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PRODUCTS OF RADIAL DERIVATIVE AND MULTIPLICATION
OPERATOR BETWEEN MIXED NORM SPACES AND
ZYGMUND-TYPE SPACES ON THE UNIT BALL

JIE ZHOU AND YONGMIN LI1U*

(Communicated by J. Pecaric)

Abstract. In this paper, we obtain some characterizations of the boundedness and compactness
of the products of the radial derivative and multiplication operator #ZM, between mixed norm
spaces H(p, q, ) and Zygmund-type spaces on the unit ball.

1. Introduction

Let z=(z1,---,z2) and w = (wy,---,w,) be points in the complex vector space
C" and zw := (z,w) = z1W1 + 22w + - - - + 2,y , Where Wy is the complex conjugate of
wy . We also write

Let B={z€ C":|z] < 1} be the open unit ball in C", S = JB its boundary, and H (B)
denote the class of all holomorphic functions on B. For f € H(B), let

stand for the radial derivative of f at z ([12, 36]).
The iterated radial derivative operator %™ f is defined inductively by ([1, 2, 25]):

R"f=%(%"f), meN-{1}.

A positive continuous function ¢ on [0, 1) is called normal, if there isa 7 € [0,1)
and a and b, 0 < a < b such that (see, for example, [13]).

r . . . r
M is decreasing on [¢,1) and lim M =0,
(l—r)“ r—1 (l—r)“
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(=) is increasing on [t,1) and 113} (I(P—(rz) - = oo,

If we say that a function ¢: B — [0,0) is normal, we also assume that it is radial,
that is, ¢(z) = ¢(|z]), z € B.
For p, g € (0,%), let

1 )4 %
||fp7q,¢:</0 M(f(f7r)(§_(r)dr> )

r

where .
My(f,r) = ( [iredpas@)' osr<t.

and do is the normalized surface measure on S. The mixed norm space H(p, g, ¢)
consists of all f € H(B) such that | f|[, 4.9 <oo. For 1 <p, g <e, H(p,q,9),
equipped with the norm || f]|,,4,¢ . is a Banach space. While for the other values of p
and g, || ||p.q.¢ is @ quasinorm on H(p,q,¢), H(p,q,9) is a Fréchet space but not a
Banach space. Note that if ¢(r) = (1 —r)(@+t1/? then H(p,p,¢) is equivalent to the
weighted Bergman space AL (B) defined for 0 < p < e and o > —1, as the space of
all f € H(B) such that

171 = [ QP (1~ [P)dA) <

Let 1 be a normal function on [0,1). We say that an f € H(B) belongs to the
space 2y, = Zu(B), if

sup {1(|z]) |27 f(2)| : z € B} < oo

It is easy to check that 2, becomes a Banach space under the norm

£l 2 = 1£(0)| +sup{u(|]) |%2°f(z)| : z € B} .

Zu will be called the Zygmund-type space. Let 2 o = £, 0(B) denote the class of
holomorphic functions f € 2, such that

lg"g}lu(\ZI) |%*f(2)| =0,

Zuy is called the little Zygmund-type space (see [7, 17, 24]). It is easy to see that
Zuo is a closed subspace of 2. When u(r) =1- 2, Zygmund-type space Zu
(little Zygmund-type space 2}, o) is the classical Zygmund space 2° (little Zygmund-
type space Zj). The weighted iterated radial-derivative composition operator is defined
in [25, 27] as follows:

Kol (2) = (MCoZ") f(2) = u(2) 2" f(0(2), z€B.
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Some characterizations of the boundedness and compactness of the operator %/,
between various spaces of holomorphic functions on the unit ball can be found in
[25, 27]. Some related operators between mixed norm spaces and various spaces on
the unit ball, are treated for example, in [1, 8, 10, 14, 15, 18, 19, 20, 21, 22, 26,
28, 29, 30, 31, 32, 35, 38]. For related one-dimensional operators, see, for example
[3,4,5,9, 11, 16, 23, 34, 37], as well as the related references therein. When m =1
and @(z) = z, we can get the operator M, % . Inspired by this operator, we can define
the operator ZM,, as follows:

AMuf(2) = % (u(2)f(2))
Lodf
Z);ng +22]32,

u(z)2f(z) + Zu(z)f(z)
MZf(z)+ f(2)%Zu(z),z €B.

The purpose of this paper is to study the boundedness and compactness of the operator
ZM,, between H(p,q,¢) spaces and Zygmund-type spaces on the unit ball.

Throughout the paper, the letter C denotes a positive constant which may vary at
each occurrence but it is independent of the essential variables.

2. Auxiliary results

Here we state several auxiliary results most of which will be used in the proofs of
the main results.
The following lemma can be found in [15, 25].

LEMMA 1. Assume that m € N, 0 < p, g <eo, ¢ isnormal and f € H(p,q, ¢).
Then there is a positive constant C independent of [ such that

Clz|
o (lz]) (1 —1z?)

1/ 1lp.q.0
f@) <C—————0,
I T

The next folklore lemma can be found, e.g. in [1, 15].

2" f(2)] <

T 1 P

and

LEMMA 2. Assume that 0 < p, g <eo, for B >1t, ® € B and
(1—|oP)P
o)) (1 —z@)" "0
Then fu € H(p,q,0) and there is a positive constant C independent of f such that

z€B.

fo(z) =

sup ||fw||p,q~,¢ <C
weB

The next Schwartz-type lemma is proved in a standard way (see, e.g. [14, Lemma

3D.
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LEMMA 3. Assume ¢ and [ are normal, 0 < p, g <o and u € H(B), and let
X and Y be one of the spaces H(p,q,0), 2y, Zuo. Then M, : X — Y is compact
if and only if %M, : X — Y is bounded and for any bounded sequence {f,} in X
which converges to zero uniformly on the compact subsets of B as n — oo, we have
H%Mu(fn)H% — 0,1 — oo,

To investigate the compactness of the operator #ZM,, which map a space into
Zu,0, we also need the next lemma (see, e.g. [6, 38]).

LEMMA 4. A closed set K in 2,0 is compact if and only if it is bounded and
satisfies
hm sup[.t (I2])|2*f(z)| = 0.

|2]—

For the case when u is a normal weight we have the following point evaluation
estimate, which was proved in Lemma 3.1 in [33].

LEMMA 5. Assume that f € H(B) and u is a normal weight. Then

l2 g
QI <CIf ], (1+ | m) L€B.

The next two lemmas are proved in [24].

LEMMA 6. Assume that | is normal and f € Z,,. Then,

lzl rt 4
@] <Clfllz (1+ [ Wj)dt) LcB.

Moreover, if
14
//—Sdt<
0 Jo u(s)

f@I<Clfllz, z€B.

then

d\

dt < oo holds. Then, for every

bounded sequence { fi}xen C 2y converging to 0 unlformly on the compact subsets of
B, we have that

LEMMA 7. Assume p is normal and [, f’

lim sup|fi(z)] =

k—eo e
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3. The boundedness and compactness of #M, : H(p, q, ) — 2, (Zu0)

In this section we formulate and prove our main results. Assume that u € H(B),
¢ and p are normal.

THEOREM 1. Assume that 0 < p, q < eo. Then %M, :H(p,q,9)— Zy is
bounded if and only if

up HUDIZ ()|

sup i (D)
B 9(|z]) (1 —[z[*)
u(|z)[z22u(z)|
sup 7 < oo, 2)
eB ¢ (J2]) (1 —|2[2)' o
p(lz)|z%u(z)|
sup < oo, 3)
2B ¢ (|2]) (1 - [22)**
and
NI @

sup
2B ¢ (J2]) (1—[22)**

Proof. First let us assume that conditions (1), (2), (3) and (4) hold. For any f €
H(p,q,9), by Lemma 1, we have

(Z|)l9?2((=%’Mu)f)(Z)l
— w(|2)) |2 (%u(2) £ () + u(2) % £ (2))|
},%’3 )+3%’2 ()%’f(z)—l—&%’u(z)%’zf(z)+u(z)%3f(z)|
w(2)Zu@)] | u(d) )] | u(d)Ru)
< C|f -+ —+
Moo ( Y(1—12P)i oz (1— 2P o(j2)) (1 [2P)**

MCOIETE )
0(1el) (1~ [P >

And we have (ZM,)f(0) = Zu(0)f(0) + u(0)%Zf(0) = 0. Combing these two facts
we get that the operator %ZM,: H(p, q, ¢) — Z, is bounded.

Conversely, assume that the operator ZM,,;: H(p, q, ¢) — 2, is bounded. Then
for any f € H(p, q, ¢), there is a positive constant C independent of f such that
|%ZM.f|| 2, < C||fllp.q,6- Forafixed @ € B and constants A, B, C, D, set

(1—‘(D|2)t+1 1

o(o)  (1—z@) i

1— |w‘2)t+2 1
o(o)  (1-@)

Jo(z) =A

+B(
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(1_|w‘2)t+3 1
+C =
¢(lo)  (1—zm) e
(1_‘w|2)t+4 1
+D T
¢(lol) (1 —zm)y ™3
then
_ 2\t+1 n
who =all Ty 0

oo~ 2975 1

z€B,

|22 n
+B(l q)iac)oD) ;Zj%j(l zwl)”H
_ 2\t+3
o X5
|24 n
+D%J’1zi%m
|2+ 0]
e e o
EPREANES Q)
_ 2\t+3 )
—I—CC3(1 ¢|(|azo>) (1— Zioa;t+4+
2\+4 0]
#pe ¢(a()x|>l)) (1- if;%w
2y142 D
+BC2(1 ;)(CZLD) - %(1 Zioa))t+3+"
1 |2)+3 D
2\i+4 D
+DC4( ;(Q;L|)>+ %(l Z;a))t+5+
+BC,C; u ;iac);))tﬂ (1 (js))zizw

(&)

(6)
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o)y ®
e, ¢(a;|>|>) (- z;a;f”*
—lw[?) 2 )

— |[2)+3 @
e )
o2y ®
#peit ¢(a;|>|>) (- z;a;ﬁ*"’

R fo(2) :3Ac1c2(1;|(ﬁ)2))t+1 : (f)))’i”
#3800 5 ;5(625))1+2 (1 f$>>f+4+
+3CC5Cy u ; ia;j)) i a (§$>1+5+_
S S
#6001 ;5(625))1H (1 fﬁ;iﬁ
coaal SR <:$>’is+
+DCyCsce ; (C(;LT))IH a (Zza?))iu

2\t+1 D
A
R e

355
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1— 2\t+3 Y
¢ (1 —zm)
_ 2\t+4 =y
+DC4(1 ‘w| ) Zw 5 no
o(o)  (1—z@)y s

®)

where C; =1+ j+ g, j=1,2,3,456. Applying Lemma 2 we see that f, €
H(p,q,¢) for every @ € B and sup || ful|/p,q,¢ < C. We choose the corresponding
weB

function in (5) with

Cs Cs Cs
A=—2 pB=32 (c=-32% D=1
Ci’ G’ G’

and denote it by f,,. By applying (5), (6), (7) and (8) we get

R o) = T i (0) = T fir(@) = 0, fur(e) = :

whereMz— +3C4—3C4+1 thus for any @ € B, we get

u(lw\)|9?3u(w)|n
¢(lo)(1—|of?)

u(|ol) |<@3 o) fo(w )+3=@2“(w)<@fw(w)

+3%Zu(w )ngw( o) +u(o )%3fw( )}
CH‘%M (fﬂ))Hfu < C”'%M ”Hpq 0)—Zu-

Hence, we have

up M0 Fu(@)]
ol<1 9(@]) (1~ [0P)?

That is, (1) holds.
To prove (4), we choose the corresponding function in (5) with

C3+42Cy —2C3—3Cy
A= —— y B= ) CZl? D=1
C &)

and denote it by g, . By applying (5), (6), (7) and(8), we get

N ! T
o)1~ |of)

o(jol)(1—|o2)*a

o(jol)(1—|of2)s’

©))

(10)

(1)

12)

where N = S12% — 2855G 19 0 = CyCF +2C,C3C4 — 2C3C, — 3C3C3 + C3CaCs +
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C4C5Cg, thus for any w € B, by using (1), (12) and the triangle inequality we get

0| u(\wl)\u(w)l\wl6n
o(lo))(1— o)

= p(|o)u(0)Z 50 (0)|

< u(|o)) |2 u(0)go(0)+3%°u(0) Zo(0)+3%u(0) 230 (0)+u(0) Zgo ()|
|

3
lloD# o)
s(o)(1—Jof)?
|ZM(80)ll 2, +C
C“‘%MM||H(p7q7¢)—>fu +C.

<
<

Let r € (0,1), from (13) we get

TN 3 n
relol<1 p(Jo])(1—|0[2)* " 7 rcjol<t ¢(|o])(1—|w[?)*
< C”%M"HH(M%WH@‘L +C.

p(lopou@)| _ € u(|o))|u(w)||o]®

Using the fact

up —HUOVOUDN_ ¢ up (o) u(w) < C.

3pE X
wl<r p(lo))(1— 02> e jol<r

we can get that (4) holds.
To prove (3), we choose the corresponding function in (5) with

A —C3Cy4+ C3C4 + C4CsCs B —3C3Cs — C4Cs5Co + C2C3 o1
N 2C,C3 T 20,C3 oY

and denote it by k. By applying (5), (6), (7) and (8), we get

1
%hw :O, hw - Q n
! AT TEPE
= sllal) Py
4
Fhe(®) = 3R ]

o(jo)(1— o)’
where

0 —C3Cy+C3Cs +CsC5Cq ~ —3C3Cs — C4C5C + CrC3
a 2C1C3 2C2C3

+2,

R

2C3 2

13)

(14)

15)

—CyC2Cs+ CrC3Cy + CrCsCsCs —3C3Cy — CaCsCq + CoC2
_ 203044 20304 2456+ 3C4 4L 506 23—|—C3C4—|—C4C5,
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thus for any @ € B, by using (1), (4), (15) and the triangle inequality we get
4
3wmmwmw$
o (lo]) (1 —[o[*)™
< u(|o)) | ZPu(@)ho(0)+3%%u(0) Rho(©)+3%u(0) % *he(0)+u(0) % he (o))
3 4
u(lo) R u(o)| L3R u(lof)|u(o)|o]

+[0|

o(jo))(1—|w]?)? o(|o)(1— o)
w(|o])|Ru(w)| w(|o])u(o)||o]
< IM% (o)) 2, + 10| - +3IR| :
; o(jo))(1—|of2)i o(jo))(1—|2)*"
< Cl|ZMullup.q.0)—2, +C- (16)

Let r € (0,1), from (16) we get

plo)ozu(@)] _ ¢ p(lo)Zu(o)|of

nos 3 n
relol<1 (Jo])(1—|0[2)*" 7 7 rcjol<t ¢(|o])(1—|w[2)*
< ClZMullb(p,g,9)—2, +C. (17)

Using the fact

p(|o))|oZu(w)|
+ < C sup pu(|o|)|Zu(w)| <C,
ol<r ¢(Jo])(1 —|w[2)** o|<r !

we get that (3) holds.
To prove (2), we choose the corresponding function in (5) with
A —CgCﬁ + C4C§ B —C4C5Co + C§C4
B G ’ - GG '
and denote it by [, . By applying (5), (6), (7) and (8), we get
1

o(jo)(1—|wP)e

lp(w) =S

o]

Hlo(0) = RBly(0) = Blp(0) =T
()= A =) =T a1 )

(18)

—C3C3HC4C2 | —C4C5Ce+C3C —C4C5Ce+C2C
where § = —Go = 4 —L e 42 T = + = + G+ Cy,

thus for any @ € IPB by using (1) (3), (4), (18) and the triangle inequality we get

—C3C£+c4c§

2u 2
3‘T|u(|w\)l=%’ (w)l\lail
¢(Jo])(1—|wf?)
< p(|o)) |2 u(0)lo(0) + 3% u(0)Zlo(0) + 3%u(0) % 10(0) + u(0) % 16 (0)|
3u u 2 u 2
S| u(lol)|% (a;)lﬂ+3|T|u(\wl)\%’ (w)l\?ilﬂ 7| u(o))] (w)l\zwll+
¢(|o)(1—|of*)s ¢(|o)(1—|o*) " ¢(|o])(1 - |wf?)
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(o)) 2 u(o)| p(lo])|Zu()||ol

< || @M, (1) 2 S —+3|T —
oMo+t oot T sl (1= 0l
u(lo)lu@)]o]
o(|lo])(1—|o2)* "
< Cl %Ml (p.g.9)—2, +C- (19)

From (19) we have that
(o)) o
weB ¢(|o])(1—|o])' T

u(lo)|Z2u(o)||of?
)1+g

<C  sup  p(lo)|Zu(w)|+2  sup
{0eB:|o/<}} {weB:l<jol<1} ¢(|0])(1— |0

<C.

From this (2) follows, finishing the proof of the theorem. [

THEOREM 2. Assume that 0 < p, q < oo. Then %M, :H(p,q,¢) — Z, is
compact if and only if

fim AEDF@] (20)
=1 ¢ (J2]) (1~ |]?) @
w(|z))|z%2%u(z)|
_ =0, 1)
d=1 (J2]) (1—[2]2) ' Ta
1(|2])[z%u(z)|
=0, (22)
e=1 ¢ (J2]) (1~ |2]2)* 4
and
u(lzDlu@)l (23)

[T (|2]) (1 - [2f2)* "

Proof. First assume that the operator ZM,, : H(p, q, ¢) — 2, is compact. Let
{z} be a sequence in B such that |z;| — 1 as k — co. Set

Ji(@) = fo(2), 8k(2) = g5,(2), hi(2) = gy (2), Ik (2) = I, () .k €N.
Then fi, g, he, k €H(p, q, 9). sup|| fillp.g.0 <C. sup|[gkllp.q.0 < C. sup|lhllp.q.0 <
keN keN keN
C, sup ||lkl| p,q,0 < C,and fi,gk,hk,lx converge to O uniformly on the compact subsets
keN
of B, using the compactness of ZM,, : H(p, q, ¢§) — 2, and Lemma 3, we get
Timn M, () 2, = Jim (120 (g0 5, = Jim [ 7M, ) | , = T 120, (1) 5, =0.
By (9) we have

1
0(ze) (1 —[ze?)e

Rfi(z) = B filzr) = B filz) =0,  filz) =M
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SO

H(|Zk|)|=%’3u(zk)|n
O (el ) (1 — [z|?) @

|M

1 (jzel) |27 u(zi) fi(2i) + 3% u(z) R fi(zi) + 3%8u(zi) R fi(zk) + u(zi) 2 fi ()|

< | 2Mu(fi)ll 2, -

Hence,

AICATCAINS
= () (1= [aiP)

so (20) holds.
By (12), we have

1
0(|ze) (1 — |z2) 4

() = Zgk(zk) =0, gilzx) =N

|z |6
0 (Jz) (1 — |zx[2)* 4

Bg(z) =

SO

0| #(|Zk\)|u(2k)||zk|6n
o (a) (1 —[zf2)**a

< ”%Mu(g )H +‘N| 0
o e (e (1= )

as k — oo,

hence, (23) holds.
By (15), we have

1
oz )(1—[zf?)d

Fhi(z) =0, hi(z) =Q

|zi]*

o(|z)(1— [z f2)*Fe
|z |*

o (jz]) (1 — |z/2)*Ta

%zhk(zk) =R

%3/’!1((21() =3R

therefore,

H(|Zk|)|=@u(zk)|\zk\i
0zl (1= [zl2)**a

3|R|

H(|Zk\)|<@3u(zk)| -0

1|z | R u(z) | 1|z ue(zi) [z *

< %Mu h 2 + Q n R n
T B A S T
(2] [RPu(z) | 1 (2] ) e (za) || 2]

< | BM ()| 2, + 101+ -+ 3IR ;
)l + ol E I e EE

as k — oo,

)

—0

(24)

(25)

(26)
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hence, (22) is true.
By (18), we have

1
o) (1 —|z)i
Rl(zk) = Bh(z) = Bh(z) =T

h(z) =S

|zi)? .
o (lo|)(1 —[zx2) " F

By Lemma 3, we have

H(|Zk|)|=@2u(zk)||zk|2
O (J2e) (1 [al?) "4
H(|Zk\)|9?3”(zk)|
0 (|2e) (1 — |ze2) 7
Y #(|Zk\)|u(2k)||zk|2n

o (a)(1—[zf?)*a
.U(|Zk\)|<@3u(zk)|
O (|2e) (1 — |zel2) ¥
p |zl )[u(z) || 2|

0 (|Jz) (1 — |z]2)** 4
—0 as k— oo, @

7]

I-‘(|Zk|)|%”(zk)||zk|i
O (lzel) (1 — |z f2) ! e

+3|T|

< [ Z2M (L) 2, + 18]

H(|Zk|)|=@u(zk)|\zk\n
o (Jzel) (1 — |z[2)** 4

+3|T|

< [ Z2M (L) 2, + 18]

so (21) holds.

To prove the other direction of the theorem, suppose (20), (21), (22) and (23)
hold. We see that (1), (2), (3) and (4) hold. By Theorem 1, we get the operator ZM,, :
H(p,q,¢) — 2, isbounded and & >0, thereisa § € (0,1) such thatfor 6 < |z] <1

MENEATEI

- (28)

8 (1 [:P)F

w2 ()
- , 29
o) (1— o) +F = ° )

w(l2])e2u(2)
- , 30
o) (1—ep+E = ° o

and

plDl@l an

34

O (J2]) (1—[z2)" "«

Let ay € H(p,q,9), supllak|p.q.0 <L, and {a;} converge to zero uniformly on
keN

the compact subsets of B, by Lemma 1, (28), (29), (30) and (31), we have that for
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sufficiently large k
12 Mu () || 2, = |2 M (ar ) (0)] +Su§u(IZI) |%° (RM(ar) ) (2) |
zZ€

= sup (e ()87 )+ 3Hu(2)Ra () + 3 (2)+ () # 0|
< {Zeéﬁggé}“(kh|%3u(z)ak(2) 3R R (2) + 3Bu(2) Bran(2) + u () B ()

A w(|2)) |2 u(2)ar(2) + 3% u(x) Rar(2) + 3%u(x) B an(2) + u(2) B (2) |
< ’3{ZEI;}E‘)@}u(IZI)(I%ﬁu(Z))I + BRu(2)| + [3%u(2)| + |u(z)|)

oL sup (H(|Z|)|9Z3u(z)|n+ HOD U@ p(eleutz)]
eeBei>0) \ B(I2) (1= [eP)e  o(lz) (1= )0 9(lzl) (1 - [z2)**a

w(l2))|zu(2)| )

o(I2) (1 —|z2)*"
< (C+4CL)e,

hence
lim [[22M, (@) 2, =0,

soby Lemma 3 #ZM, : H(p, q, ¢) — 2, is compact. [J

THEOREM 3. Assume that 0 < p, q <. Then ZM, : H(p,q,¢) — Zyuo is
compact if and only if ZM,, : H(p, q, 9) — 2, is compact.

Proof. First assume that the operator ZM, : H(p, q, ) — 2, is compact, by
Theorem 2, for any f € H(p, q, ¢)

MENEREARIC]
|

= u(lz]) 92314(1)]‘(1)+3%2u(z)%f(z)+3%u(z)%2f(z)+u(z)<%’3f(z)|
(DIZPu@)| | 3u(e)Z2uz)| | 3ulz)#u()]
<clfl H 4 _ ,
PPN () (1= 2Pyt () (1—[eP) 0 o(al) (1— o) s
w(f2])|zu(2)|
+ 7
¢<|z|><1—|z|2>3+6>
—0, |z—1. (32)

we see that ZM,,(f) € Zy 0. Since the operator ZM,, : H(p, q, ¢) — 2, is bounded,
we obtain that the operator ZM,, : H(p, q, ¢) — 2}, 0 is bounded. Hence the set

IMAf€H(P,q,0) || fllp.go <1}



PRODUCTS OF RADIAL DERIVATIVE AND MULTIPLICATION OPERATOR 363

is bounded in Q’L,O . By Lemma 4, we wish to show

lim  sup u(|z|)|2*(%M.f)(z)| =0. (33)

2= 11 £[1,4,0<1

In fact, since the operator ZM,, : H(p, q, ¢) — 2 is compact, by Theorem 2, (20),
(21),(22) and (23) hold. By taking the supremum in (32) over the unitballin H(p, ¢, ¢),
using (20), (21),(22) and (23) we see that (33) follows. Therefore, the operator ZM,, :

H(p,q,9) — Zy0 is compact.
Conversely, the compactness of ZM,, : H(p, q, ¢) — 20 implies the compact-
ness of ZM, : H(p, q, ¢) — 2, is obvious. The proof is completed. [J

4. The boundedness and compactness of #ZM, : 2, (Z.0) — H(p,q, ¢)

In this section we investigate the boundedness and compactness of the operator
EM, : 2 (Zu0) — H(p,q,0).

Before we formulate and prove the next result, we must ensure that the following
lemma is true:

LEMMA 8. Assume that 0 < p < eo 1 < g <oo, f g€ L1(Q,u), then

(/Q\f+g|qdu)§ <C<(/Q|f|qd,u)§+(/gg|‘1d‘u)§).

Proof. Using C,-inequality and Minkowski-inequality, we have

([ \r+gttdu)¥ = 17+slfy
< (I lles + Nglles)” < ol 71+ g

=Cp<(/gfqdu “+ ([ Isldu) )

where C, = max{1,2°~'}. O

THEOREM 4. Assume that 0 < p < e, 1 < g <oo, u € H(B), ¢ and u are
normal, and |l satisfies condition fl dt) <eo. If Zu, uc H(p,q,0), then the operator
AM, : Zu(Zup) — H(p,q,9) is bounded.

Proof. Assume that Zu, u € H(p,q,9). For any f € Z,, by Lemma 5, Lemma
6 and Lemma 8, we have

14
1ZM )00

- /IMP(%Mu(f),r)qip—_(rr)dr

c/ MP (£, )"’( dr +c/ M? (w2 f, )(Pp(r)dr

1—r
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p
< Csuplf(z |p/ MY (% ¢ ()dr+CsupL%’f \p/ MY (u )d
z€B 1 z€B
p

B Y L4 (s s [ 2
<clrity, [ mpern S Darscian, [ upwn®ar

: 0 (r) 0°(r)

p 14 p

<clrlty, [ mpemn® Dar iy, [ mpn®a
< ClAS, 1205, 409 +C||fH Nz g0 34

from which it follows that the operator ZM,, : Z,(Zy0) — H(p.q,¢) isbounded. [

THEOREM 5. Assume that 0<p<eo,l<g<oo,uc H(B), ¢ and 1 are normal,
and U satisfies condition f 7 < oo If%u ue H(p q,0), then the operator M,
Zu(Zupo) = H(p.q,9) is also compact.

Proof. Assume that Zu,u € H(p,q,¢). Let {fi}ren be a bounded sequence in
Zu(Zyu0) converging to zero on the compact subsets of B as k — co. By Lemma 7,
we have that

lim sup|fi(z)] =

k—eo e

By the definition of the Zygmund-type space Z;,, we obtain {Zf;} is a bounded
sequence in %, . An application of Cauchy integral estimates implies that the sequence
{Z fi} converges to zero on the compact subsets of B as k — . Applying the corre-
sponding result for the  -Bloch space (see [33, Lemma 4.2]), we also have

lim sup |7 fi.(z)| =

k—eo cB

Hence,
12M S g0

- / 11‘4”(=%7/’1‘4l4(fk>7r) "’p(” —dr

/MP (Bufe, ) dr+/ M? (w2 fir) p_(r)dr
()

< Csuplfi(z |1’/ MY (% dr+CsupL%’f |1’/ MY (u )d

€B z€B
= su P| Ru +sup|Z fi(2)|7 ||ul|?,
Zeg\fk( DI N2 g.0) ZE]I];\ S @11l g.0)
— 0, ask — oo, (35)

by Lemma 3, the operator ZM,, : Z,(Zu0) — H(p,q,9) is compact. [
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