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Abstract. In this paper, by the use of the methods of weight functions and technique of real
analysis, a more accurate half-discrete Hilbert-type inequality with a general non-homogeneous
kernel and a best possible constant factor is given. The equivalent forms and some reverses are
obtained. We also consider the operator expressions with the norm and some particular examples.

1. Introduction

Suppose that p > 1, 1
p + 1

q = 1, f (x) , g(y) � 0, f ∈ Lp(R+) , g ∈ Lq(R+),

|| f ||p = {
∫ ∞

0
f p(x)dx} 1

p > 0,

||g||q > 0. We have the following Hardy-Hilbert’s integral inequality (cf. [1]):∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy <
π

sin(π/p)
|| f ||p||g||q, (1)

where the constant factor π
sin(π/p) is the best possible. If am,bn � 0, a = {am}∞

m=1 ∈ l p ,

b = {bn}∞
n=1 ∈ lq , ||a||p = {∑∞

m=1 ap
m}

1
p > 0, ||b||q > 0, then we still have the following

discrete variant of the above inequality with the same best constant π
sin(π/p) :

∞

∑
m=1

∞

∑
n=1

ambn

m+n
<

π
sin(π/p)

||a||p||b||q, (2)

which is named Hardy-Hilbert’s inequality (cf. [1]). Inequalities (1) and (2) are impor-
tant in Analysis and its applications (cf. [1], [2], [3], [4], [5], [6]).
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In 1998, by introducing an independent parameter λ ∈ (0,1] , Yang [7] gave an
extension of (1) at p = q = 2. In 2009 and 2011, Yang [3], [4] gave some extensions
of (1) and (2) as follows: If λ1,λ2,λ ∈ R , λ1 + λ2 = λ , kλ (x,y) is a non-negative
homogeneous function of degree −λ , with

k(λ1) =
∫ ∞

0
kλ (t,1)tλ1−1dt ∈ R+,

φ(x) = xp(1−λ1)−1 , ψ(y) = yq(1−λ2)−1 , f (x) , g(y) � 0,

f ∈ Lp,φ (R+) =
{

f ; || f ||p,φ := {
∫ ∞

0
φ(x)| f (x)|pdx} 1

p < ∞
}

,

g ∈ Lq,ψ(R+) , || f ||p,φ , ||g||q,ψ > 0, then we have∫ ∞

0

∫ ∞

0
kλ (x,y) f (x)g(y)dxdy < k(λ1)|| f ||p,φ ||g||q,ψ , (3)

where the constant factor k(λ1) is the best possible. Moreover, if kλ (x,y) is finite
and kλ (x,y)xλ1−1(kλ (x,y)yλ2−1) is decreasing with respect to x > 0 (y > 0), then for
am,bn � 0,

a ∈ lp,φ =

{
a; ||a||p,φ := {

∞

∑
n=1

φ(n)|an|p}
1
p < ∞

}
,

b = {bn}∞
n=1 ∈ lq,ψ , ||a||p,φ , ||b||q,ψ > 0, we have

∞

∑
m=1

∞

∑
n=1

kλ (m,n)ambn < k(λ1)||a||p,φ ||b||q,ψ , (4)

where, the constant factor k(λ1) is still the best possible.
Clearly, for λ = 1, k1(x,y) = 1

x+y , λ1 = 1
q , λ2 = 1

p , (3) reduces to (1), while (4)
reduces to (2). Some other results including the multidimensional Hilbert-type integral
inequalities are provided by [8]–[19].

About the topic of half-discrete Hilbert-type inequalities with the non-homogeneous
kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not
prove that the the constant factors are the best possible. However, Yang [20] gave a
result with the kernel 1

(1+nx)λ by introducing a variable and proved that the constant

factor is the best possible. In 2011, Yang [21] gave the following half-discrete Hardy-
Hilbert’s inequality with the best possible constant factor B(λ1,λ2) :∫ ∞

0
f (x)

∞

∑
n=1

an

(x+n)λ dx < B(λ1,λ2) || f ||p,φ ||a||q,ψ , (5)

where, λ1λ2 > 0, 0 � λ2 � 1, λ1 + λ2 = λ ,

B(u,v) =
∫ ∞

0

1
(1+ t)u+v t

u−1dt (u,v > 0)
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is the beta function. Zhong et al. ([22]–[17]) investigated several half-discrete Hilbert-
type inequalities with particular kernels.

Using the way of weight functions and the techniques of discrete and integral
Hilbert-type inequalities with some additional conditions on the kernel, a half-discrete
Hilbert-type inequality with a general homogeneous kernel of degree −λ ∈ R and a
best constant factor k (λ1) is obtained as follows:∫ ∞

0
f (x)

∞

∑
n=1

kλ (x,n)andx < k(λ1)|| f ||p,φ ||a||q,ψ , (6)

which is an extension of (5) (see Yang and Chen [29]). At the same time, a half-discrete
Hilbert-type inequality with a general non-homogeneous kernel and a best constant
factor is given by Yang [30].

REMARK 1. (1) Many different kinds of Hilbert-type discrete, half-discrete and
integral inequalities with applications are presented in recent twenty years. Special
attention is given to new results proved during 2009–2012. Included are many general-
izations, extensions and refinements of Hilbert-type discrete, half-discrete and integral
inequalities involving many special functions such as beta, gamma, hypergeometric,
trigonometric, hyperbolic, zeta, Bernoulli functions, Bernoulli numbers and Euler con-
stant et al.

(2) In his five books, Yang ([3], [5], [4], [6], [31]) presented many new results
on Hilbert-type operators with general homogeneous kernels of degree of real numbers
and two pairs of conjugate exponents as well as the related inequalities. These research
monographs contained recent developments of discrete, half-discrete and integral types
of operators and inequalities with proofs, examples and applications.

In this paper, by the use of the methods of weight functions and technique of
real analysis, a more accurate half-discrete Hilbert-type inequality with a general non-
homogeneous kernel and a best possible constant factor is given. The equivalent forms
and some reverses are obtained. We also consider the operator expressions with the
norm and some particular examples.

2. Some lemmas

LEMMA 1. Suppose that (−1)ih(i)(t) > 0 (t > 0 ; i = 0,1,2) . Then for
∫ ∞

1
2

h(t)dt

< ∞ , we have ∫ ∞

1
h(t)dt <

∞

∑
n=1

h(n) <

∫ ∞

1
2

h(t)dt. (7)

Proof. Since h(t) is a decreasing convex function, by the decreasing property and
Hermite-Hadamard’s inequality (cf. [32]), we have

∫ n+1

n
h(t)dt < h(n) <

∫ n+ 1
2

n− 1
2

h(t)dt (n ∈ N),
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and then ∫ ∞

1
h(t)dt =

∞

∑
n=1

∫ n+1

n
h(t)dt <

∞

∑
n=1

h(n)

<
∞

∑
n=1

∫ n+ 1
2

n− 1
2

h(t)dt =
∫ ∞

1
2

h(t)dt.

Hence (7) follows. The lemma is proved. �

NOTE. If h(t) = g1(t)g2(t) and (−1)ig(i)
j (t) > 0 (t > 0; i = 0,1,2, j = 1,2),

then it is evident that (−1)ih(i)(t) > 0 (t > 0; i = 0,1,2).

LEMMA 2. Suppose that h(t) is a non-negative measurable function in R+ , a ∈
R, and there exists a constant δ0 > 0, such that for any δ ∈ [0,δ0),

k(a± δ ) :=
∫ ∞

0
h(t)t(a±δ )−1dt ∈ R.

Then we have
k(a± δ ) = k(a)+o(1) (δ → 0+). (8)

Proof. For any δ ∈ [0, δ0
2 ), it follows

h(t)t(a±δ )−1 � g(t) :=

{
h(t)t(a−

δ0
2 )−1, t ∈ (0,1],

h(t)t(a+ δ0
2 )−1, t ∈ (1,∞).

Since we find

0 �
∫ ∞

0
g(t)dt

=
∫ 1

0
h(t)t(a−

δ0
2 )−1dt +

∫ ∞

1
h(t)t(a+ δ0

2 )−1dt

�
∫ ∞

0
h(t)t(a−

δ0
2 )−1dt +

∫ ∞

0
h(t)t(a+ δ0

2 )−1dt

= k
(
a− δ0

2

)
+ k
(

α +
δ0

2

)
∈ R,

then by Lebesgue control convergence theorem (cf. [33]), it follows

k(a± δ ) =
∫ ∞

0
h(t)t(a±δ )−1dt

=
∫ ∞

0
h(t)ta−1dt +o(1) (δ → 0+),

namely, (8) follows. The lemma is proved. �
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DEFINITION 1. For x ∈ R+ , n ∈ N , τ ∈ [0, 1
2 ] , σ ∈ R , h(t) is a non-negative

measurable function in R+, define two weight coefficients w(σ ,n) and W (σ ,x) as
follows:

w(σ ,n) := (n− τ)σ
∫

R+
h(x(n− τ))

dx
x1−σ , (9)

W (σ ,x) := xσ
∞

∑
n=1

h(x(n− τ))
1

(n− τ)1−σ . (10)

LEMMA 3. As the assumptions of Definition 1, if there exists a constant K > 0,
such that 0 < w(σ ,n) , W (σ ,x) < K , f (x) � 0 , an � 0 , then

(i) for p > 1, we have the following inequality:

Ĵ1 :=

{
∞

∑
n=1

(n− τ)pσ−1

[w(σ ,n)]p−1

(∫
R+

h(x(n− τ)) f (x)dx

)p
} 1

p

�
{∫

R+
W (σ ,x)xp(1−σ)−1 f p(x)dx

} 1
p

, (11)

Ĵ2 :=

{∫
R+

xqσ−1

[W (σ ,x)]q−1

(
∞

∑
n=1

h(x(n− τ))an

)q

dx

} 1
q

�
{

∞

∑
n=1

w(σ ,n)(n− τ)q(1−σ)−1aq
n

} 1
q

; (12)

(ii) for p < 0, or 0 < p < 1, we have the reverses of (11) and (12).

Proof. (i) For p > 1, by Hölder’s inequality with weight (cf. [32]), it follows∫
R+

h(x(n− τ)) f (x)dx

=
∫

R+
h(x(n− τ)

[
x(1−σ)/q f (x)
(n− τ)(1−σ)/p

][
(n− τ)(1−σ)/p

x(1−σ)/q

]
dx

�
{∫

R+
h(x(n− τ))

x(1−σ)(p−1)

(n− τ)1−σ f p(x)dx

} 1
p
{∫

R+
h(x(n− τ))

(n− τ)(1−σ)(q−1)

||x||i0−σ
α

} 1
q

= [w(σ ,n)]
1
q (n− τ)

1
p−σ

{∫
R+

h(x(n− τ))
x(1−σ)(p−1)

(n− τ)1−σ f p(x)dx

} 1
p

. (13)

Then by Lebesgue term by term integration theorem (cf. [33]), we have
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Ĵ1 �
{

∞

∑
n=1

∫
R+

h(x(n− τ))
x(1−σ)(p−1)

(n− τ)1−σ f p(x)dx

} 1
p

=

{∫
R+

∞

∑
n=1

h(x(n− τ))
x(1−σ)(p−1)

(n− τ)1−σ f p(x)dx

} 1
p

=
{∫

R+
W (σ ,x)xp(1−σ)−1 f p(x)dx

} 1
p

. (14)

Hence, (11) follows.
By the same way, we have

∞

∑
n=1

h(x(n− τ))an � [W (σ ,x)]
1
p x

1
q−σ

{
∞

∑
n=1

h(x(n− τ))
(n− τ)(1−σ)(q−1)

x1−σ aq
n

} 1
q

,

(15)
then by Lebesgue term by term integration theorem and the same way as in obtaining
(14), we have (12).

(ii) For p < 0, or 0 < p < 1, by the reverse Hölder’s inequality with weight (cf.
[32]), we obtain the reverses of (13) and (15). Then by Lebesgue term by term in-
tegration theorem, we still can obtain the reverses of (11) and (12). The lemma is
proved. �

LEMMA 4. As the assumptions of Lemma 3, then
(i) for p > 1, we have the following inequality equivalent to (11) and (12):

Î :=
∞

∑
n=1

∫
R+

h(x(n− τ))an f (x)dx

�
{∫

R+
W (σ ,x)xp(1−σ)−1 f p(x)dx

} 1
p
{

∞

∑
n=1

w(σ ,n)(n− τ)q(1−σ)−1aq
n

} 1
q

; (16)

(ii) for p < 0, or 0 < p < 1, we have the reverse of (16) equivalent to the reverses
of (11) and (12).

Proof. (i) For p > 1, by Hölder’s inequality (cf. [32]), it follows

Î =
∞

∑
n=1

(n− τ)
1
q−(1−σ)

[w(σ ,n)]
1
q

[∫
R+

h(x(n− τ)) f (x)dx

][
[w(σ ,n)]

1
q (n− τ)(1−σ)− 1

q an

]

� Ĵ1

{
∞

∑
n=1

w(σ ,n)(n− τ)q(1−σ)−1aq
n

} 1
q

. (17)

Then by (11), we have (16).
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On the other hand, assuming that (16) is valid, we set

bn :=
(n− τ)pσ−1

[w(σ ,n)]p−1

(∫
R+

h(x(n− τ)) f (x)dx

)p−1

, n ∈ N.

Then it follows

Ĵ p
1 =

∞

∑
n=1

w(σ ,n)(n− τ)q(1−σ)−1aq
n.

If Ĵ1 = 0, then (11) is trivially valid; if Ĵ1 = ∞, then by (14), (11) keeps the form of
equality (= ∞) . Suppose that 0 < Ĵ1 < ∞. By (16), we have

0 <
∞

∑
n=1

w(σ ,n)(n− τ)q(1−σ)− j0aq
n = Ĵ p

1 = Î

�
{∫

R+
W (σ ,x)||x||p(1−σ)−1

α f p(x)dx

} 1
p
{

∞

∑
n=1

w(σ ,n)(n− τ)q(1−σ)−1aq
n

} 1
q

< ∞.

It follows

Ĵ1 =

{
∞

∑
n=1

w(σ ,n)(n− τ)q(1−σ)−1aq
n

} 1
p

�
{∫

R+
W (σ ,x)xp(1−σ)−1 f p(x)dx

} 1
p

,

and then (11) follows. Hence, (16) and (11) are equivalent.
By Hölder’s inequality and the same way, we can obtain

Î �
{∫

R+
W (σ ,x)xp(1−σ)−1 f p(x)dx

} 1
p

Ĵ2.

Then by (12), we have (16). On the other hand, assuming that (16) is valid, we set

f (x) =
xqσ−1

[W (σ ,x)]q−1

(
∞

∑
n=1

h(x(n− τ))an

)q−1

(x ∈ R+).

Then it follows
Ĵq
2 =

∫
R+

W (σ ,x)xp(1−σ)−1 f p(x)dx.

By (16) and the same way, we can obtain

Ĵ2 =
{∫

R+
W (σ ,x)||x||p(1−σ)−1

α f p(x)dx

} 1
q

�
{

∞

∑
n=1

w(σ ,n)||n− τ||q(1−σ)−1
β aq

n

} 1
q

,
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and then (16) and (12) are equivalent.
Hence, (11), (12) and (16) are equivalent.
(ii) For p < 0, or 0 < p < 1, by the same way, we have the reverse of (16) equiv-

alent to the reverses of (11) and (12). The lemma is proved. �

LEMMA 5. If σ̃ ∈ R,

k̂(σ̃ ) :=
∫ ∞

0
h(u)uσ̃−1du ∈ R+,

then we have
w(σ̃ ,n) = k̂ (σ̃) ∈ R+(n ∈ N). (18)

Moreover, if
d
dt

(h(t)t σ̃−1) < 0,
d2

dt2
(h(t)t σ̃−1) > 0,

there exists constants L > 0, and η0 < σ̃ , satisfying

h(t) � L
tη0

(t ∈ (0,∞)), (19)

then we have
k̂(σ̃ )(1−ϑσ̃(x)) <W (σ̃ ,x) < k̂(σ̃) (x ∈ R+). (20)

where,

ϑσ̃ (x) :=
1

k̂(σ̃)

∫ x

0
h(t)t σ̃−1dt

= O(xρ(σ̃)) ∈ (0,1) (ρ(σ̃) = σ̃ −η0 > 0). (21)

Proof. By (9), setting t = x(n− τ), we find

w(σ̃ ,n) =
∫ ∞

0
h(t)t σ̃−1dt.

Hence, we have (18).
Moreover, by (7), setting t = x(y− τ), we obtain

W (σ̃ ,x) < xσ̃
∫ ∞

1
2

h(x(y− τ))
dy

(y− τ)1−σ̃

=
∫ ∞

x( 1
2−τ)

h(t)t σ̃−1dt �
∫ ∞

0
h(t)t σ̃−1dt = k̂(σ̃),

W (σ̃ ,x) > xσ̃
∫ ∞

1+τ
h(x(y− τ))

dy

(y− τ)1−σ̃

=
∫ ∞

x
h(t)t σ̃−1dt =

∫ ∞

0
h(t)t σ̃−1dt−

∫ x

0
h(t)t σ̃−1dt

= k̂(σ̃ )(1−ϑσ̃(x)) > 0,
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0 < ϑσ̃ (x) =
1

k̂(σ̃)

∫ x

0
h(t)t σ̃−1dt

� L

k̂(σ̃ )

∫ x

0
t σ̃−η0−1dt =

L

k̂(σ̃ )(σ̃ −η0)
xσ̃−η0 .

Hence, we have (20) and (21). The lemma is proved. �

3. Main results and some reverses

Setting

Φσ (x) := xp(1−σ)−1(x ∈ R+),Ψσ (n) := (n− τ)q(1−σ)−1 (n ∈ N),

Φ̃σ (x) := (1−ϑσ(x))xp(1−σ)−1 (ϑσ (x) ∈ (0,1); x ∈ R+),

we have

THEOREM 1. Suppose that p ∈ R\{0,1} , 1
p + 1

q = 1 , τ ∈ [0, 1
2 ] , σ ∈ R, h(t) is

a non-negative finite measurable function in R+, there exists a constant δ0 > 0, such
that for any σ̃ ∈ (σ − δ0,σ + δ0),

k̂(σ̃) =
∫ ∞

0
h(t)t σ̃−1dt ∈ R+,

d
dt

(h(t)t σ̃−1) < 0,
d2

dt2
(h(t)t σ̃−1) > 0,

and there exists constants L > 0 and η0 < σ̃ , satisfying

h(t) � L
tη0

(t ∈ (0,∞)). (22)

If p > 1 , f (x) � 0 , an � 0,

0 < || f ||p,Φσ = {
∫

R+
Φσ (x) f p(x)dx} 1

p < ∞,

0 < ||a||q,Ψσ = {
∞

∑
n=1

Ψσ (n)aq
n}

1
q < ∞,

then we have the following equivalent inequalities with the best possible constant factor
k̂(σ):

Î =
∞

∑
n=1

∫
R+

h(x(n− τ))an f (x)dx < k̂(σ)|| f ||p,Φσ ||a||q,Ψσ , (23)

Ĵ :=

{
∞

∑
n=1

(n− τ)pσ−1
(∫

R+
h(x(n− τ)) f (x)dx

)p
} 1

p

< k̂(σ)|| f ||p,Φσ , (24)
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Ĥ :=

{∫
R+

xqσ−1

(
∞

∑
n=1

h(x(n− τ))an

)q

dx

} 1
q

< k̂(σ)||a||q,Ψσ , (25)

where, k̂(σ) =
∫ ∞
0 h(t)tσ−1dt.

In particular, for τ = 0, setting ψσ (n) := nq(1−σ)−1, we have the following equiv-
alent inequalities with the best possible constant factor k̂(σ):

∞

∑
n=1

∫
R+

h(xn)an f (x)dx < k̂(σ)|| f ||p,Φσ ||a||q,ψσ , (26)

{
∞

∑
n=1

npσ−1
(∫

R+
h(xn) f (x)dx

)p
} 1

p

< k̂(σ)|| f ||p,Φσ , (27)

{∫
R+

xqσ−1

(
∞

∑
n=1

h(xn)an

)q

dx

} 1
q

< k̂(σ)||a||q,ψσ . (28)

Proof. By Lemma 3, Lemma 4 and Lemma 5, we have equivalent inequalities
(23), (24) and (25). By Hölder’s inequality, we still have

Î � Ĵ

{
∞

∑
n=1

(n− τ)q(1−σ)−1aq
n

} 1
q

, (29)

Î �
{∫

R+
xp(1−σ)−1 f p(x)dx

} 1
p
Ĥ. (30)

For 0 < ε < qδ0, we set f̃ (x) , ãn as follows:

f̃ (x) :=
{

xσ+ ε
p−1, 0 < x � 1,

0, x > 1,

ãn := (n− τ)σ− ε
q−1, n ∈ N.

Then for σ̃ = σ − ε
q , in view of (20), we find

|| f̃ ||p,Φσ ||ã||q,Ψσ =
{∫ ∞

0
x−1+εdx

} 1
p
{

(1− τ)−1−ε +
∞

∑
n=2

(n− τ)−1−ε

} 1
q

<

{
1
ε

} 1
p
{

(1− τ)−1−ε +
∫ ∞

1
(y− τ)−1−εdy

} 1
q

=
{

1
ε

} 1
p
{

(1− τ)−1−ε +
1
ε
(1− τ)−ε

} 1
q

=
1
ε
[ε(1− τ)−1−ε +(1− τ)−ε ]

1
q ,
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Ĩ :=
∫

R+

∞

∑
n=1

h(x(n− τ))ãn f̃ (x)dx =
∫ 1

0
x−1+εW (σ̃ ,x)dx

� k̂(σ̃)
∫ 1

0
x−1+ε(1−O(xρ(σ̃)))dx =

1
ε
k̂(σ̃) [1− εOσ̃(1)] .

If there exists a constant K � k̂(σ), such that (23) is valid when replacing k̂(σ)
by K, then in particular, we have

k̂(σ̃) [1− εOσ̃(1)] � ε Ĩ = εK|| f̃ ||p,Φ||ã||q,Ψ

< K[ε(1− τ)−1−ε +(1− τ)−ε ]
1
q ,

and then by (8), k̂(σ) � K(ε → 0+). Hence K = k̂(σ) is the best possible constant
factor of (26).

By the equivalency, the constant factor k̂(σ) in (24) ((25)) is the best possible.
Otherwise, we would reach a contradiction by (29) ((30)) that the constant factor K̂(σ)
in (23) is not the best possible. The theorem is proved. �

THEOREM 2. As the assumptions of Theorem 1, if p < 0 (0 < q < 1) , f (x) � 0 ,
an � 0 , 0 < || f ||p,Φσ < ∞ , 0 < ||a||q,Ψσ < ∞, then we have the following equivalent

inequalities with the best possible constant factor k̂(σ):

∞

∑
n=1

∫
R+

h(x(n− τ))an f (x)dx > k̂(σ)|| f ||p,Φσ ||a||q,Ψσ , (31)

{
∞

∑
n=1

(n− τ)pσ−1
(∫

R+
h(x(n− τ)) f (x)dx

)p
} 1

p

> k̂(σ)|| f ||p,Φσ , (32)

{∫
R+

xqσ−1

(
∞

∑
n=1

h(x(n− τ))an

)q

dx

} 1
q

> k̂(σ)||a||q,Ψσ . (33)

In particular, for τ = 0, setting ψσ (n) as Theorem 1, we have the following equiv-
alent inequalities with the best possible constant factor k̂(σ):

∞

∑
n=1

∫
R+

h(xn)an f (x)dx > k̂(σ)|| f ||p,Φσ ||a||q,ψσ , (34)

{
∞

∑
n=1

npσ−1
(∫

R+
h(xn) f (x)dx

)p
} 1

p

> k̂(σ)|| f ||p,Φσ , (35)

{∫
R+

xqσ−1

(
∞

∑
n=1

h(xn)an

)q

dx

} 1
q

> k̂(σ)||a||q,ψσ . (36)
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Proof. We only prove that the constant factor K̂(σ) in (31) is the best possible.
The rests are omitted. For 0 < ε < qδ0 , σ̃ = σ − ε

q , we set f̃ (x) , ãn as follows Theorem

1. If there exists a constant K � k̂(σ), such that (31) is valid when replacing k̂(σ) by
K, then in particular, by (20), we have

K{(1− τ)−ε} 1
q = εK

{∫ 1

0
x−1+εdx

} 1
p
{∫ ∞

1
(y− τ)−1−ε

} 1
q

< εK

{∫ 1

0
x−1+εdx

} 1
p
{

∞

∑
n=1

(n− τ)−1−ε

} 1
q

= εK|| f̃ ||p,Φσ ||ã||q,Ψσ < ε Ĩ = ε
∫ 1

0
x−1+εW (σ̃ ,x)dx

< ε k̂(σ̃ )
∫ 1

0
x−1+εdx = k̂(σ̃),

and then by (8), K � k̂(σ) (ε → 0+). Hence K = k̂(σ) is the best possible constant
factor of (31). The theorem is proved. �

THEOREM 3. As the assumptions of Theorem 1, if 0 < p < 1 (q < 0) , f (x) � 0 ,
an � 0, 0 < || f ||p,Φ̃σ

< ∞ , 0 < ||a||q,Ψσ < ∞ , then we have the following equivalent

inequalities with the best possible constant factor k̂(σ):

∞

∑
n=1

∫
R+

h(x(n− τ))an f (x)dx > k̂(σ)|| f ||p,Φ̃σ
||a||q,Ψσ , (37)

{
∞

∑
n=1

(n− τ)pσ−1
(∫

R+
h(x(n− τ)) f (x)dx

)p
} 1

p

> k̂(σ)|| f ||p,Φ̃σ
, (38)

{∫
R+

xqσ−1

(1−ϑσ(x))q−1

(
∞

∑
n=1

h(x(n− τ))an

)q

dx

} 1
q

> k̂(σ)||a||q,Ψσ . (39)

In particular, for τ = 0, setting ψσ (n) as Theorem 1, we have the following equiv-
alent inequalities with the best possible constant factor k̂(σ):

∞

∑
n=1

∫
R+

h(xn)an f (x)dx > k̂(σ)|| f ||p,Φ̃σ
||a||q,ψσ , (40)

{
∞

∑
n=1

npσ−1
(∫

R+
h(xn) f (x)dx

)p
} 1

p

> k̂(σ)|| f ||p,Φ̃σ
, (41)

{∫
R+

xqσ−1

(1−ϑσ(x))q−1

(
∞

∑
n=1

h(xn)an

)q

dx

} 1
q

> k̂(σ)||a||q,ψσ . (42)
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Proof. We only prove that the constant factor k̂(σ) in (37) is the best possible.
The rests are omitted. For 0 < ε < |q|δ0 , σ̃ = σ − ε

q , we set f̃ (x) , ãn as Theorem 1.
Then we obtain

|| f̃ ||p,Φ̃σ
||ã||q,Ψσ =

{∫ 1

0
x−1+ε(1−O(xρ(σ)))dx

} 1
p
{

(1− τ)−1−ε +
∞

∑
n=2

(n− τ)−1−ε

} 1
q

>

{
1
ε
− Õ(1)

} 1
p
{

(1− τ)−1−ε +
∫ ∞

1
(y− τ)−1−εdy

} 1
q

=
1
ε

{
1− εÕ(1)

} 1
p
[ε(1− τ)−1−ε +(1− τ)−ε ]

1
q .

If there exists a constant K � k̂(σ), such that (37) is valid when replacing k̂(σ)
by K, then in particular, by (20), we have

K
{

1− εÕ(1)
} 1

p [ε(1− τ)−1−ε +(1− τ)−ε ]
1
q

< εK|| f̃ ||p,Φ̃σ
||ã||q,Ψσ < ε Ĩ = ε

∫ 1

0
x−1+εW (σ̃ ,x)dx

< ε k̂(σ̃)
∫ 1

0
x−1+εdx = k̂(σ̃ ),

and then by (8), K � k̂(σ) (ε → 0+). Hence K = k̂(σ) is the best possible constant
factor of (37). The theorem is proved. �

NOTE. For τ = 0 in Theorem1-3, we don’t need the assumption that d2

dt2
(h(t)t σ̃−1)

> 0.

4. Operator expressions and some examples

For p > 1, we still set

Φσ (x) = xp(1−σ)−1 (x ∈ R+), Ψ(n) = (n− τ)q(1−σ)−1 (n ∈ N),

wherefrom
[Ψσ (n)]1−p = (n− τ)pσ−1, [Φσ (x)]1−q = xqσ−1.

We define two real weight normal spaces Lp,Φσ (R+) and lq,Ψσ as follows:

Lp,Φσ (R+) :=
{

f ; || f ||p,Φσ = {
∫

R+
Φσ (x)| f (x)|pdx} 1

p < ∞
}

,

lq,Ψσ :=

{
a = {an}; ||a||q,Ψσ = {

∞

∑
n=1

Ψσ (n)|an|q}
1
q < ∞

}
.

As the assumptions of Theorem 1, in view of

Ĵ < k̂(σ)|| f ||p,Φσ , Ĥ < k̂(σ)||a||q,Ψσ ,

we give the following definition:
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DEFINITION 2. Define a first kind of half-discrete Hilbert-type operator

T̂1 : Lp,Φσ (R+) → l
p,Ψ1−p

σ
(43)

as follows: For f ∈ Lp,Φσ (R+), there exists an unique representation T̂1 f ∈ l
p,Ψ1−p

σ
,

satisfying

(T̂1 f )(n) :=
∫

R+
h(x(n− τ)) f (x)dx(n ∈ N). (44)

For a ∈ lq,Ψσ , we define the following formal inner product of T̂1 f and a as follows:

(T̂1 f ,a) :=
∞

∑
n=1

an

∫
R+

h(x(n− τ)) f (x)dx. (45)

Also we define a second kind of half-discrete Hilbert-type operator

T̂2 : lq,Ψσ → L
q,Φ1−q

σ
(R+)

as follows: For a ∈ lq,Ψσ , there exists an unique representation T̂2a ∈ L
q,Φ1−q

σ
(R+),

satisfying

(T̂2a)(x) :=
∞

∑
n=1

h(x(n− τ))an(x ∈ R+). (46)

For f ∈ Lp,Φσ (R+), we define the following formal inner product of f and T̂2a as
follows:

( f , T̂2a) :=
∫

R+

∞

∑
n=1

h(x(n− τ))an f (x)dx. (47)

Then by Theorem 1, for 0 < || f ||p,Φσ , ||a||q,Ψσ < ∞, we have the following equiv-
alent inequalities:

(T̂1 f ,a) = ( f , T̂2a) < k̂(σ)|| f ||p,Φσ ||a||q,Ψσ , (48)

||T̂1 f ||
p,Ψ1−p

σ
< k̂(σ)|| f ||p,Φσ , (49)

||T̂2a||q,Φ1−q
σ

< k̂(σ)||a||q,Ψσ . (50)

It follows that T̂1 and T̂2 are bounded with

||T̂1|| := sup
f ( �=θ)∈Lp,Φσ (R+)

||T̂1 f ||
p,Ψ1−p

σ

|| f ||p,Φσ
� k̂(σ),

||T̂2|| := sup
a( �=θ)∈lq,Ψσ

||T̂2a||q,Φ1−q
σ

||a||q,Ψσ
� k̂(σ).

Since the constant factor K̂(σ) in (49) and (50) is the best possible, we have

||T̂1|| = ||T̂2|| = k̂(σ) =
∫ ∞

0
h(t)tσ−1dt ∈ R+. (51)
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EXAMPLE 1. (i) We set h(t) = 1
tλ +1

(0 < σ < λ � 1) . For δ0 = 1
2 min{σ ,

λ −σ} > 0, and σ̃ ∈ (σ − δ0,σ + δ0), it follows

k̂(σ̃) =
∫ ∞

0

1

tλ +1
t σ̃−1dt

v=tλ
=

1
λ

∫ ∞

0

1
v+1

v
σ̃
λ −1dv

=
π

λ sinπ(σ̃/λ )
∈ R+,

and by the Note of Lemma 1, for 0 < σ̃ < σ + δ0 < λ � 1,

d
dt

( 1

tλ +1
t σ̃−1

)
< 0,

d2

dt2

( 1

tλ +1
t σ̃−1

)
> 0.

Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃ (< λ ) . Since

tη0

tλ +1
→ 0 (t → 0+),

tη0

tλ +1
→ 0 (t → ∞),

there exists a constant L > 0, such that h(t) = 1
tλ +1

� L
tη0 (t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| = π
λ sin(πσ

λ )
. (52)

(ii) We set h(t)= 1
(t+1)λ (0 < σ <min{λ ,1}). For δ0 = 1

2 min{σ ,λ −σ ,1−σ}>

0, and σ̃ ∈ (σ − δ0,σ + δ0), it follows

k̂(σ̃) =
∫ ∞

0

1

(t +1)λ t σ̃−1dt = B(σ̃ ,λ − σ̃) ∈ R+,

and by the Note of Lemma 1, for 0 < σ̃ < σ + δ0 < 1,

d
dt

( 1

(t +1)λ t σ̃−1
)

< 0,
d2

dt2

( 1

(t +1)λ t σ̃−1
)

> 0.

Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃ (< λ ) . Since

tη0

(t +1)λ → 0 (t → 0+),
tη0

(t +1)λ → 0 (t → ∞),

there exists a constant L > 0, such that

kλ (t,1) =
1

(t +1)λ � L
tη0

(t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| = B(σ ,λ −σ). (53)
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(iii) We set h(t) = ln t
tλ−1

(0 < σ < λ � 1). For δ0 = 1
2 min{σ ,λ −σ}, and σ̃ ∈

(σ − δ0,σ + δ0), it follows

k̂(σ̃ ) =
∫ ∞

0

ln t

tλ −1
t σ̃−1dt

v=tλ
=

1
λ 2

∫ ∞

0

lnv
v−1

v
σ̃
λ −1dv

=
[

π
λ sinπ(σ̃/λ )

]2

∈ R+,

and by the Note of Lemma 1, for 0 < σ̃ < σ + δ0 < λ � 1,

d
dt

( lnt

tλ −1
t σ̃−1

)
< 0,

d2

dt2

( ln t

tλ −1
t σ̃−1

)
> 0.

Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃(< λ ) . Since

(ln t)tη0

tλ −1
→ 0 (t → 0+),

(ln t)tη0

tλ −1
→ 0 (t → ∞),

there exists a constant L > 0, such that h(t) = ln t
tλ −1

� L
tη0 (t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| =
[

π
λ sinπ(σ

λ )

]2

. (54)

LEMMA 6. If C is the set of complex numbers and C∞ = C∪{∞}, zk ∈C\{z|Rez
� 0, Imz = 0} (k = 1,2, · · · ,n) are different points, the function f (z) is analytic in C∞
except for zi (i = 1,2, · · · ,n) , and z = ∞ is a zero point of f (z) whose order is not less
than 1, then for α ∈ R, we have∫ ∞

0
f (x)xα−1dx =

2π i
1− e2πα i

n

∑
k=1

Res[ f (z)zα−1,zk], (55)

where, 0 < Imlnz = argz < 2π . In particular, if zk (k = 1, · · · ,n) are all poles of order
1, setting ϕk(z) = (z− zk) f (z) (ϕk(zk) �= 0), then∫ ∞

0
f (x)xα−1dx =

π
sinπα

n

∑
k=1

(−zk)α−1ϕk(zk). (56)

Proof. By [34] (p. 118), we have (55). We find

1− e2πα i = 1− cos2πα − isin2πα
= −2isinπα(cosπα + isinπα) = −2ieiπα sinπα.

In particular, since f (z)zα−1 = 1
z−zk

(ϕk(z)zα−1), it is obvious that

Res[ f (z)zα−1,−ak] = zk
α−1ϕk(zk) = −eiπα(−zk)α−1ϕk(zk).

Then by (55), we obtain (56). The lemma is proved. �
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EXAMPLE 2. (i) For s ∈ N, we set

h(t) =
1

∏s
k=1(tλ/s +ak)

(0 < a1 < · · · < as, 0 < λ � s, 0 < σ < min{λ ,1}).

For δ0 = 1
2 min{σ ,λ −σ ,1−σ}> 0, and σ̃ ∈ (σ − δ0,σ + δ0), by (56), it follows

k̂(σ̃) =
∫ ∞

0

1

∏s
k=1(tλ/s +ak)

t σ̃−1dt

=
s
λ

∫ ∞

0

1

∏s
k=1(u+ak)

u
sσ̃
λ −1du

=
πs

λ sin(πsσ̃
λ )

s

∑
k=1

a
sσ̃
λ −1
k

s

∏
j=1( j �=k)

1
a j −ak

∈ R+,

and by the Note of Lemma 1, for 0 < λ � s , 0 < σ̃ < σ + δ0 < 1,

d
dt

(
t σ̃−1

∏s
k=1(tλ/s +ak)

)
< 0,

d2

dt2

(
t σ̃−1

∏s
k=1(tλ/s +ak)

)
> 0.

Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃(< λ ) . Since

tη0

∏s
k=1(tλ/s +ak)

→ 0 (t → 0+),

tη0

∏s
k=1(tλ/s +ak)

→ 0 (t → ∞),

there exists a constant L > 0, such that

h(t) =
1

∏s
k=1(tλ/s +ak)

� L
tη0

(t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| = πs
λ sin(πsσ

λ )

s

∑
k=1

a
sσ
λ −1

k

s

∏
j=1( j �=k)

1
a j −ak

. (57)

(ii) We set

h(t) =
1

tλ +
√

ctλ/2 cosγ + c
4

(c > 0, 0 < γ <
π
2

, 0 < σ < λ � 1).

For δ0 = 1
2 min{σ ,λ −σ} > 0, and σ̃ ∈ (σ − δ0,σ + δ0), setting z1 = −

√
c

2 eiγ , z2 =

−
√

c
2 e−iγ , by (56), it follows

k(σ̃) =
∫ ∞

0

t σ̃−1

tλ +
√

ctλ/2 cosγ + c
4

dt =
2
λ

∫ ∞

0

u
2σ̃
λ −1

u2 +
√

cucosγ + c
4

du

=
2
λ

∫ ∞

0

u
2σ̃
λ −1

(u− z1)(u− z2)
du
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=
2π

λ sin( 2πσ̃
λ )

[(√c
2

eiγ
) 2σ̃

λ −1
√

c
2(e−iγ − eiγ)

+
(√c

2
e−iγ

) 2σ̃
λ −1

√
c

2(eiγ − e−iγ)

]

=
(√c

2

) 2σ̃
λ 2π sinγ(1− 2σ̃

λ )

λ sinγ sin( 2πσ̃
λ )

∈ R+,

and by the Note of Lemma 1, for 0 < σ̃ < σ + δ0 < λ � 1,

d
dt

( t σ̃−1

tλ +
√

ctλ/2 cosγ + c
4

)
< 0,

d2

dt2

( t σ̃−1

tλ +
√

ctλ/2 cosγ + c
4

)
> 0.

Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃ (< λ ) . Since

tη0

tλ +
√

ctλ/2 cosγ + c
4

→ 0 (t → 0+),

tη0

tλ +
√

ctλ/2 cosγ + c
4

→ 0 (t → ∞),

there exists a constant L > 0, such that

h(t) =
1

tλ +
√

ctλ/2 cosγ + c
4

� L
tη0

(t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| =
(√c

2

) 2σ
λ 2π sinγ(1− 2σ

λ )

λ sin γ sin( 2πσ
λ )

. (58)

EXAMPLE 3. (i) We set

h(t) = ln
(b+ tγ

a+ tγ

)
(0 � a < b, 0 < σ < γ � 1).

For δ0 = 1
2 min{σ ,γ −σ} > 0, and σ̃ ∈ (σ − δ0,σ + δ0), it follows

k̂(σ̃) =
∫ ∞

0
ln
(b+ tγ

a+ tγ

)
t σ̃−1dt

=
∫ ∞

0
ln
(byγ +1

ayγ +1

)
y−σ̃−1dy

=
1
σ̃

(
b

σ̃
γ −a

σ̃
γ

)
π

sinπ( σ̃
γ )

∈ R+,

and by the Note of Lemma 1, for 0 < σ̃ < σ + δ0 < γ � 1,

d
dt

(
ln
(b+ tγ

a+ tγ

)
t σ̃−1

)
< 0,

d2

dt2

(
ln
(b+ tγ

a+ tγ

)
t σ̃−1

)
> 0.
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Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃ < γ . Since

tη0 ln
(b+ tγ

a+ tγ

)
→ 0 (t → 0+), tη0 ln

(b+ tγ

a+ tγ

)
→ 0 (t → ∞),

there exists a constant L > 0, such that

h(t) = ln
(b+ tγ

a+ tγ

)
� L

tη0
(t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| =
(
b

σ
γ −a

σ
γ
)

π

σ sinπ(σ
γ )

. (59)

(ii) We set h(t) = e−ρtγ
(ρ > 0, 0 < σ < γ � 1). For δ0 = 1

2 min{σ ,γ −σ} > 0,
and σ̃ ∈ (σ − δ0,σ + δ0), it follows

k̂(σ̃) =
∫ ∞

0
e−ρtγ

t σ̃−1dt
u=ρtγ
=

1
γ

ρ− σ̃
γ

∫ ∞

0
e−uu

σ̃
γ −1du

=
1

γρ
σ̃
γ

Γ
( σ̃

γ

)
∈ R+,

and by the Note of Lemma 1, for ρ > 0, 0 < σ̃ < σ + δ0 < γ � 1,

d
dt

(e−ρtγ
t σ̃−1) < 0,

d2

dt2
(e−ρtγ

t σ̃−1) > 0.

Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃ . Since

tη0e−ρtγ → 0 (t → 0+), tη0e−ρtγ → 0 (t → ∞),

there exists a constant L > 0, such that h(t) = e−ρtγ � L
tη0 (t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| = 1

γρ
σ
γ

Γ
(σ

γ

)
. (60)

(iiiv) We set h(t) = arctanρt−γ (ρ > 0, 0 < σ < min{1,γ} ). For δ0 = 1
2 min{σ ,

1− γ,1−σ}> 0, and σ̃ ∈ (σ − δ0,σ + δ0), it follows

k̂(σ̃) =
∫ ∞

0
t σ̃−1(arctanρt−γ)dt =

1
σ̃

∫ ∞

0
(arctanρt−γ)dt σ̃

=
1
σ̃

[
(arctanρt−γ)t σ̃ |∞0 +

∫ ∞

0

γρt σ̃−γ−1

1+(ρt−γ)2 dt

]
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=
ρ

σ̃
γ

2σ̃

∫ ∞

0

1
1+u

u(− σ̃
2γ + 1

2 )−1du

=
ρ

σ̃
γ π

2σ̃ sinπ(− σ̃
2γ + 1

2 )
=

ρ
σ̃
γ π

2σ̃ cosπ( σ̃
2γ )

∈ R+,

and by the Note of Lemma 1, for 0 < σ̃ < σ + δ0 < 1,

d
dt

(t σ̃−1 arctanρt−γ) < 0,
d2

dt2
(t σ̃−1 arctanρt−γ) > 0.

Setting η0 ∈ (0,σ − δ0), then we find η0 < σ̃ . Since

tη0 arctanρt−γ → 0 (t → 0+), tη0 arctanρt−γ → 0 (t → ∞),

there exists a constant L > 0, such that

h(t) = arctanρt−γ � L
tη0

(t ∈ (0,∞)).

Then by Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| = ρ
σ
γ π

2σ cosπ( σ
2γ )

. (61)

EXAMPLE 4. We set

h(t) =
(min{t,1})γ

(max{t,1})λ+γ (−γ < σ < λ + γ < 1− γ).

For δ0 = 1
2 min{σ + γ,λ + γ −σ ,1−σ − γ} > 0, and σ̃ ∈ (σ −δ0,σ +δ0), it follows

k̂(σ̃) =
∫ ∞

0

(min{t,1})γ

(max{t,1})λ+γ t σ̃−1dt

=
λ +2γ

(σ̃ + γ)(λ − σ̃ + γ)
∈ R+,

and

h(t)t σ̃−1 =
(min{t,1})γt σ̃−1

(max{t,1})λ+γ =

{
tγ+σ̃−1, 0 < t < 1,

1
tλ+γ−σ̃+1 , t � 1,

is strict decreasing with respect to t ∈ R+.
There exists a constant η0 ∈ (−γ,min{σ −δ0,λ +γ}), such that η0 < σ̃ , γ +η0 >

0 and λ + γ −η0 > 0. In view of

tη0h(t) =
tη0(min{t,1})γ

(max{t,1})λ+γ =
{

tγ+η0 , 0 < t < 1,
1

tλ+γ−η0
, t � 1,

we have tη0h(t)→ 0 (t → 0+), and tη0h(t)→ 0 (t →∞). Hence, there exists a constant
L > 0, satisfying h(t) � L

tη0 (t ∈ (0,∞)).



HILBERT-TYPE INEQUALITY WITH A NON-HOMOGENEOUS KERNEL AND EXPRESSIONS 387

Therefore, by the Note of Theorem 3, for τ = 0 in Theorem 1 and (51), we have

||T̂1|| = ||T̂2|| = λ +2γ
(σ + γ)(λ −σ + γ)

. (62)
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[9] M. KRNIĆ, J. E. PEČARIĆ, Hilbert’s inequalities and their reverses, Publ. Math. Debrecen, 67 3–4,

(2005), 315–331.
[10] B. C. YANG, TH. M. RASSIAS, On the way of weight coefficient and research for Hilbert-type in-

equalities, Math. Ineq. Appl., 6, 4 (2003), 625–658.
[11] B. C. YANG, TH. M. RASSIAS, On a Hilbert-type integral inequality in the subinterval and its oper-

ator expression, Banach J. Math. Anal., 4, 2 (2010), 100–110.
[12] L. AZAR, On some extensions of Hardy-Hilbert’s inequality and Applications, Journal of Inequalities

and Applications, 2009, no. 546829.
[13] B. ARPAD, O. CHOONGHONG, Best constant for certain multilinear integral operator, Journal of

Inequalities and Applications, 2006, no. 28582.
[14] J. C. KUANG, L. DEBNATH, On Hilbert’s type inequalities on the weighted Orlicz spaces, pacific J.

Appl. Math., 1, 1 (2007), 95–103.
[15] W. Y. ZHONG, The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree,

Journal of Inequalities and Applications, 2008, no. 917392.
[16] Y. HONG, On Hardy-Hilbert integral inequalities with some parameters, J. Ineq. in Pure & Applied

Math., 6, 4 (2005), Art. 92, 1–10.
[17] W. Y. ZHONG, B. C. YANG, On multiple Hardy-Hilbert’s integral inequality with kernel, Journal of

Inequalities and Applications, Vol. 2007, Art.ID 27962, 17 pages, doi: 10.1155/ 2007/27.
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