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WEIGHTED NORM INEQUALITIES FOR THE

g–LITTLEWOOD–PALEY OPERATORS ASSOCIATED

WITH LAPLACE–BESSEL DIFFERENTIAL OPERATORS

A. AKBULUT, V. S. GULIYEV AND M. DZIRI

(Communicated by L.-E. Persson)

Abstract. In this work we define and study Poisson integral associated with Laplace-Bessel
differential operators. We establish weighted inequalities with a general weight for the g -
Littlewood-Paley functions and the commutator gb,k defined by (1.2) associated with Laplace
Bessel differential operator.

1. Introduction

The study of the g -Littlewood-Paley theory enjoys a natural motivation and arises
a great interest. Many works and topic have been studied. To our knowledge, for Eu-
clidean analysis it is investigated, at first, by Stein in [8]. In his study of these operators,
Stein uses two approaches. The first is the theory of singular integrals in the context
of Hilbert space-valued functions, and the second in the theory of harmonics functions.
Later, these operators play an important role in questions related to multipliers, Sobelev
spaces and Hardy spaces.

Over the past 20 years considerable effort has been made to extend the classi-
cal Littlwood-Paley theory on the Bessel-Kingman hypergroups [12] and the Chebli-
Trimeche hypergroups [1].

In this paper we consider harmonic analysis associated with the following system
of partial differential operators⎧⎨⎩Dj = ∂

∂x j
, 1 � j � n

Δn,α = ∂ 2

∂ r2
+ 2α+1

r
∂
∂ r + ∑n

j=1
∂ 2

∂x j
2 , (r,x) ∈]0,∞[×Rn,

(1.1)

where α > − 1
2 .
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Some problems of harmonic analysis that are associated with Laplace-Bessel op-
erator Δn,α are investigated, for example, [3, 5, 6, 7]. We point out that in [7] the author
proved the Lp,w -boundedness of B-maximal functions.

In this paper, we are interested in problems related to weighted inequalities for
the g -Littlewood-Paley functions associated to the Laplace-Bessel differential opera-
tors. More precisely, building on the results of harmonic analysis associated with Δn,α
we establish the Lp,w inequalities with a general weight for the g -Littlewood-Paley
functions in connection with the Laplace-Bessel differential operator Δn,α . Also, we
give an application of great importance which deals with the Lp,w boundedness of the
commutator

gb,k( f )(x) = g((b(x)−b(·))k f )(x), (1.2)

where k is a positive integer and b ∈ BMO(Rn+1
+ ).

The article is organized as follows: In section 2 we include definitions and auxil-
iary results of harmonic analysis associated with the Laplace-Bessel differential opera-
tor. In section 3 we define and establish some estimates and properties of the Poisson
integral related with the operator Δn,α . Section 4 deals with maximal operator associ-
ated with Δn,α . Also we establish some results for this operators that are essential to
investigating the g -Littlewood-Paley functions . The subject of section 5 is to estab-
lish weighted inequalities with a general weight for the g -Littlewood-Paley functions
and the commutator gb,k defined by (1.2) associated with Laplace Bessel differential
operator.

Throughout the paper C denotes a positive constant whose value may vary from
line to line.

2. Harmonic analysis related with Dj;1 � j � n and Δn,α

In this section we recall basic definitions and some facts. We consider the system
of partial differential operators{

Dj = ∂
∂x j

, 1 � j � n

Δn,α = lα + Δ,
(2.1)

where lα is the Bessel operator with respect to the first variable r given by

lα =
∂ 2

∂ r2 +
2α +1

r
∂
∂ r

and Δ = ∑n
j=1

∂ 2

∂x2
j

is the Laplacian operator on Rn. On the other hand, if λ =(λ1,λ2, ...,

λn) ∈ Cn and x = (x1,x2, ...,xn) ∈ Rn, we put 〈λ ,x〉 = ∑n
i=1 λixi, ‖λ‖ =

√〈λ ,λ 〉.
By [13, 14 ] we have

PROPOSITION 2.1. For (μ ,λ ) ∈ R
n+1 , the following system of equations

Djv(r,x) = −iλ jv(r,x),
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Δn,αv(r,x) = −(μ2 + λ 2)v(r,x),

v(0,0) = 1;
∂v
∂ r

(0,x) = 0 (2.2)

has a unique infinitely differentiable solution on Rn+1 even with respect to the first
variable given by

ϕμ,λ (r,x) = jα(rμ)e−i〈λ ,x〉, (2.3)

where

jα(s) =
2α Γ(α +1)Jα(s)

sα , if s �= 0, and jα (s) = 1, if s = 0,

the functions Jα are the Bessel functions of the first kind and order α and Γ is the
Euler function.

We have for all (μ ,λ ) ∈ Rn+1,

sup
(r,x)∈Rn+1

|ϕμ,λ (r,x)| = 1.

The shift operator T(r,x) associated with Laplace Bessel operator Δn,α is defined
on the space of continuous functions even with respect to the first variable by

T(r,x) f (s,y) =
Γ(α +1)√
πΓ(α + 1

2 )

∫ π

0
f (

√
r2 + s2 +2rscosθ ,x+ y)sin2α θdθ . (2.4)

Denote by
• dνα(r,x) the measure defined on R

n+1
+ by

dνα(r,x) = r2α+1drdx. (2.5)

• Lp,α(Rn+1
+ ), 1 � p � ∞, the space of measurable functions f on [0,∞[×R

n

satisfying

‖ f‖Lp,α =
(∫

Rn

∫ ∞

0
| f (r,x)|pdνα(r,x))

) 1
p

< ∞, for 1 � p < ∞

and
‖ f‖L∞,α = ‖ f‖L∞ = esssup(r,x)∈R

n+1
+

| f (r,x)| < ∞ for p = ∞.

It is natural to define the convolution product generated by the shift operator.

DEFINITION 2.2. The convolution product of f ,g in L1,α(Rn+1
+ ) associated with

Δn,α is defined, ∀(r,x) ∈ [0,+∞[×Rn , as follows

(
f ∗α g

)
(r,x) =

∫
Rn

∫ ∞

0
T(r,x) f (s,y)g(s,y)dνα (s,y).
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Note that, the following properties are valid:
i) For all (r,x),(s,y) ∈ R

n+1
+ , (μ ,λ ) ∈ Rn+1, we have

ϕ(μ,λ )(r,x)ϕ(μ,λ )(s,y) = T(r,x)ϕμ,λ (s,y).

ii) Let f be in L1,α(Rn+1
+ ), then for all (s,y) ∈ R

n+1
+ , we have∫

Rn

∫ ∞

0
T(s,y) f (r,x)dνα (r,x) =

∫
Rn

∫ ∞

0
f (r,x)dνα (r,x).

iii) If f ∈ Lp,α(Rn+1
+ ), 1 � p � ∞, then for all (s,y) ∈ R

n+1
+ , the function T(s,y) f

belongs to Lp,α(Rn+1
+ ) and we have

‖T(s,y) f‖Lp,α � ‖ f‖Lp,α .

iv) lim
(r,x)→(0,0

‖T(r,x) f − f‖Lp,α = 0.

v) If f ∈ L1,α(Rn+1
+ ) and g∈ L1,α(Rn+1

+ ), then f ∗α g belongs to L1,α(Rn+1
+ ) and

the convolution product is commutative and associative.
vi) For p,q,r ∈ [0,∞] such that 1

p + 1
q −1 = 1

r , the map

( f ,g) → f ∗α g

extends to a continuous map from Lp,α(Rn+1
+ )× Lq,α(Rn+1

+ ) to Lr,α(Rn+1
+ ) and we

have
‖ f ∗α g‖Lr,α � ‖ f‖Lp,α‖g‖Lq,α . (2.5)

DEFINITION 2.3. The Fourier transform associated with the partial differential
operators Dj and Ln,α is defined on L1,α(Rn+1

+ ) as follows, for all (μ ,λ ) ∈ R
n+1
+ ,

Fα ( f )(μ ,λ ) =
∫

Rn

∫ ∞

0
f (r,x)ϕ(μ,λ )(r,x)dνα (r,x).

The following properties are valid.
i) Let f ∈ L1,α(Rn+1

+ ). Then for all (r,x) ∈ [0,+∞[×Rn , we have, ∀(μ ,λ ) ∈
R

n+1
+ ;

Fα(T(r,x)( f ))(μ ,λ ) = ϕ(μ,λ )(r,x)Fα ( f )(μ ,λ ).

ii) For f ,g ∈ L1,α(Rn+1
+ )

Fα ( f ∗α g)(μ ,λ ) = Fα ( f )(μ ,λ ) ·Fα(g)(μ ,λ ).

PROPOSITION 2.4. (see [14])
1) For all f ∈ L1,α(Rn+1

+ ), we have

‖Fα( f )‖∞,α � ‖ f‖1,α .

2) The Fourier transform Fα is a topological isomorphism from S∗(Rn+1) (the
space of infinitely differentiable functions on Rn+1, even with respect to the first vari-
able, rapidly decreasing together with all their derivatives) onto itself.
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3) (Plancherel theorem): The Fourier transform Fα is an isometric automor-
phism of L2,α(Rn+1

+ ). In particular

‖Fα( f )‖2,α = ‖ f‖2,α .

4) (Inversion formula): Let f ∈ L1,α(Rn+1
+ ) such that Fα( f ) ∈ L1,α(Rn+1

+ ), then

F−1
α ( f )(μ ,λ ) = Cα ,nFα ( f )(μ ,−λ ),

where

Cα ,n =
1

(2π)n22α(Γ(α +1))2 .

3. Poisson kernels and Poisson integrals related with Δn,α

The main goal of this section is to define the Poisson integral associated with the
Laplace-Bessel differential operator Δn,α and give some estimates that are useful in the
sequel of the paper.

Consider pt , t > 0 to be the function defined on R
n+1
+ by

pt(r,x) =
∫

Rn

∫ ∞

0
e−t(μ2+λ 2)

1
2 ei〈x,λ 〉 jα (rμ)dγα(μ ,λ ), (3.1)

where

dγ(μ ,λ ) =
μ2α+1

(2π)n22α(Γ(α +1))2 dμdλ .

The function pt may be called Poisson kernel.

PROPOSITION 3.1. For all t > 0 and (r,x) ∈ R
n+1
+ , we have

pt(r,x) =
2α+1Γ(α + n+3

2 )
π (n+1)/2Γ(α +1)

t

(t2 + r2 + |x|2)α+ n+3
2

.

Proof. By the following well known relation

∀a > 0, e−a =
∫ ∞

0

e−t e−
a2
4t√

πt
dt

identity (3.1) becomes

pt(r,x)=
1

(Γ(α+1))2(2π)n22α

∫
Rn

∫ ∞

0

(∫ ∞

0

e−se−t2 μ2+λ2

4s√
πs

ds
)
ei〈x,λ 〉 jα (rμ)μ2α+1dμdλ .

Therefore, from the fact that

∫ ∞

0
e−

t2
4s μ2

jα (rμ)μ2α+1dμ =
23α+1Γ(α +1)sα+1e

−s r2

t2

t2α+2 ,
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we obtain

pt(r,x) =
2α+1

(2π)nt2α+2Γ(α +1)

∫ ∞

0

(∫
Rn

e−
t2λ2
4s ei〈x,λ 〉dλ

)e−se
− sr2

t2√
πs

sα+1ds.

Thus the following relation, true for all b > 0,

1
2π

∫
Rn

e−bλ 2
eiλ y =

1√
4πb

e−
y2

4b

yields

pt(r,x) =
2α+1

π (n+1)/2Γ(α +1) tn+2α+2

∫ ∞

0
e
−s

(
r2+|x|2

t2
+1

)
sα+ n+1

2 ds.

So, the result is deduced by using the change of variable τ = s
(

r2+|x|2
t2

+1)
)
. �

PROPOSITION 3.2. 1. For all t > 0 , the kernel pt > 0 and∫
Rn

∫ ∞

0
pt(r,x)dνα (r,x) = 1.

2. For all (r,x) ∈ R
n+1
+ and t > 0, the function

pt(r,x) = t−n−2α−2p1
(1
t
(r,x)

)
.

3. For all (μ ,λ ) ∈ Rn+1, we have

Fα(pt)(μ ,λ ) = e−t(μ2+|λ |2) 1
2 .

4. The function pt(r,x) satisfies the following equation(
Δn,α +

∂ 2

∂ t2

)
pt(r,x) = 0.

5.
pt ∗α ps = pt+s.

Proof. 1. It is clear that pt > 0. On the other hand

‖pt‖L1,α = dα ,n

∫
Rn

∫ ∞

0

t r2α+1

(t2 + r2 + |x|2)α+ n+3
2

drdx,

where

dα ,n =
2α+1Γ(α + n+3

2 )

π n+1
2 Γ(α +1)

.
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By change of variables we can see that

‖pt‖L1,α = dα ,nI1 · I2,

with

I1 =
∫ ∞

0
(1+ s2)−(α+ 3

2 )s2α+1ds

and

I2 =
∫

Rn

1

(1+ |u|2)α+ n+3
2

du

or, by easy calculation,

I1 =
π 1

2 Γ(α +1)
2Γ(α + 3

2)
and I2 =

π
n
2 Γ(α + 3

2 )
Γ(α + n+3

2 )
.

Therefore
‖pt‖L1,α = dα ,nI1.I2 = 1.

3. From relation (3.1) we have pt(r,x) = Cα ,nFα(ht)(r,−x), with ht(μ ,λ ) =
e−t(μ2+λ 2)1/2

. Thus,

Fα(pt)(μ ,λ ) =Cα ,nFα ( ˇFα(ht)(μ ,λ ),

with
ˇFα(ht)(r,x) = Fα(ht)(r,−x).

Therefore, using the proposition (2.4), 4) we obtain

Fα(pt)(μ ,λ ) = e−t(μ2+λ 2)1/2
.

The assertion 4) is obtained by applying the Fourier transform Fα . Finally the
assertion 5) is obtained from assertion 3) by the following relation.

pt+s(r,x) = F−1
α (e−(t+s)((r2+|x|2)1/2))

= F−1
α (e−t((r2+|x|2)1/2)e−s((r2+|x|2)1/2))

= F−1
α (e−t((r2+|x|2)1/2))∗F−1

α (e−s((r2+|x|2)1/2))
= pt(r,x)∗ ps(r,x). �

However, for t > 0 and for all f ∈ Lp,α(Rn+1
+ ) we put

u((r,x),t) = pt ∗α f (r,x),

the function u is called the Poisson integral of f associated with Laplace-Bessel dif-
ferential operators.



324 A. AKBULUT, V. S. GULIYEV AND M. DZIRI

LEMMA 3.3. For all measurable function f bounded on R
n+1
+ and continuous in

(0,0) we have

lim
t→0

∫
Rn

∫ ∞

0
pt(r,x) f (r,x)r2α+1drdx = f (0,0).

Proof. By proposition 3.2, 1) we deduce∫
Rn

∫ ∞

0
pt(r,x) f (r,x)dν(r,x)− f (0,0) =

∫
Rn

∫ ∞

0
pt(r,x)( f (r,x)− f (0,0))dν(r,x).

But f is bounded on R
n+1
+ and continuous in (0,0) then, for all β > 0 there exists

α > 0 such that∣∣∣∫
Rn

∫ ∞

0
pt(r,x) f (r,x)dν(r,x)− f (0,0)

∣∣∣ � β
2

+2|| f ||∞,α

∫ ∫
r2+|||x||2>α

pt(r,x)dν(r,x).

So, the lemma is obtained from the fact that

lim
t−→0

∫ ∫
r2+|||x||2>α

pt(r,x)dν(r,x) = 0. �

By using this lemma, properties of the shift operators and Fourier transforms as-
sociated with the Laplace-Bessel differential operator Δn,α , we deduce the following
propositions.

PROPOSITION 3.4. For all f ∈ Lp,α(Rn+1
+ ), 1 � p < ∞, the function u defined

on R
n+1
+ by

u((r,x),t) = ( f ∗α pt)(r,x)

satisfies the equation (
Δn,α +

∂ 2

∂ t2

)
pt(r,x) = 0

and
lim
t→0

‖u(.,t)− f‖Lp,α = 0.

PROPOSITION 3.5. Let f be continuous and bounded on R
n+1
+ , then the function

u defined on R
n+1
+ by

u((r,x),t) =
(
f ∗α pt

)
(r,x)

satisfies the equation (
Δn,α +

∂ 2

∂ t2

)
pt(r,x) = 0

and
lim
t→0

u((r,x),t) = f (r,x) uniformly.
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The Poisson integral also has the following property:
For all f ∈ S∗(Rn+1),

u((r,x), t) =
∫

Rn

∫ ∞

0
e−t(μ2+λ 2)

1
2 Fα( f )(μ ,λ )ψ(μ,λ )(r,x)dγα (μ ,λ ).

Now, we will give some estimates of the Poisson integral and its partial derivatives.
We denote by D∗(Rn+1

+ ) the space of infinitely differentiable functions on R
n+1
+ , even

with respect to the first variable, and with compact support.

PROPOSITION 3.6. Let f ∈ D∗(Rn+1) be a positive function and p > 1.
i) For |(r,x)| = √

r2 + x2 large we have

u((r,x),t) � C(t2 + r2 + |x|2)−(α+ n+2
2 ). (3.2)

ii)
∂u
∂ t

((r,x),t) � C t−(2α+n+3). (3.3)

iii)
∂u
∂ r

((r,x),t) � C(t2 + r2 + |x|2)−(α+ n+3
2 ). (3.4)

iv)
∂u
∂xi

((r,x),t) � C(t2 + r2 + |x|2)−(α+ n+3
2 ), 1 � i � n. (3.5)

Proof. Since f ∈ D∗(Rn+1), then there exists A > 0 such that supp( f ) ⊂ [0,A]×
B(0,A).

u((r,x), t) = pt ∗α f (r,x) =
∫ ∞

0

∫
B(0,A)

T(r,x)pt(s,y) f (s,y)dνα (s,y).

On the other hand

T(r,x)pt(s,y) =
Γ(α +1)√
πΓ(α + 1

2 )

∫ π

0
pt(

√
r2 + s2 +2rscosθ ,x+ y)sin2α θdθ

=
Γ(α +1)Cα√

πΓ(α + 1
2

∫ π

0

t sin2α θ
(r2 + s2 +2rscosθ + t2 + |x+ y|2)α+ n+3

2

dθ ,

where

Cα =
22α+ n

2+1Γ(α + n+3
2 )√

π
.

Thus i) is obtained by using the fact that for ‖(r,x)‖ large and (s,y) ∈ [0,A]×B(0,A)
and θ ∈ [0,π ]∣∣∣∣∣ t sin2α θ

(r2 + s2 +2rscosθ + t2 + |x+ y|2)α+ n+3
2

∣∣∣∣∣ � t

(r2 + t2 + |x|2)α+ n+3
2

,
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and
t � (r2 + t2 + |x|2) 1

2 .

ii) Relation (2.7) allows us to obtain∣∣∣∣∂u
∂ t

((r,x),t)
∣∣∣∣ � ‖ f‖L1,α

∥∥∥∥∂ pt

∂ t

∥∥∥∥
L∞

� Ct−(2α+n+3).

The assertions iii) and iv) are obtained the same way as ii) . �

PROPOSITION 3.7. Let f ∈D∗(Rn+1) be a positive function, p > 1 and a weight
function w satisfying the following condition∫

B(0,A)

∫ A

0
w(r,x)dνα (r,x) = O(An+α+2),A → ∞. (3.6)

Then we have
i)

lim
A→∞

∫
B(0,A)

∫ A

0

∂ 2up

∂ 2t
((r,x),t)tdtw(r,x)dνα (r,x) =

∫
Rn

∫ ∞

0
f p(r,x)w(r,x)dνα (r,x).

ii)

lim
A→∞

∫
B(0,A)

∫ A

0
Δn,αup((r,x),t)tdtw(r,x)dνα (r,x) = 0.

Proof. Let f ∈ D∗(Rn+1) ,∫
B(0,A)

∫ A

0

∂ 2up

∂ t2
((r,x),t)tw(r,x)dtdνα (r,x) =

∫
B(0,A)

∫ A

0
H(r,x,A)w(r,x)dνα (r,x)

and a positive function

H(r,x,A) =
∫ A

0

∂ 2up

∂ t2
((r,x),t)tdt

such that

H(r,x,A) =
[
t
∂up

∂ t
((r,x),t)

]A

0
−

∫ A

0

∂up

∂ t
((r,x),t)dt

= A
∂up

∂ t
((r,x),A)−up((r,x),A)+up((r,x),0)

= A
∂up

∂ t
((r,x),A)−up((r,x),A)+ f p(r,x).

On the other hand by relations (3.2) and (3.3) we have

|up(r,x,A)| � CA−(n+2α+2)p
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and

A

∣∣∣∣∂up

∂ t
((r,x),A)

∣∣∣∣ � p

∣∣∣∣∂u
∂ t

((r,x),A)
∣∣∣∣ |up−1((r,x),A)| � CA−(n+2α+2)p.

From the above estimates and the condition of the weight functions (3.6) we obtain∣∣∣∣∣
∫

B(0,A)

∫ A

0

[
A

∂up

∂ t
((r,x),A)−up(r,x,A)

]
w(r,x)dνα (r,x)

∣∣∣∣∣ � CA(1−p)(n+2α+2).

Thus

lim
A→∞

∫
B(0,A)

∫ A

0

[
A

∂up

∂ t
((r,x),A)−up(r,x,A)

]
w(r,x)dνα (r,x) = 0.

Therefore we get

lim
A→∞

∫
B(0,A)

∫ A

0

∂ 2up

∂ t2
((r,x),t)tdtw(r,x)dνα (r,x) =

∫
Rn

∫ ∞

0
f p(r,x)w(r,x)dνα (r,x).

This achieved i).
To prove ii) we see that

Δn,α =
1

r2α+1

∂
∂ r

[
r2α+1 ∂

∂ r

]
+

n

∑
i=1

∂ 2

∂x2
i

.

Then ∫
B(0,A)

∫ A

0
Δn,αup((r,x),t)tdtw(r,x)dνα (r,x)

=
∫

B(0,A)

∫ A

0

1
r2α+1

∂
∂ r

[
r2α+1 ∂up

∂ r

]
((r,x),t)tdtw(r,x)dνα (r,x)

+
n

∑
i=1

∫
B(0,A)

∫ A

0

∂ 2up

∂x2
i

((r,x),t)tdtw(r,x)dνα (r,x).

Thus the assertion ii) is obtained, similarly to i), by using Proposition 3.6. �

4. Maximal operators associated with Laplace-Bessel differential operators

We will make use of the Laplace Bessel maximal function associated with the
differential operators Δn,α . The maximal function is defined by (see [5, 6, 7])

Mα f (r,x) = sup
ε>0

|B(0,ε)|−1
α

∫
B(0,ε)

T(s,y)(| f (r,x)|)dνα (s,y),

where
B(0,ε) = {(s,y) ∈ R

n+1
+ : s2 + |y|2 � ε2}.
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An almost everywhere positive and locally integrable function ω : R
n+1
+ →R will

be called a weight. Denote by Lp,ω,α(Rn+1
+ ) the set of measurable functions f (r,x) ,

(r,x) ∈ R
n+1
+ , with finite norm

‖ f‖Lp,ω,α =
(∫

R
n+1
+

| f (r,x)|pw(r,x)r2α+1drdx

) 1
p

< ∞, 1 � p < ∞.

DEFINITION 4.1. [7] The weight function ω belongs to the class Ap,α(Rn+1
+ )

for 1 < p < ∞ , if

sup
x∈R

n+1
+ ,r>0

|B((r,x),t)|−1
α

∫
B((r,x),t)

ω(s,y)s2α+1dsdy

(
|B((r,x),t)|−1

α

∫
B((r,x),t)

ω− 1
p−1 (s,y)s2α+1dsdy

)p−1

< ∞

and ω belongs to A1,α(Rn+1
+ ) , if there exists a positive constant C such that for any

(r,x) ∈ R
n+1
+ and t > 0

|B((r,x), t)|−1
α

∫
B((r,x),t)

w(s,y)s2α+1dsdy � C ess inf
(s,y)∈B((r,x),t)

ω(s,y).

The properties of the class Ap,α(Rn+1
+ ) are analogous to those of the B. Mucken-

houpt classes. In particular, if w ∈ Ap,α(Rn+1
+ ) , then w ∈ Ap−ε,α(Rn+1

+ ) for a certain
sufficiently small ε > 0 and w ∈ Ap1,α(Rn+1

+ ) for any p1 > p .
Note that, |(r,x)|α ∈ Ap,α(Rn+1

+ ) , 1 < p < ∞ , if and only if −(n+2α +2) < α <

(n+2α +2)(p−1) and |(r,x)|α ∈ A1,α(Rn+1
+ ) , if and only if −(n+2α +2) < α � 0.

The following theorem was proved in [7].

THEOREM 4.2. 1) Let 1 < p < ∞ . Then the following two conditions are equiva-
lent:

(i) There is a constant C > 0 such that for any f ∈ Lp,ω,α(Rn+1
+ ) the inequality∫

R
n+1
+

(Mα( f )(r,x))p ω(r,x)r2α+1drdx � C
∫

R
n+1
+

| f (r,x)|pω(r,x)r2α+1drdx

holds.
(ii) ω ∈ Ap,α(Rn+1

+ ) .
2) Let p = 1 . Then the following two conditions are equivalent:
(i) There is a constant C > 0 such that for any f ∈ L1,ω,α(Rn+1

+ ) the inequality∫
{(r,x)∈B((0,0),t) : Mα f (r,x)>λ}

ω(r,x)r2α+1drdx � C
λ
‖ f‖L1,ω,α

holds.
(ii) ω ∈ A1,α(Rn+1

+ ) .



WEIGHTED NORM INEQUALITIES FOR THE g -LITTLEWOOD-PALEY OPERATORS 329

5. The Littlewood-Paley g -function

In this section we define the g -Littlewood functions and establish the Lp,w in-
equalities.

DEFINITION 5.1. We define the g -Littlewood-Paley functions associated with the
Laplace-Bessel differential operators for f ∈ S∗(Rn+1) by the following

g( f )(r,x) =
[∫ ∞

0
|∇u((r,x),t)|2tdt

]1/2
, (r,x) ∈ R

n+1
+ ,

where u((r,x), t) is the Poisson integral defined by u((r,x), t) = pt ∗ f (r,x) and

|∇u((r,x), t)|2 =
∣∣∣∣∂u

∂ t
((r,x),t)

∣∣∣∣2 +

∣∣∣∣∣∂u
∂ r

((r,x),t)|2 +
n

∑
i=1

∣∣∣∣∣ ∂u
∂xi

((r,x), t)|2.

In the Bessel case (n = 0) the Lp norm of g( f ) is comparable with Lp norm
of f for p ∈]1,∞[ (see [1, 12]). In the following we prove the same results for our
g -function when p ∈]1,2].

PROPOSITION 5.2. Let Φ a positive, non-increasing in L1(dνα ) locally inte-
grable function on R

n+1
+ , we have

sup
t>0

|Φt ∗α f (r,x)| � ‖Φ‖L1,α Mα f (r,x),

where Φt is the dilation of Φ given by

Φt(r,x) = t−(n+2α+2)Φ(r/t,x/t).

Proof. As in the Euclidian case ([11], p. 57) we prove the proposition. �

THEOREM 5.3. Let p ∈]1,2] and ω ∈ Ap,α(Rn+1
+ ) . Then there exist two con-

stants Bp,α and Cp,α such that for all f ∈ Lp,ω,α we have

Bp,α‖ f‖Lp,ω,α � ‖g( f )‖Lp,ω,α � Cp,α‖ f‖Lp,ω,α .

Proof. First step. The inequality Bp,α‖ f‖Lp,ω,α � ‖g( f )‖Lp,ω,α .
Let f ∈L2,ω,α(Rn+1

+ )∩Lp,ω,α(Rn+1
+ ) , h∈L2,ω,α(Rn+1

+ )∩Lq,ω,α(Rn+1
+ ), 1

p+ 1
q=1.

Let f ∈D∗(Rn+1). Since the operator g defined by g( f )(r,x)=
[∫ ∞

0 |∇u((r,x),t)|2tdt
]1/2

,

(r,x) ∈ R
n+1
+ , where u is the Poisson integral satisfies

g( f +h) � g( f )+g(h),

then it suffices to proof the theorem for f � 0.
Let us start proving the inequality on the right side.
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Case p < 2. By using the fact that

Δαup((r,x),t) =
(

Δn,α +
∂ 2

∂ t2

)
up((r,x),t) = 0,

we obtain
Δαup((r,x),t) = p(p−1)up−2((r,x),t)|∇u((r,x),t)|2. (5.1)

Then

|g( f )((r,x))|2 � 1
p(p−1)

∫ ∞

0
u2−p((r,x),t)|Δαup((r,x),t)|tdt

� 1
p(p−1)

(
sup
t>0

|u((r,x),t)|
)2−p ∫ ∞

0
|Δαup((r,x), t)|tdt

� 1
p(p−1)

(M̃ ( f )(r,x))2−p Iα( f )(r,x),

where
M̃ ( f )(r,x) = sup

t>0
|u((r,x),t)|

and

Iα( f )(r,x) =
∫ ∞

0
|Δαup((r,x), t)|tdt.

It follows that

|g( f )((r,x))|p �
(

1
p(p−1)

)p/2

(M̃ ( f )(r,x))(2−p)p/2 (Iα( f )(r,x))p/2.

Applying Hölder inequality we get

‖g( f )‖p
Lp,ω,α

�
(

1
p(p−1)

)p/2

‖M̃ ( f )‖(2−p)p/2
Lp,ω,α

‖Iα( f )‖p/2
L1,ω,α

. (5.2)

From Propositions 5.2 and 3.2 we have

|M̃ ( f )(r,x)|p � ‖pt‖p
L1,α

Mα | f (r,x)|p = Mα | f (r,x)|p. (5.3)

Therefore from Theorem 4.2 we deduce

‖M̃ ( f )‖Lp,ω,α � Cp,α‖ f‖Lp,ω,α . (5.4)

Furthermore. Proposition 3.7 allows us to deduce

‖Iα( f )‖L1,ω,α �
∫

Rn

∫ ∞

0

∫ ∞

0
Δn,αup((r,x),t)tdtω(r,x)dνα (r,x)

�
∫

Rn

∫ ∞

0
| f (r,x)|pω(r,x)dνα(r,x). (5.5)



WEIGHTED NORM INEQUALITIES FOR THE g -LITTLEWOOD-PALEY OPERATORS 331

So, from relations (5.1), (5.4) and (5.5) we have

‖g( f )‖Lp,ω,α � Cp,α‖ f‖Lp,ω,α .

Case p = 2. By relation (5.1) and Proposition 3.7 we have

‖g( f )‖2
2,ω,α � 1

2

∫
Rn

∫ ∞

0
| f (r,x)|2dνα(r,x) =

1
2
‖ f‖2

L2,ω,α
.

We have shown that

‖g( f )‖Lp,ω,α � Cp,α‖ f‖Lp,ω,α , for1 < p � 2.

Using a standard duality argument, we can prove the converse inequality. In fact for
f ∈ Lp,ω,α(Rn+1

+ ) we define the g1 -function for f by

g1( f )(r,x) =
(∫ ∞

0
t|∂u

∂ t
(r,x)|2dt

)1/2
.

Obviously
g1( f )(r,x) � g( f )(r,x). (5.6)

As in [1, 9] we prove that for f ∈ L2,ω,α(Rn+1
+ )

‖g1( f )‖L2,ω,α = 2‖ f‖L2,ω,α .

From this relation and by polarization identity we get for all f ∈ L2,ω,α(Rn+1
+ )∩

Lp,ω,α(Rn+1
+ ) and h ∈ L2,ω,α(Rn+1

+ )∩Lq,ω,α(Rn+1
+ ) such that 1

p + 1
q = 1,∫

Rn

∫ ∞

0
f (r,x)h(r,x)ω(r,x)dνα(r,x)

= 4
∫

Rn

∫ ∞

0

∫ ∞

0
t
∂u
∂ t

((r,x),t)
∂v
∂ t

((r,x),t)dtω(r,x)dνα (r,x),

where u and v are the Poisson integral of f respectively of h.
Applying Hölder inequality and the relation (5.6), we obtain∣∣∣∫

Rn

∫ ∞

0
f (r,x)h(r,x)ω(r,x)dνα (r,x)

∣∣∣
� 4

∫
Rn

∫ ∞

0
g1( f )(r,x)g1(h)(r,x)ω(r,x)dνα (r,x)

� 4 Cp,α‖h‖q,ω,α‖g1( f )‖Lp,ω,α .

Since
‖ f‖Lp,ω,α = sup

{∣∣∣∫
Rn

∫ ∞

0
f (r,x)h(r,x)dνα(r,x)

∣∣∣, ‖h‖q,ω,α � 1
}
,

then we get
Ap,α‖ f‖Lp,ω,α � ‖g( f )‖Lp,ω,α

where
Ap,α = (4 Cp,α)−1.

This completes the proof of theorem 5.3. �
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Application

Coifman and Meyer in [4] proved that the Lp boundedness of the commutator
[b,T ] defined by

[b,T ] f (x) = b(x)T f (x)−T (b f )(x)

could be obtained from the weighted Lp estimate for T with Ap weight when b ∈
BMO and T is a standard Calderón-Zygmund singular integral operator, where Ap is
the weight function class of Muckenhoupt. In 1993, Alvarez, Babgy, Kurtz and Pérez
[2] developed the idea of Coifman and Meyer, and established a general boundedness
criterion for the commutators of linear operators. Their results can be stated as follows.

THEOREM 5.4. Let E a Banach space, 1 < p,q < ∞. Suppose that the linear
operator T : C∞

0 → M(E) satisfies the weight estimate

||T ( f )||Lp,w � C|| f ||Lp,w

for all w ∈ Aq and C depends only on n,p and C̃q(w) (the Ap constant of w), but not
on the weight w. Then for any positive integer k and b ∈ BMO(Rn), the commutator

Tb,k( f )(x) = T ((b(x)−b(·))k f )(x)

is bounded on Lp,u(E) for all u ∈ Aq with norm

C(p,n,k,C̃q(u))||b||kBMO.

THEOREM 5.5. Let p ∈]1,2] and ω ∈ Ap,α(Rn+1
+ ). Then for any positive k and

b(x) ∈ BMO(Rn+1
+ ), the commutator

gb,k( f )(x) = g((b(x)−b(·))k f )(x)

is bounded on Lp,ω,α(Rn+1
+ ) with norm

C(p,n,k,C̃p,α(w))||b||kBMO,

where C̃p,α(w) is (the Ap,α constant of w).

Proof. From Theorem 5.3 we have for all p ∈]1,2] and w ∈ Ap,α(Rn+1
+ )

||g( f )||Lp,w,α � Cp,α || f ||Lp,w,α ,

then the result is obtained by Theorem 5.4. �
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