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(Communicated by J. Pečarić)

Abstract. In this paper we provide a simple characterization of the dominance in two classes of
continuous triangular norms. In particular, we solve the dominance of (i) ordinal sum t-norms
that use the Łukasiewicz t-norm as the only summand operation and (ii) ordinal sum t-norms that
use the product t-norm as the only summand operation. In both cases, the dominance relation is
characterized by a simple property of the idempotent elements of the dominating t-norm. We also
introduce the notion of the axis of a conjunctor and, as a side result, we characterize dominance
of continuous conjunctors in terms of their axes.

1. Introduction

Dominance as a binary relation on the set of all binary operations defined on
a common poset was originally introduced within the theory of probabilistic metric
spaces [19, 21] where it was motivated by the study of Cartesian products of such
spaces. Later dominance was studied in connection with the construction of many-
valued equivalence relations [3, 4, 22] and many-valued orderings [2]. Recently, the
concept of dominance was found to be important for constructions of T -transitive
Cartesian products of T -transitive many-valued relations [16]. The mathematical cu-
riosity also motivated the study of dominance as a concept of interest on its own right
[14, 15, 20]. Simultaneously with the growing importance of the dominance relation,
also the diversity of the considered operations became broader. For example, while in
the original framework of probabilistic metric spaces the natural question to deal with
is the dominance of triangle functions and of triangular norms, in the later contexts the
authors consider dominance of aggregation functions [16] which is a markedly larger
class.

DEFINITION 1. Let A,B : [0,1]2 → [0,1] be two binary operations and let S be a
subset of [0,1]4 . We say that A dominates B on the set S , if the inequality

A
(
B(x,y),B(u,v)

)
� B

(
A(x,u),A(y,v)

)
(D)

holds for all x,y,u,v ∈ [0,1] with (x,u,y,v) ∈ S . We say that A dominates B , and we
write A � B , if A dominates B on the set [0,1]4 .
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By a conjunctor we will understand any nondecreasing binary operation on the
unit interval with the neutral element 1. A conjunctor which is commutative and asso-
ciative is called a triangular norm or, shortly, a t-norm [8, 19]. Within this paper we pay
attention mainly to these prototypical t-norms: the minimum TM(x,y) = min{x,y} , the
Łukasiewicz t-norm TL(x,y) =max{0,x+y−1} and the product TP(x,y) = xy . Thanks
to associativity and commutativity every t-norm dominates itself; hence the dominance
of t-norms is a reflexive relation [8]. Moreover, the commutativity together with the fact
that all t-norms share the common neutral element implies that dominance is a subre-
lation of the standard point-wise order of t-norms; alternatively T1 � T2 is a necessary
condition for T1 � T2 . As a consequence the dominance of t-norms is an antisymmetric
relation. It was an open problem whether the dominance of t-norms is also transitive
[19, Problem 12.11.3] and only recently has been answered negatively [20]. Within the
present paper we considerably strengthen the methods and ideas which were used in
order to come up with this negative answer.

We will often utilize the concept of an affine transformation of a conjunctor which
is a special case of the notion of an isomorphic image of an algebra [8]. Given an
interval [a,b] and a conjunctor C we define

〈a,b,C〉 : [a,b]2 → [a,b] : (x,y) �→ a+(b−a)C
(

x−a
b−a

,
y−a
b−a

)

and we refer to the new operation as an affine transform of C . Notice that the algebraic
structures ([0,1],C) and ([a,b] ,〈a,b,C〉) are isomorphic via the unique affine order
isomorphism from the unit interval to [a,b] .

Let (Ci)i∈I be a family of conjunctors indexed by an at most countable index set I
and let ([ai,bi])i∈I be a system of subintervals of [0,1] with pairwise disjoint interiors.
The ordinal sum given by these two ingredients is the binary operation

C : [0,1]2 → [0,1] : (x,y) �→
{
〈ai,bi,Ci〉(x,y) if x,y ∈ ]ai,bi[ ,
TM(x,y) otherwise.

By the abuse of notation we identify the ordinal sum with the sequence (〈ai,bi,Ci〉)i∈I

of affine-transformed operations. We refer to the intervals [ai,bi] as summand carriers
and to the individual conjunctors Ci as summand operations, or simply summands.
Clearly, the ordinal sum of conjunctors is a conjunctor again. Moreover, if all the
summands are (continuous) t-norms then also the ordinal sum is a (continuous) t-norm.
If we have two t-norms T1 � T2 where T2 = (〈ai,bi,T2,i〉)i∈I , then there exists a family
of t-norms (T1,i)i∈I such that T1 = (〈ai,bi,T1,i〉)i∈I . In other words, T1 can be expressed
as an ordinal sum with the same structure of summand carriers as T2 but with possibly
different summands. Since the dominance of t-norms implies their comparability, this
applies also to the situation when T1 � T2 . By the next important theorem, the question
of dominance of two ordinal sum t-norms boils down to the question of dominance of
their respective summands [13].

THEOREM 1. Let T1 and T2 be ordinal sum t-norms

T1 = (〈ai,bi,T1,i〉)i∈I , T2 = (〈ai,bi,T2,i〉)i∈I
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with a common system of summand carriers but with possibly different systems of sum-
mands, (T1,i)i∈I and (T2,i)i∈I respectively. Then T1 � T2 if and only if for each i ∈ I it
holds that T1,i � T2,i .

For a t-norm Ts we will use the symbol OSTs to denote the class of all ordinal
sums of type (〈ai,bi,Ts〉)i∈I ; in other words, it is the class of all ordinal sums that are
constructable using exclusively Ts as the summand operation. By Theorem 1, in order
to describe the structure of dominance on OSTs it is sufficient to characterize all T in
OSTs which dominate Ts .

Recall that x from the unit interval is said to be an idempotent element of a t-norm
T if T (x,x) = x . By the symbol IT we denote the set of all idempotent elements of
T . For every t-norm T it holds that {0,1} ⊆ IT . That is why we refer to 0 and 1 as
trivial idempotent elements. A pair of t-norms T1,T2 with T1 � T2 satisfies IT1 ⊇ IT2 .
The same inclusion holds also when T1 � T2 as the dominance of t-norms implies their
comparability, but in this case even more can be said [13].

THEOREM 2. If a t-norm T1 dominates a t-norm T2 then IT1 is closed with re-
spect to T2 .

The core result of this paper is a strengthening of Theorem 2 in the case of t-norms
from either the class OSTL or OSTP . Namely, we prove the following characterization
(in fact two of them: one for Ts = TL and the other one for Ts = TP ).

THEOREM 3. Let Ts be either TL or TP . A t-norm T ∈ OSTs dominates Ts if and
only if IT is closed with respect to Ts .

A continuous Archimedean t-norm is a continuous t-norm T which has no nontriv-
ial idempotent elements. The class of continuous Archimedean t-norms splits naturally
into the class of strict and the class of continuous nilpotent t-norms. A t-norm T is strict
if it is order-isomorphic to TP , i.e., the monoids ([0,1],T ) and ([0,1],TP) are isomor-
phic via an order isomorphism ϕ : [0,1] → [0,1] . Similarly, a t-norm is continuous
nilpotent if it is order-isomorphic to TL . In this sense TP and TL are two prototypical
continuous Archimedean t-norms [1, 8, 19].

The dominance relation is invariant under order isomorphism: given an order iso-
morphism ϕ : [0,1]→ [0,1] and four t-norms T1,T ′

1 ,T2,T ′
2 where Ti is order-isomorphic

to T ′
i via ϕ ( i = 1,2), the condition T1 � T2 is equivalent with T ′

1 � T ′
2 . Therefore,

in order to solve the dominance of all continuous Archimedean t-norms it is enough
to characterize the continuous Archimedean t-norms that dominate TP or TL . More-
over, since every continuous t-norm is an ordinal sum of continuous Archimedean t-
norms [1, 8, 19], by Theorem 1 it follows that the solution of dominance of all contin-
uous t-norms is equivalent to the characterization of continuous t-norms that dominate
TP or TL . In view of the latter fact the results of the present paper are just first steps
towards a characterization of dominance of continuous t-norms.

Given two conjunctors A � B it is generally not an easy task to decide whether
A dominates B . Any geometric insight into the structure of dominance is more than
welcome. For the special case when the dominated operation is either TL or TP such
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a geometric intuition has been provided by De Baets, Saminger and the present au-
thor [18, Section 3.2]. It is this geometric insight that motivated the main results of the
present paper.

The paper is organized as follows. First, in Section 2, we prove two auxiliary re-
sults on dominance of continuous conjunctors. Then, with the help of these results we
prove the main results in Section 3. Later in Section 4 we provide some counterexam-
ples to transitivity of dominance of t-norms and we show how to use these results in
order to solve dominance in some more complicated situations. The paper is concluded
in Section 5.

2. Dominance of continuous conjunctors

By the axis of a conjunctor C we mean the set AC defined via

AC = {(x,y) ∈ ]0,1]2 |x = y or C(x,y) �= TM(x,y)}. (1)

Clearly, every continuous conjunctor C behaves on the border of its axis as the min-
imum t-norm, i.e., C �∂AC

= TM �∂AC
. Notice that all points with zero coordinates

are excluded from the axes by definition. As we will see later, this small technicality
simplifies some considerations.

LEMMA 1. Let C be a continuous conjunctor and let (x,y) ∈ ]0,1]2 . Then there
is a point (x∗,y∗) ∈ cl(AC) such that x∗ � x , y∗ � y, and C(x∗,y∗) = C(x,y) .

Proof. Pick an arbitrary pair (x,y) ∈ ]0,1]2 . We will distinguish two mutually
exclusive cases: (x,y) either is or is not a member of cl(AC) .

In the first case, trivially, (x∗,y∗) = (x,y) . If, on the other hand, (x,y) is not an
element of cl(AC) then x �= y . We will assume y < x ; the other case x < y would be
treated analogously. Since (x,y) �∈ AC we can conclude C(x,y) = TM(x,y) = y . Put

y∗ = y,

x∗ = sup{α ∈ [y∗,x] |α = y∗ or C(α,y∗) �= TM(α,y∗)}. (2)

The set under supremum in (2) is nonempty, whence x∗ exists. Clearly (x∗,y∗) ∈
∂AC which entails the equality C(x∗,y∗) = TM(x∗,y∗) and settles the claim (x∗,y∗) ∈
cl(AC) . The relations x∗ � x and y∗ � y are established trivially and, by the defini-
tion of x∗ , it also holds that y∗ � x∗ . Therefore C(y∗,x∗) = TM(y∗,x∗) = y∗ = y =
C(x,y) . �

In what follows we show that the points in the axis of a conjunctor or, eventually,
in its topological closure are, in a sense, the only important ones in order to establish or
disprove the dominance over another conjunctor.

THEOREM 4. Let A be a continuous conjunctor and let B be a conjunctor. Then
A � B if and only if A dominates B on the set cl(AA)× cl(AA) .
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Proof. Dominance trivially implies dominance on any subset of [0,1]4 . In the
other way round, observe that (D) is satisfied whenever any of the variables attains the
value 0; this follows from the fact that 0 is the absorbing element of every conjunctor.
Therefore let x,y,u,v be arbitrary elements of ]0,1] . Let (x∗,u∗) , (y∗,v∗) be two points
in cl (AA) with

x∗ � x, u∗ � u, A(x∗,u∗)=A(x,u),
y∗ � y, v∗ � v, A(y∗,v∗)=A(y,v).

Existence of such points is guaranteed by Lemma 1. We have the following chain of
inequalities

A
(
B(x,y),B(u,v)

)
� A

(
B(x∗,y∗),B(u∗,v∗)

)
�

� B
(
A(x∗,u∗),A(y∗,v∗)

)
= B

(
A(x,u),A(y,v)

)
.

The first comparison follows from nondecreasingness of A and B , the second one by
the assumption of dominance on the set cl(AA)× cl(AA) . Finally, the last equality
follows directly from the defining properties of the starred variables, which are listed
above. �

COROLLARY 1. Let A and B be continuous conjunctors. Then A� B if and only
if A dominates B on the set AA ×AA .

Proof. Dominance trivially implies dominance on any subset of [0,1]4 . In the
other way round, suppose that A dominates B on the set AA ×AA . Since A and B
are continuous, so are the functions on both sides of the inequality (D). Therefore
A dominates B also on the set cl (AA)× cl(AA) and the proof is concluded invoking
Theorem 4. �

3. Proofs of the main results

3.1. Dominance on the class OSTL

For a binary operation O : [0,1]2 → [0,1] we define its diagonal as the mapping

δO : [0,1] → [0,1] : x �→ O(x,x).

Triangular norms from OSTL are known to be expressible in terms of their diagonals in
a simple form [1, p. 154].

THEOREM 5. Every t-norm T ∈ OSTL satisfies

T (x,y) = min

{
x,y,δT

(
x+ y

2

)}

for all x,y ∈ [0,1] .
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Recall that a real function f is said to be subadditive if the domain of f is closed
with respect to the standard addition and

f (x)+ f (y) � f (x+ y) (3)

holds for all x,y ∈ Dom( f ) (a nice introduction to subadditive functions was given by
Hille and Phillips [7]). In this paper we are interested mainly in functions defined on the
unit interval. Since the unit interval is not closed with respect to the standard addition,
the notion of subadditivity has to be modified slightly; a function f : [0,1] → [0,1] is
said to be subadditive if it satisfies (3) for all x,y ∈ [0,1] with x+ y � 1. Analogously,
we say that the operation O : [0,1]2 → [0,1] is subadditive if

O(x,y)+O(u,v) � O(x+u,y+ v)

holds for all x,y,u,v ∈ [0,1] with x+u � 1 and y+ v � 1.
Given a t-norm T we define its dual t-conorm (or simply dual) as the binary

operation

Td : [0,1]2 → [0,1] : (x,y) �→ 1−T(1− x,1− y).

The t-conorm dual to TL is denoted SL and satisfies SL(x,y) = max{x + y,1} . One
important tool utilized in our proofs is the following result characterizing all t-norms
dominating TL by means of subadditivity and duality [12, 16].

THEOREM 6. A t-norm T dominates TL if and only if its dual t-conorm Td is
subadditive.

Simple manipulations of the defining expressions reveal that the relationship be-
tween the diagonal of a t-norm T and the diagonal of its dual t-conorm Td is given by
the equality δTd (x) = 1− δT (1− x) . Moreover, in the case T ∈ OSTL we can invoke
Theorem 5 and derive

Td(x,y) = max

{
x,y,δTd

(
x+ y

2

)}
(4)

which is a characterization dual to that of Theorem 5. By the following lemma, subad-
ditivity of binary operations of this type is related to the subadditivity of their diagonals.

LEMMA 2. If δ : [0,1] → [0,1] is a subadditive function then so is the binary
operation

F : [0,1]2 → [0,1] : (x,y) �→ max

{
x,y,δ

(
x+ y

2

)}
.

Proof. Let δ be subadditive; we have to prove F(x,y)+F(u,v) � F(x+u,y+ v)
for all x,y,u,v∈ [0,1] with x+u� 1 and y+v� 1. For the sake of notational simplicity
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we write c = (x+ y)/2 and d = (u+ v)/2. Let us start from the left-hand side of the
subadditivity inequality:

F(x,y)+F(u,v) = max{x,y,δ (c)}+max{u,v,δ (d)}

= max

⎧⎨
⎩

x+u, x+ v, x+ δ (d),
y+u, y+ v, y+ δ (d),
δ (c)+u, δ (c)+ v, δ (c)+ δ (d)

⎫⎬
⎭

� max{x+u,y+ v,δ (c)+ δ (d)}
� max{x+u,y+ v,δ (c+d)}
= F(x+u,y+ v).

Note that the second inequality follows from the subadditivity of δ . �
Taking into account Theorem 5, Theorem 6, and Lemma 2, for every t-norm T in

OSTL the subadditivity of δTd implies T � TL . In order to examine this subadditivity
neatly we will utilize another tool which allows to express δTd in an exceptionally
handy way.

LEMMA 3. If T ∈ OSTL then the equations

δT (x) = x− inf
t∈IT

|x− t| and δTd (x) = x+ inf
t∈ITd

|x− t|

hold for every x ∈ [0,1] .

Proof. We only show the first equality. The second one follows for free by duality.
Let T = (〈ai,bi,TL〉)i∈I . For i ∈ I denote ci = ai+bi

2 . Closer inspection of the
defining expression for TL reveals that the diagonal of T is given by

δT (x) =

⎧⎪⎨
⎪⎩

ai if x ∈ ]ai,ci[ ,
2x−bi if x ∈ [ci,bi[ ,
x otherwise.

Alternatively, for the function θT = id[0,1]− δT we have

θT (x) =

⎧⎪⎨
⎪⎩

x−ai if x ∈ ]ai,ci[ ,
bi− x if x ∈ [ci,bi[ ,
0 otherwise.

The proof will be carried out by showing that θ (x) is the distance of x from the set
IT , that is θT (x) = inft∈IT |x− t| . By the definition we have x ∈ IT if and only if
δT (x) = x which is further equivalent to θT (x) = 0. Now let x �∈ IT . There exists i ∈ I
such that x ∈ ]ai,bi[ . If x ∈ ]ai,ci[ then the idempotent element closest to x is ai and
their distance is x− ai . Analogously, if x ∈ ]ci,bi[ , the closest idempotent element is
bi and the distance is bi − x . Finally, if x = ci there exist two different idempotent
elements that have the minimal distance to x . In order to compute this distance one can
use for example the distance from bi . �
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LEMMA 4. Let M be a set where {0,1} ⊆M ⊆ [0,1] . If M is closed with respect
to SL then

fM : [0,1] → R : x �→ inf
t∈M

|x− t|

is a subadditive function.

Proof. For arbitrary x,y ∈ [0,1] with x+ y � 1 we have

fM(x)+ fM(y) = inf
r∈M

|x− r|+ inf
s∈M

|y− s|
= inf

r,s∈M

(|x− r|+ |y− s|)
� inf

r,s∈M
|x+ y− (r+ s)|.

The value 1 is attained by the term r+s for example in the form 0+1. Since x+y � 1
cutting the value r+ s off by 1 does not affect the value of the latter infimum:

inf
r,s∈M

|x+ y− (r+ s)|= inf
r,s∈M

|x+ y−min{r+ s,1}|

Notice that min{r + s,1} = SL(r,s) . Moreover, SL(M,M) = M ; indeed, one inclusion
follows from the assumption that M is closed with respect to SL , the other follows
from the fact that 0 is a neutral element of SL and 0 ∈ M . Whence

inf
r,s∈M

|x+ y−min{r+ s,1}|= inf
t∈M

|x+ y− t|= fM(x+ y)

prooving that fM is subadditive. �

Now we prove the two main results of this section. First we formulate a particular
instance of Theorem 3. Next, as a corollary, we characterize dominance within the
whole class OSTL .

THEOREM 7. A t-norm T ∈OSTL dominates TL if and only if the set IT is closed
with respect to TL .

Proof. (i) If T � TL , then IT is closed with respect to TL by Theorem 2.
(ii) Assume that IT is closed with respect to TL . By means of duality, ITd is

closed with respect to SL . By Lemma 3 and Lemma 4, the diagonal δTd is a sum of
id[0,1] and a subadditive function. Therefore δTd is subadditive. Next, by equation (4)
and Lemma 2 also Td is subadditive. Invoking Theorem 6 the t-norm T dominates
TL . �

COROLLARY 2. For t-norms T1,T2 ∈ OSTL we have T1 � T2 if and only if IT1 is
closed with respect to T2 .

Proof. Straightforward application of Theorem 7 and Theorem 1. �
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3.2. Dominance on the class OSTP

Before we formulate the first auxiliary result of this section, we would like to recall
that a sector function (or a sector for brevity) of a binary operation O : [0,1]2 → [0,1]
is any mapping of type t �→ O(t,y) or t �→ O(x,t) with x,y ∈ [0,1] . In the first case
we sometimes speak about a horizontal and in the second case about a vertical sector
function.

LEMMA 5. Let f be a binary operation on the unit interval and let all sectors of
f be nondecreasing and concave. If a subinterval [a,b] of the unit interval satisfies
f (a,a) � a and f (b,b) � b then f �[a,b]2 � 〈a,b,TP〉 .

Proof. For the sake of legibility, we will write g instead of f �[a,b]2 and h in place

of 〈a,b,TP〉 . Now our claim reads as g � h . The proof will be carried out in two steps.
First we show that the inequality is satisfied at the corners of [a,b]2 . Then, utilizing the
concavity assumption, we establish the inequality on the entire [a,b]2 .

Direct evaluation of h at the corners reveals h(x,y) = min{x,y} for all possible
choices of x,y in {a,b} . At the corners (a,a) and (b,b) is our claim satisfied by
the assumption. Moreover, since the inequality is satisfied at (a,a) and f is assumed
to have nondecreasing sector functions, our claim holds also at the remaining corners
(a,b) and (b,a) .

Observe that while x �→ g(x,a) and x �→ g(x,b) are concave by assumption, the
functions x �→ h(x,a) and x �→ h(x,b) are affine. The latter fact is easy to see as h is a
composition of the bilinear function TP with two affine maps. Now, taking into account
that g � h holds in the corners of R and invoking the standard definition of a concave
function, we conclude that the inequality is satisfied also at the points (x,a) and (x,b)
for every x in [a,b] . Finally, considering the vertical sector function y �→ f (x,y) and
iterating an analogous argument once again, we prove that the inequality is actually
satisfied for every (x,y) ∈ [a,b]2 . �

Axes of t-norms in OSTP (and generally, of ordinal sums with arbitrary strict sum-
mands) are of special structure. We express such axes as unions of two sets. Given a
t-norm T = (〈ai,bi,TP〉)i∈I we define the slim part and the thick part of AT via

Aslim
T = {(x,x) |x ∈ IT \ {0}} and Athick

T =
⋃
i∈I

]ai,bi[
2

respectively. Since TP is strictly weaker than TM on the open unit square, every opera-
tion 〈ai,bi,TP〉 is so on the open square ]ai,bi[

2 . Taking into account the definition of
ordinal sum t-norms, T is strictly weaker than TM exactly on the set Athick

T . Comparing
this fact with (1) yields

AT = Aslim
T ∪Athick

T . (5)

Since summand carriers are intervals with mutually disjoint interiors, the union in the
definition of Athick

T is disjoint. As a consequence, for every pair (x,y) ∈ Athick
T there

exists a unique index i in I such that (x,y) ∈ ]ai,bi[
2 ; the values ai and bi given this
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way will be denoted a(x,y) and b(x,y) respectively. By the definition of ordinal sum
t-norms, the identity

T (x,y) = 〈a(x,y),b(x,y),TP〉(x,y) (6)

holds for every T ∈ OSTP and every pair (x,y) ∈ Athick
T .

In the proof of the next lemma we will invoke a quite obvious claim that all hori-
zontal and vertical sector functions of t-norms from OSTP are concave. One possibility
how to establish this claim is to use a recent result by Durante and Papini according to
which an ordinal sum of copulas with concave sector functions is again a copula with
concave sectors [6, Proposition 2.5]. Interested reader can find the definition of copula
functions for example in the monograph by Schweizer and Sklar [19, Chapter 6]. The
important fact at this point is that TP is indeed a copula [8, Example 9.5.i] and has
concave (actually even linear) sectors.

LEMMA 6. Let T be a member of OSTP where IT has an accumulation point in
0 and let S ⊆ AT . If T dominates TP on the set S×Aslim

T then so it does also on the
set S×AT .

Proof. Let (x,u) be an arbitrary but fixed pair in S . Being a member of the class
OSTP , the t-norm T assumes positive values for pairs of positive arguments. Therefore
T (x,u) is a positive number and we can define the function

f : [0,1]2 → R : (y,v) �→ T (xy,uv)
T (x,u)

.

The satisfaction of (D) is equivalent to f (y,v) � T (y,v) ; all cases of dominance within
the proof will be considered in this form. Now it is enough to establish this inequality
for every (y,v) ∈ Athick

T . Indeed, assuming that the inequality holds whenever (y,v) ∈
Aslim

T , by (5) it then holds also for (y,v)∈AT and, as the choice of (x,u)∈ S is arbitrary,
we prove our claim.

Let (y,v) be a pair in Athick
T . The interval

[
a(y,v),b(y,v)

]
is a summand carrier and

a(y,v),b(y,v) are idempotent elements of T . Since IT is accumulated in 0, both a(y,v)
and b(y,v) are positive. As a consequence, the points (a(y,v),a(y,v)) and (b(y,v),b(y,v)) are
elements of Aslim

T and, by the assumption, satisfy the dominance inequality in the form

f (a(y,v),a(y,v)) � T (a(y,v),a(y,v)) = a(y,v) ,

f (b(y,v),b(y,v)) � T (b(y,v),b(y,v)) = b(y,v) .
(7)

Being a member of OSTP , our t-norm T has nondecreasing and concave sector func-
tions. Clearly, f inherits this property which, taking (7) into account, allows to invoke
Lemma 5 and conclude f (y,v) � 〈a(y,v),b(y,v),TP〉(y,v) . Finally, combining the latter
inequality with (6) establishes the dominance inequality for the pair (y,v) and con-
cludes the proof. �

Now we formulate and prove the two main results of this section. First we formu-
late a particular instance of Theorem 3. Next, as a corollary, we characterize dominance
within the whole class OSTP .
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THEOREM 8. A t-norm T from the class OSTP dominates TP if and only if IT is
closed with respect to TP .

Proof. (i) If T � TP , then IT is closed with respect to TP by Theorem 2.
(ii) Let us take arbitrary (x,u),(y,v) ∈ Aslim

T . By the definition of the slim part of
the axis we have x = u , y = v , and x,y ∈ IT . By the assumption xy ∈ IT . Therefore

T (xy,uv) = T (xy,xy) = xy = T (x,x)T (y,y) = T (x,u)T (y,v).

meaning that T dominates TP on the set Aslim
T ×Aslim

T .
Now we distinguish two mutually exclusive cases: the intersection IT ∩ ]0,1[ is

either empty or nonempty. In the first case IT is simply {0,1} , the t-norm T is actually
TP and the dominance is satisfied trivially. In the other case the closeness with respect
to TP implies that 0 is an accumulation point of IT . Since Aslim

T ⊆ AT we can use
Lemma 6 and conclude that T dominates TP also on the set Aslim

T ×AT . Thanks to
the commutativity of t-norms, both sides of (D) are invariant under the permutation
(x,u,y,v) �→ (y,v,x,u) . Whence T dominates TP also on the set AT ×Aslim

T . Invoking
Lemma 6 once again, the dominance is extended to the set AT ×AT and, as T and TP
are both continuous conjunctors, the latter implies T � TP via Corollary 1. �

COROLLARY 3. Two t-norms T1 and T2 from the class OSTP satisfy T1 � T2 if
and only if IT1 is closed with respect to T2 .

Proof. Straightforward application of Theorem 8 and Theorem 1. �

4. The non-transitivity of dominance

Several consequences of the here presented results have already been promoted in-
formally. For example the family of Mayor-Torrens [9] and Dubois-Prade [5] t-norms
were shown to admit only a sparse relation of dominance [18, 17]. It was also shown
that certain slightly modified versions of these families are linearly ordered by domi-
nance [18, 17].

As we have already mentioned in the introduction, the question whether domi-
nance of triangular norms is a transitive relation remained open for almost three decades.
In view of the present results it is very easy to construct three continuous t-norms T1 ,
T2 , and T3 such that T1 � T2 , T2 � T3 and T1 �� T3 . For example, the counterexample
[20] was based on the choice

T1 = (〈0, 1
2 ,TL〉), T2 = (〈0, 1

2 ,TL〉,〈 1
2 ,1,TL〉), T3 = TL.

The tools used to establish this counterexamplewere much less general than those of the
present paper. In view of our results all these three relations follow from Corollary 2.

Although we already know that dominance of continuous t-norms is not transitive,
it remains an open question whether it is true also in the case of strict t-norms. With
the help of Corollary 3 we can design a counterexample to transitivity which involves



346 PETER SARKOCI

two strict t-norms. Before we do so, let us recall that the Aczél-Alsina t-norm [8] with
parameter λ ∈ ]0,∞[ is a strict t-norm defined via

TAA
λ : (x,y) �→ exp

(
−

(
| log(x)|λ + | log(y)|λ

)1/λ
)

.

Now, in order to establish the desired counterexample, it is enough to set

T1 = (〈 1
8 , 1

4 ,TP〉,〈 1
4 , 1

2 ,TP〉,〈 1
2 ,1,TP〉), T2 = TP, T3 = TAA

0.9 .

The relation T2 � T3 is known to hold thanks to a peculiar algebraic relationship of
the Aczél-Alsina t-norms to the product t-norm [8]. In order to disprove T1 � T3 it is
enough to show that IT1 is not closed with respect T1 and invoke Theorem 2. This is
an easy task as 1

2 ∈ IT1 satisfies T3( 1
2 , 1

2) ∼ 0.2237 �∈ IT1 . Finally, the relation T1 � T2

is established by means of Corollary 3 since the set IT1 is clearly closed with respect
to the standard multiplication.

5. Two concluding remarks

The tool developed in Section 2 (or better its generalization for n -ary conjunctors
on the dominating side) could find applications in design of T -transitivity preserving
conjunctive aggregation procedures for sets of many-valued relations; every such pro-
cedure is based on a conjunctor that dominates a given t-norm T [16, Theorem 3.1].

Next, it is interesting that both main results of the present paper (Theorem 7 and
Theorem 8) are of the same structure. Actually Theorem 3 formulates both of them at
the same place. Therefore it is natural to ask which t-norms Ts other than TL and TP
satisfy formally the same theorem. First brief investigations in this direction revealed
that there exist continuous Archimedean t-norms that violate the condition in question
[17].
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