Uy〉 | with a partial isometry u ∈
A , then

| 〈x,Ty〉−2ab(a+b)−1〈x,Uy〉 | � (b−a)(a+b)−1(u∗ 〈x, |T ∗|x〉u � 〈y, |T |y〉) .

COROLLARY 6.8. Let T = U |T | be an operator in L (X ) with a partial isom-
etry U ∈ L (X ) such that Ra � |T | � Rb for some positive invertible a,b ∈ Z (A ) .
If x,y ∈ X such that 〈x,Ty〉 has a polar decomposition 〈x,Ty〉 = u| 〈x,Ty〉 | and
〈x,Uy〉 = 0 , then

| 〈x,Ty〉 | � (b−a)(a+b)−1(u∗ 〈x, |T ∗|x〉u � 〈y, |T |y〉) .
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7. Malamud inequality

Let A be a positive invertible operator in L (X ) such that Ra � A � Rb for some
positive invertible a,b ∈ Z (A ) . Here we call the operator constant (b−a)2(b+a)−2

Wielandt’s operator constant for A which is denoted by Wm(A) , that is,

Wm(A) = (b−a)2(b+a)−2 ∈ Z (A ),

see also [25]. As in the proof of Theorem 5.1, the Wielandt inequality is represented as
follows:

Wielandt Theorem. If A is a positive invertible operator in L (X ) such that
Ra � A � Rb for some positive invertible a,b ∈ Z (A ) , then(

Wm(A)〈x,Ax〉 〈x,Ay〉
〈x,Ay〉∗ 〈y,Ay〉

)
� 0 (7.1)

for every orthogonal pair x and y .

In this section, we show the equivalence theorem including the Malamud and the
Wielandt ones on a Hilbert C∗ -module, also see [25, 9]. Let P be a projection in
L (X ) . It follows that the range of P is orthogonally complemented, that is, R(P)⊕
R(I−P) = X . For x,y∈X , define θx,y : X �→X by θx,y(z) = x〈y,z〉 (z ∈X ) and
θx,y ∈ L (X ) . If x ∈ X with 〈x,x〉 = e , then θx,x is a projection in L (X ) . Firstly,
we have the following lemma:

LEMMA 7.1. Let A be a positive invertible operator in L (X ) and c ∈ Z (A )
a positive element. Then the following conditions are mutually equivalent:

(i) A+(c− e)PAP � 0 for all projections P;

(ii)

(
cPAP PAP⊥
P⊥AP P⊥AP⊥

)
� 0 for all projections P;

(iii)

(
cPAP PAQ
QAP QAQ

)
� 0 for all mutually orthogonal projections P and Q;

(iv)

(
c〈x,Ax〉 〈x,Ay〉
〈y,Ax〉 〈y,Ay〉

)
� 0 for all orthogonal pairs x and y in X ,

where P⊥ = I−P.

Proof. Identifying an operator A on X as(
PAP PAP⊥

P⊥AP P⊥AP⊥

)
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on the orthogonal direct sum R(P)⊕R(P⊥) , we have A+(c− e)PAP � 0 correspond-
ing to the operator matrix in (ii). Thus (i) and (ii) are equivalent. If P and Q are
mutually orthogonal, then QP⊥ = Q and hence the equation(

I 0
0 Q

)(
cPAP PAP⊥
P⊥AP P⊥AP⊥

)(
I 0
0 Q

)
=
(

cPAP PAQ
QAP QAQ

)

assures that (ii) implies (iii), which shows the equivalence.
Suppose that (iii) holds. For all orthogonal pair x and y , we may assume that

〈x,x〉 = e and 〈y,y〉 = e . We put two orthogonal projections P and Q in L (X ) such
that P = θx,x and Q = θy,y . Then for all v,w ∈ A〈(

xv
yw

)
,

(
cPAP PAQ
QAP QAQ

)(
xv
yw

)〉
= v∗c〈x,Ax〉v+ v∗ 〈x,Ay〉w+w∗ 〈y,Ax〉v+w∗ 〈y,Ay〉w

=
〈(

v
w

)
,

(
c〈x,Ax〉 〈x,Ay〉
〈y,Ax〉 〈y,Ay〉

)(
v
w

)〉
� 0

and hence we have (iv). Conversely, suppose that (iv) holds. For all orthogonal pro-
jections P and Q , put x1 = Px and y1 = Qy for each x,y ∈ X and we have x1 ⊥ y1 .
Then〈(

x
y

)
,

(
cPAP PAP⊥
P⊥AP P⊥AP⊥

)(
x
y

)〉
= c〈x1,Ax1〉+ 〈x1,Ay1〉+ 〈y1,Ax1〉+ 〈y1,Ay1〉

=
〈(

e
e

)
,

(
c〈x1,Ax1〉 〈x1,Ay1〉
〈y1,Ax1〉 〈y1,Ay1〉

)(
e
e

)〉
� 0

and hence we have (iii). Therefore we have the equivalence (iii) and (iv). �
Let A be a positive invertible operator in L (X ) such that Ra � A � Rb for some

positive invertible a,b ∈ Z (A ) . The set {〈x,Ax〉 : 〈x,x〉 = e} is called the operator
range of A . Suppose that a and b are the least bounds for the operator range of A
in the sense that there exist two sequences {xn} and {yn} in X such that 〈xn,xn〉 =
〈yn,yn〉 = e and 〈xn,yn〉 = 0 for all n , and 〈xn,Axn〉 → a and 〈yn,Ayn〉 → b as n → ∞ .
For example, let A be a unital C∗ -algebra. Put Xi = A for all i∈Z . We define X =
⊕i∈ZXi to be the set of all sequences x = (xi) , with xi in Xi , such that ∑i∈Z 〈xi,xi〉
converges in A . It follows that X is a Hilbert C∗ -module. Take {an}∞

n=1 and {bn}∞
n=1

such that an ↓ a and bn ↓ b , and an,bn ∈ Z (A ) . Put ci = ai+1 for i = 0,1,2, · · · and
c−i = bi for i = 1,2, · · · . Put A = Rc̃ for c̃ = (ci) . Since ci ∈ Z (A ) , it follows that A
is a positive invertible operator in L (X ) such that Rã � A � Rb̃ , where ã = (ai) and
b̃ = (bi) for ai = a and bi = b for all i ∈ Z . For n ∈ N , xn = (xi

n)i∈Z and yn = (yi
n)i∈Z

are defined by

xi
n =

{
e if i = n
0 otherwise

and yi
n =

{
e if i = −n
0 otherwise.

In this case, two sequences {xn} and {yn} in X satisfies the desired conditions.
Now, we have the following Malamud type theorem:
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THEOREM 7.2. Let A be a positive invertible operator in L (X ) such that Ra �
A � Rb for some positive invertible a,b ∈ Z (A ) . If a and b are the least bounds
for the operator range of A, then for a positive element c ∈ Z (A ) , the following
assertions are equivalent:

(i) A+(c− e)PAP � 0 for all projections P;

(ii) c � Wm(A) .

Proof. Suppose that (ii) holds. By (7.1), we have(
c〈x,Ax〉 〈x,Ay〉
〈x,Ay〉∗ 〈y,Ay〉

)
� 0

for every orthogonal pair x and y . By Lemma 7.1, we have (i).
Conversely, suppose that (i) holds. Since 0 � I−Rb−1A � I , we have (I−Rb−1A)2 �

I−Rb−1A and it follows that

0 � 〈(Rb−A)yn,(Rb−A)yn〉 = b2 〈(I−Rb−1A)yn,(I−Rb−1A)yn〉
� b2 〈yn,(I−Rb−1A)yn〉 = b〈yn,(Rb −A)yn〉

and hence we have

‖ 〈xn,Ayn〉 ‖=‖ 〈xn,(Rb−A)yn〉 ‖�‖ 〈xn,xn〉 ‖ 1
2 ‖ 〈(Rb−A)yn,(Rb−A)yn〉 ‖ 1

2

�‖ b ‖ 1
2 ‖ 〈yn,(Rb−A)yn〉 ‖ 1

2→ 0.

If we put un = xn +yn and vn = xn−yn , then we have ‖ un ‖=‖ vn ‖=
√

2 and 〈un,vn〉=
0. Now, it follows that

‖ 〈un,Avn〉− (a+b) ‖
�‖ 〈xn,Axn〉−a ‖ + ‖ 〈yn,Ayn〉−b ‖ + ‖ 〈xn,Ayn〉 ‖ + ‖ 〈yn,Axn〉 ‖→ 0

as n→∞ . Similarly, we have 〈vn,Avn〉→ a+b and 〈un,Avn〉→ a−b as n→ ∞ . Since
xn and yn are orthogonal for all n , it follows from Lemma 7.1 that(

c〈xn,Axn〉 〈xn,Ayn〉
〈yn,Axn〉 〈yn,Ayn〉

)
� 0

and hence this implies (
c(a+b) a−b
a−b a+b

)
� 0.

Therefore, we have the desired inequality (ii). �
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