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DOMINANCE OF ORDINAL SUMS OF THE ŁUKASIEWICZ

AND THE PRODUCT TRIANGULAR NORM

PETER SARKOCI

Abstract. In this paper we provide a simple characterization of the dominance in two classes of
continuous triangular norms. In particular, we solve the dominance of (i) ordinal sum t-norms
that use the Łukasiewicz t-norm as the only summand operation and (ii) ordinal sum t-norms that
use the product t-norm as the only summand operation. In both cases, the dominance relation is
characterized by a simple property of the idempotent elements of the dominating t-norm. We also
introduce the notion of the axis of a conjunctor and, as a side result, we characterize dominance
of continuous conjunctors in terms of their axes.
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