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ON A CLASS OF PUNCTUAL CONVEX FUNCTIONS

AURELIA FLOREA AND EUGEN PĂLTĂNEA

(Communicated by C. P. Niculescu)

Abstract. The aim of this paper is to show that the inequality of Jensen for real functions holds
under a weaker condition than the usual convexity on an interval. Thus, we introduce the concept
of convexity at a point. We present and discuss the basic properties of the class of functions
satisfying the punctual convexity. This concept is further extended to the lateral convexity at a
point. The interest in these notions is the extensions of some inequalities, as illustrated in this
paper. It should be noted that the usual convexity on intervals does not provide a direct answer
for these problems.

1. Introduction

Jensen’s inequality is usually stated in the context of convex functions but we can
find easily examples where this inequality still works for some nonconvex functions and
some convex combinations of points ”well placed” in the interval of definition. Indeed,
let us consider the inequality

(λ1x1 + · · ·+ λnxn)bλ1x1+···+λnxn � λ1x1b
x1 + · · ·+ λnxnb

xn , (1)

where b > 1 and λ1, · · ·λn ∈ [0,1] , such that
n
∑
i=1

λi = 1.

Since the function f : R → R, f (x) = xbx, is convex only on the interval
[−2log−1 b,∞) , the inequality (1) holds for x1, · · · ,xn � −2log−1 b . However, we will
show that this inequality can be extended to all real numbers xi , such that their convex

combination
n
∑
i=1

λixi is at least equal to − log−1 b (see Example 3, Section 4).

A second example illustrating this phenomenon is as follows. For n+ 1 positive
numbers a1, . . . ,an and p , let us consider the inequality√

a1

a2 + pa1
+
√

a2

a3 + pa2
+ · · ·+

√
an−1

an + pan−1
+
√

an

a1 + pan
� n√

1+ p
. (2)

Letting xi = log ai+1
ai

, i = 1, . . . ,n, where an+1 = a1, we are led to consider the
function

f : R → R, f (x) = − 1√
ex + p

,
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where p > 0 is a fixed parameter. Then the inequality (2) is equivalent with

f (0) = f

(
∑n

i=1 xi

n

)
� ∑n

i=1 f (xi)
n

, (3)

for real numbers x1, · · · ,xn , with ∑n
i=1 xi = 0. The function f is convex only on the

interval (−∞, log(2p)] . Then (3) results from the usual inequality of Jensen under the
assumptions xi � log(2p) , for i = 1, · · · ,n , such that ∑n

i=1 xi = 0, where p � 1/2.
Hence (2) holds for p � 1/2 and 0 < ai+1/ai � 2p , i = 1, · · · ,n (with an+1 = a1 ). But
we will show that the inequality (2) is also valid for p � 1/2 and 0 < a1 � a2 � · · ·� an

(see Example 5, Section 4).
The two examples above illustrate a new concept of weak convexity (called by us

convexity at a point), which we will introduce and describe in this paper.

DEFINITION 1. Let I be an open interval and a ∈ I . We say that a function f :
I → R is convex at the point a if, for all x,y ∈ I , such that x � a � y , we have

f (a)+ f (x+ y−a) � f (x)+ f (y). (4)

A function f is called concave at the point a provided that − f is convex at that point.

Denote by Conva(I) the set of all convex functions at a , defined on an open inter-
val I , such that a ∈ I . Then every f ∈ Conva(I) verifies the inequality

2 f (a) � f (a+ t)+ f (a− t), for all t such that a− t,a+ t ∈ I. (5)

The class Conva(I) may contain non-continuous (hence nonconvex) functions.
For example, the function f : R → R , defined by:

f (x) =

⎧⎨
⎩

p, if x < a
q, if x = a
r, if x > a

,

is convex at the point a (i.e. f ∈Conva(R)) if and only if q � min{p,r} . Remark that,
if q < min{p,r} , then f is convex only at the point a . Indeed, for b < a , we have
2 f (b) = 2p > p+ q = f (2b− a)+ f (a) , so f /∈ Convb(R) , and, for b > a , 2 f (b) =
2r > r+q = f (2b−a)+ f (a) , so f /∈ Convb(R) .

Clearly, a convex function f defined on an open real interval I is convex at each
a ∈ I . One can show easily that a continuous function f : I → R which is convex at all
the points of a dense subset of I is convex on the whole interval I .

In the next section we will show that for continuous functions in the class Conva(I) ,
Jensen’s inequality holds (at the point a). A characterization of convexity at a point in
the presence of differentiability is provided by Theorem 2 below.

Section 3 is devoted to an extended concept, called the lateral convexity at a point.
In Section 4, we will illustrate by examples the usefulness of these notions and re-
sults. Also, a possible extension of the punctual convexity in real Banach spaces is
commented.
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It is worth noticing that there are many other works treating the existence of
Jensen’s type inequalities for nonconvex functions (but in a different manner). So is
the case of convex-concave symmetric functions studied for example by Czinder and
Páles [1] and Florea and Niculescu [2], and the case of left almost convex functions,
first considered by Niculescu and Spiridon in [5]. Also, Minuţă [3] studies an alterna-
tive concept of punctual convexity, called x -convexity.

2. The class of punctual convex functions

We start by noticing that the set of convex functions at a point is closed under
addition and under multiplication by positive reals. Also, this class is closed under
translations. These closure properties and other characterizations are stated in the next
lemma.

LEMMA 1. Let I be an open interval and a ∈ I . The following statements are
true:

1. the class Conva(I) is a convex pointed cone;

2. f ∈ Conv0(I) if and only if fa ∈ Conva(I+a), where 0∈ I , I+a = {x+a|x∈ I}
and fa(x) = f (x−a), x ∈ I +a;

3. if f ∈Conva(I) and g(x)= f (x)+bx+c, x∈ I , where b and c are real constants,
then g ∈ Conva(I);

4. for f : R → R , if f (x+a)− f (a) is subadditive, then f ∈ Conva(R);

5. an even function f ∈ Conv0(R) has the origin as a global minimum point.

The following lemma states a special case of Jensen’s inequality under the pres-
ence of punctual convexity.

LEMMA 2. Assume f ∈ Conva(I) , where I is an open interval, with a ∈ I . Then,
for all x1,x2, · · · ,xn ∈ I , such that ∑n

i=1 xi = na, we have

n f (a) � f (x1)+ f (x2)+ · · ·+ f (xn). (6)

Proof. We will prove the lemma by induction. For n = 2, the inequality (6) be-
comes directly from the relation (5). Suppose that the inequality (6) holds for n � 2
numbers. Let us consider x1,x2, . . . ,xn+1 ∈ I , with ∑n+1

i=1 xi = (n+ 1)a . Without loss
of generality, we can assume xi � xi+1, i = 1,2, . . . ,n . Then, clearly, x1 � a � xn+1 .
Therefore,

f (a)+ f (x1 + xn+1−a) � f (x1)+ f (xn+1).

But, from the induction assumption, we have

n f (a) � f (x1 + xn+1−a)+ f (x2)+ · · ·+ f (xn).
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Summing these inequalities, we obtain (n+1) f (a) � ∑n+1
k=1 f (xk) . So, we get the con-

clusion. �
A useful application is indicated by the following corollary.

COROLLARY 1. If f ∈ Conv0(R) , then g = f ◦ log satisfies the inequality:

ng(1) � g(u1)+g(u2)+ · · ·+g(un), ∀ u1,u2, · · · ,un > 0,
n

∏
i=1

ui = 1. (7)

The discrete case of Jensen’s inequality holds in full generality for continuous
functions belonging to the class Conva(I) .

LEMMA 3. Let f ∈ Conva(I) be a continuous function. For all positive real num-

bers λ1, · · · ,λn , with
n
∑
i=1

λi = 1 , and for all x1, · · · ,xn ∈ I , such that
n
∑
i=1

λixi = a, we

have

f

(
n

∑
i=1

λixi

)
�

n

∑
i=1

λi f (xi). (8)

Proof. Firstly, let us prove (8) for positive rational numbers λi .

Assume λ1, · · · ,λn ∈Q+ and x1, . . . ,xn ∈ I , such that
n
∑
i=1

λi = 1 and ∑n
i=1 λixi = a .

There are n+1 positive integers p1, · · · , pn and q , such that λi =
pi
q , i = 1, . . . ,n . Then

n
∑
i=1

pixi = aq = a
n
∑
i=1

pi . Hence, Lemma 2 ensures

q f (a) =

(
n

∑
i=1

pi

)
f (a) �

n

∑
i=1

pi f (xi).

Therefore, the inequality (8) holds.
Now, let us treat the general case. Assume n positive numbers λ1, . . . ,λn , with

n
∑
i=1

λi = 1, and consider x1, . . . ,xn ∈ I , such that ∑n
i=1 λixi = a . For 1 � i � n− 1,

we choose a sequence of positive rational numbers (λ (i)
k )k�1 , such that λ (i)

k � λi and

lim
k→∞

λ (i)
k = λi . Now, for each positive integer k , let us denote λ (n)

k = 1−
n−1
∑
i=1

λ (i)
k and

zk = a−∑n−1
i=1 λ (i)

k xi

λ (n)
k

. Then, for all positive integers k , we have
n
∑
i=1

λ (i)
k = 1, with λ (n)

k � 1−
n−1
∑
i=1

λi = λn > 0, and λ (n)
k zk +

n−1
∑
i=1

λ (i)
k xi = a . In addition, lim

k→∞
λ (n)

k = λn and lim
k→∞

zk = xn .

In this case, there is a positive integer k0 such that zk ∈ I, ∀ k � k0 . Therefore, the firstly
treated case ensures

f (a) � λ (n)
k f (zk)+

n−1

∑
i=1

λ (i)
k f (xi), ∀ k � k0.
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As follows, by using the continuity of f at xn , we find

f (a) � lim
k→∞

(
λ (n)

k f (zk)+
n−1

∑
i=1

λ (i)
k f (xi)

)
=

n

∑
i=1

λi f (xi).

Thus, the lemma is proved. �

In particular, for n = 2 and a = 0, we obtain a relevant consequence of above
lemma.

COROLLARY 2. For a continuous function f ∈ Conv0(I) , we have

(y− x) f (0) � y f (x)− x f (y), for all x,y ∈ I, such that x � 0 � y. (9)

Remark that the reciprocal statement is not true (see Example 1, Section 4).
A continuous function on an open interval which is convex at a given point admits

a support line at that point. More details on this notion can be found, for example, in
the monograph of Niculescu and Persson [4].

LEMMA 4. If f ∈ Conva(I) is a continouous function, then there exists λ ∈ R

such that
f (x) � f (a)+ λ (x−a), for every x ∈ I.

Proof. Let us consider x,y ∈ I such that x < a < y . From Lemma 3 we obtain

f (a) � y−a
y− x

f (x)+
a− x
y− x

f (y).

As follows,

f (a)− f (x)
a− x

� f (y)− f (a)
y−a

, for all x,y ∈ I,such that x < a < y. (10)

Denote α = sup
x∈I; x<a

f (a)− f (x)
a−x and β = inf

y∈I; y>a

f (y)− f (a)
y−a , The relation (10) provides

α,β ∈ R and α � β . More that, we have

f (a)− f (x)
a− x

� α � β � f (y)− f (a)
y−a

, for all x,y ∈ I,such that x < a < y.

Then, for λ ∈ [α,β ] , the following inequality holds

f (x) � f (a)+ λ (x−a), for all x ∈ I,

i.e. f admits a support line at the point a . �

Now, let us derive the general form of Jensen’s inequality.
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THEOREM 1. Let f ∈Conva(I) be a continuous function on the open interval I .
Then, for every interval [α,β ]⊂ I including the point a, and for every Borel probability
measure μ on [α,β ] whose barycenter is a, we have

f (a) �
∫ β

α
f (x)dμ(x).

Proof. We apply Lemma 3 and the approximation result on Borel probability mea-
sures established by Lemma 4.1.10 in Niculescu and Persson [4]. �

The functions f ∈ Conva(I) with lateral derivatives on I enjoy a specific property.

LEMMA 5. Assume a function f : I → R having lateral derivatives on the open
interval I . Suppose a ∈ I . If f ∈ Conva(I) , then f ′(x+0) � f ′(a+0) , for all x ∈ I ,
such that x < a, and f ′(a−0) � f ′(x−0) , for all x ∈ I , such that x > a.

Proof. Let f ∈ Conv0(I) be a function with lateral derivatives on I . Let us con-
sider x ∈ I∩ (−∞,a) . From (4), we have:

f (x+ y−a)− f (x)
y−a

� f (y)− f (a)
y−a

, ∀ y ∈ I∩ (a,∞).

Therefore,

f ′(x+0) = lim
y↓a

f (x+ y−a)− f (x)
y−a

� lim
y↓a

f (y)− f (a)
y−a

= f ′(a+0).

Similarly, for a fixed y ∈ I∩ (a,∞) , we have

f ′(a−0) = lim
x↑a

f (a)− f (x)
a− x

� lim
x↑a

f (y)− f (x+ y−a)
a− x

= f ′(y−0).

So the lemma is proved. �
Remark that the converse implication is not true (see Example 1, Section 4). Now,

let us characterize the differentiable functions of the class Conva(I) .

THEOREM 2. Let f : I → R be a differentiable function, where I is an open in-
terval, with a ∈ I . The following statements are equivalent:

1. f ∈ Conva(I);

2. f ′(x) � f ′(a) � f ′(y), ∀ x,y ∈ I, x � a � y.

Proof. Suppose f ∈ Conva(I) . From Lemma 5 we find f ′(x) � f ′(a) � f ′(y) ,
for all x,y ∈ I, such that x � a � y . Conversely, assume that the statement 2) is true.
Let us consider x,y ∈ I , such that x < a < y . Suppose that x + y � 2a. From the
Mean Value Theorem, there are b,c ∈ I , x < b < x + y− a � a < c < y , such that
f (x + y− a)− f (x) = f ′(b)(y− a) and f (y)− f (a) = f ′(c)(y− a) . Hence, from the
hypothesis, we obtain f (x+y−a)− f (x) � f (y)− f (a) . Similarly, if x+y > 2a , then
we find f (a)− f (x) � f (y)− f (x+ y−a) . As follows, f ∈ Conva(I) . �

The above theorem can be the source of many interesting examples of nonconvex
functions which are still convex at a point.
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3. Lateral convexity at a point

We introduce now the concept of lateral convexity at a point. This notion is less
restrictive than the convexity at a point.

DEFINITION 2. Let I be an open interval and a ∈ I .
We say that a function f : I → R is left-convex at the point a if, for all x,y ∈ I ,

such that x � a � y and x+ y � 2a , we have f (a)+ f (x+ y−a) � f (x)+ f (y).
We say that a function f : I → R is right-convex at the point a if, for all x,y ∈ I ,

such that x � a � y and x+ y � 2a , we have f (a)+ f (x+ y−a) � f (x)+ f (y).

Clearly, f is convex at a point a if and only if it is left-convex and right-convex at
the point a . Since the properties of the right-convexity at points can easily be obtained
from that one of the left-convexity at points, we discuss here only this last one concept.
Also, note that the definition and the properties of the lateral concavity can be directly
obtained from that one of lateral convexity. The class of functions satisfying a lateral
convexity (or concavity) condition at a point enjoy a series of similar properties to those
presented in Section 2.

Let us denote by Conv−a (I) the class of left-convex functions at the point a . Ob-
viously, Conva(I) ⊂ Conv−a (I) . Now, let us show that Lemma 2 can be reformulated
for the class Conv−a (I) .

LEMMA 6. Assume f ∈ Conv−a (I) , where I is an open interval, with a∈ I . Then,
for all x1,x2, · · · ,xn ∈ I , such that x1 � a, x2 � a, x3 � a, · · · , xn � a and ∑n

i=1 xi = na,
we have

n f (a) � f (x1)+ f (x2)+ · · ·+ f (xn). (11)

Proof. The theorem will be proved by induction. For n = 2, the inequality (11)
becomes directly from the Definition 2. Suppose that the inequality (11) holds for
a positive integer n � 2. Let us consider x1,x2, · · · ,xn+1 ∈ I , such that x1 � a and
x2 � a, x3 � a, · · · , xn+1 � a . Assume ∑n+1

i=1 xi = (n+1)a . Then we have x1 + xn+1 =
(n+1)a−∑n

i=2 xi � (n+1)a− (n−1)a= 2a . Therefore,

f (a)+ f (x1 + xn+1−a) � f (x1)+ f (xn+1).

But from our assumption of induction,

n f (a) � f (x1 + xn+1−a)+ f (x2)+ · · ·+ f (xn).

By summing these inequalities, we obtain

(n+1) f (a) � f (x1)+ f (x2)+ · · ·+ f (xn)+ f (xn+1).

So, we get the conclusion. �
Now, let us formulate necessary and sufficient conditions, respectively, for the

left-convexity at points.
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THEOREM 3. Assume f : I → R , where I is an open interval, with a ∈ I .

1. If f has right-derivatives on I ∩ (−∞,a] and f ∈ Conv−a (I) , then f ′(x + 0) �
f ′(a+0) , for all x ∈ I∩ (−∞,a) .

2. If I is symmetrical with respect to the point a, f is convex on the interval I ∩
(−∞,a] and

2 f (a) � f (y)+ f (2a− y), ∀ y ∈ I, (12)

then f ∈ Conv−a (I) .

Proof. For 1), we can use the same arguments as in the proof of Lemma 5. Now,
let us prove 2). Consider x,y ∈ I such that x � a � y and x+ y � 2a . Since x+ y−
a,2a− y∈ [x,a] ⊂ I∩ (−∞,a] and f is convex on I∩ (−∞,a] , we have

f (x+ y−a)+ f (2a− y)� f (x)+ f (a). (13)

By summing the inequalities (12) and (13), we find f (a)+ f (x+ y−a) � f (x)+ f (y) .
Hence, f ∈ Conv−a (I) . �

Mention that Example 5 in Section 4 (also discussed in the introduction) is based
on above results.

4. Examples and comments

The first example show that Corollary 2 and Lemma 5 have not reciprocal state-
ments.

EXAMPLE 1. The nonnegative continuous function f : R → R ,

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x+2, x ∈ [−2,−1);
|x|, x ∈ [−1,1);
2− x, x ∈ [1,2];
0, x ∈ R\ [−2,2],

satisfies (9), since (y−x) f (0)= 0 � y f (x)−x f (y) , for all x,y∈R , such that x � 0 � y .
Also, clearly, f ′(x+0) � 1 = f ′(0+0), ∀ x � 0, and f ′(0−0) =−1 � f ′(x−0), ∀ x �
0. But f (0)+ f (1) = 1 > 0 = f (−2)+ f (3) , hence f /∈ Conv0(R) .

The second example illustrates Lemma 3 and Lemma 5.

EXAMPLE 2. Let us consider the continuous periodic function f : R → R , with
the period P = 2, defined as f (x) = |x| , for x ∈ [−1,1] . Let x � 0 and y � 0 be

two real numbers. Denote s =
[

x+1
2

]
and t =

[
y+1
2

]
, the integer parts of x+1

2 and
y+1
2 , respectively. We have x ∈ [2s− 1,2s + 1) and y ∈ [2t − 1,2t + 1) . Therefore

u := x−2s ∈ [−1,1) and v := y−2t ∈ [−1,1) . From the periodicity of f , we obtain

f (x)+ f (y) = f (u)+ f (v) = |u|+ |v|,



ON A CLASS OF PUNCTUAL CONVEX FUNCTIONS 397

and

f (0)+ f (x+ y) = f (u+ v) =

⎧⎨
⎩

|u+ v|, u+ v∈ [−1,1]
2− (u+ v), u,v ∈ (0,1), u+ v ∈ (1,2)
u+ v+2, u,v < 0, u+ v ∈ [−2,−1).

Clearly, f (u+ v) � |u|+ |v|= f (u)+ f (v) . Then f ∈ Conv0(I) . Since f (t) � 0, ∀t ∈
R , we have

f (0) = 0 �
n

∑
i=1

λi f (xi),

for λi > 0, xi ∈ R , such that
n
∑
i=1

λi = 1 and ∑n
i=1 λixi = 0. On the other hand, f has

lateral derivatives on R , such that f ′(x+0) � 1 = f ′(0+0), ∀ x � 0, and f ′(0−0) =
−1 � f ′(x−0), ∀ x � 0.

EXAMPLE 3. Assume b > 1 and x1, · · · ,xn ∈ R , such that
n
∑
i=1

λixi � −1/ logb,

Then
(λ1x1 + · · ·+ λnxn)bλ1x1+···+λnxn � λ1x1b

x1 + · · ·+ λnxnb
xn ,

where λ1, · · ·λn ∈ [0,1] , such that
n
∑
i=1

λi = 1 .

Let us consider the function f : R → R, f (x) = xbx . We have f ′(x) = bx(1 +
x logb) and f ′′(x) = bx logb(2+ x logb) . Since limx→−∞ f ′(x) = 0, f ′(−1/ logb) = 0
and f ′ is increasing on the interval [−2/ logb,∞) (i.e. f is convex on [−2/ logb,∞)),
we obtain

f ′(x) � f ′(a) � f ′(y),

for all a � −1/ logb and x � a � y . Then, from Theorem 2, f ∈ Conva(I) , for all a in
the interval [−1/ logb,∞) . The conclusion follows from Lemma 3.

EXAMPLE 4. The following inequality holds:

e−x2
+ e−y2 � 1+ e−(x+y)2, ∀ x � 0 � y.

Consider the function f : R→R, f (x) =−e−x2
, x∈R. Since f ′(x) = 2xe−x2

, we have
f ′(x) � f ′(0) � f ′(y) , for x � 0 � y . Then f ∈ Conv0(R) and the inequality is proved.

Note that f is convex on
[
− 1√

2
, 1√

2

]
and concave on the intervals

(
−∞,− 1√

2

]
and[

1√
2
,∞
)

.

The last example prove the utility of the concept left-convexity at the origin.

EXAMPLE 5. Let n � 2 be an integer number, and let a1 � a2 � · · · � an be n
positive numbers. Then, for p � 1

2 , the following inequality holds

√
a1

a2 + pa1
+
√

a2

a3 + pa2
+ · · ·+

√
an−1

an + pan−1
+
√

an

a1 + pan
� n√

1+ p
.
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Let us denote xi = log ai+1
ai

, i = 1, · · · ,n, where an+1 = a1 . Let f : R → R be the

function defined by f (x) = − 1√
ex+p , where p � 1/2 is a fixed parameter. Then we

have to show
n

∑
i=1

f (xi) � n f (0),

under the conditions xi � 0, for i = 1, · · · ,n−1, xn � 0 and ∑n
i=1 xi = 0. From Lemma

6, it is sufficient to verify that f is left-convex at the origin. Firstly, we show that
2 f (0) � f (x)+ f (−x), ∀ x ∈ R , i.e.

g(t) :=
1√

t + p
+

1√
1
t + p

� 2√
1+ p

, ∀ t > 0. (14)

We easily state that sgn{g′(t)} = sgn
{
(1− t2)[p3(t2 +1)+ t(3p2−1)]

}
, for t > 0.

But we have

p3(t2 +1)+ t(3p2−1) � t(2p3 +3p2−1) = t(2p−1)(p+1)2 � 0, ∀ t > 0.

Therefore, g′(t) > 0, for t ∈ (0,1) , and g′(t) < 0, for t ∈ (1,∞) . As follows, we
have g(t) � g(1), ∀ t > 0, i.e. (14) holds. Secondly, we verify the convexity of f on
(−∞,0] . We have

f ′′(x) = 4−1ex(ex + p)−5/2(2p− ex), x ∈ R.

Since 2p � 1, we find f ′′(x) > 0, ∀ x < 0. Therefore, f is convex on the interval
(−∞,0] . By applying Theorem 3 (for a = 0), we obtain f ∈ Conv−0 (I) . Thus, the
given inequality is proved.

We think that the concept of punctual convexity can be of interest in more general
frames. Thus, let E be a real Banach space and let C ⊂ E be an open convex set. A
function f : C → R will be called convex at the point a ∈C if, for every vector v �= 0
of E ,

f (a)+ f (a+(x+ y)v) � f (a+ xv)+ f (a+ yv),

for all x,y ∈ R , such that xy < 0 and a + xv,a + yv ∈ C . Clearly, this definition ex-
tends the concept developed in this paper for the real case. The study of the punctual
convexity can lead to interesting applications in Banach spaces.
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