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NECESSARY AND SUFFICIENT CONDITIONS FOR

THE BOUNDEDNESS OF THE MAXIMAL OPERATOR

FROM LEBESGUE SPACES TO MORREY–TYPE SPACES

V. I. BURENKOV AND M. L. GOLDMAN

(Communicated by L. Maligranda)

Abstract. It is proved that the boundedness of the maximal operator M from a Lebesgue space
Lp1(R

n) to a general local Morrey-type space LMp2θ ,w(Rn) is equivalent to the boundedness
of the embedding operator from Lp1 (R

n) to LMp2θ ,w(Rn) and in its turn to the boundedness of
the Hardy operator from L p1

p2
(0,∞) to the weighted Lebesgue space L θ

p2
,v(0,∞) for a certain

weight function v determined by the functional parameter w . This allows obtaining necessary
and sufficient conditions on the function w ensuring the boundedness of M from Lp1(R

n) to
LMp2θ ,w(Rn) for any 0 < θ � ∞ , 0 < p2 � p1 � ∞ , p1 > 1 . These conditions with p1 = p2 = 1
are necessary and sufficient for the boundedness of M from L1(Rn) to the weak local Morrey-
type space WLM1θ ,w(Rn) .

1. Introduction

For x ∈ R
n and r > 0, let B(x,r) denote the open ball centered at x of radius r .

Moreover, let Br ≡ B(0,r) .
Let f ∈ Lloc

1 (Rn) . The maximal operator M is defined for all x ∈ R
n by

M f (x) = sup
t>0

1
|B(x,t)|

∫
B(x,t)

| f (y)|dy,

where |B(x, t)| is the Lebesgue measure of the ball B(x,t) .

DEFINITION 1. Let 0 < p , θ � ∞ and let w be a non-negative measurable func-
tion on (0,∞) . We denote by LMpθ ,w(Rn) the local Morrey-type space, the space of
all functions f ∈ Lloc

p (Rn) with finite quasi-norm

‖ f‖LMpθ ,w(Rn) =
∥∥∥w(r)‖ f‖Lp(Br)

∥∥∥
Lθ (0,∞)

,
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and by WLMpθ ,w(Rn) the weak local Morrey-type space, the space of all functions
f ∈WLloc

p (Rn) with finite quasi-norm

‖ f‖WLMpθ ,w(Rn) =
∥∥∥w(r)‖ f‖WLp(Br)

∥∥∥
Lθ (0,∞)

,

where ‖ f‖WLp(Br) denotes the weak Lp -quasinorm of f on Br :

‖ f‖WLp(Br) = ‖ f χBr
‖WLp(Rn) = sup

t>0
t

1
p ( f χBr

)∗(t) = sup
0<t�|Br|

t
1
p ( f χBr

)∗(t) . (1)

Here χΩ is the characteristic function of the set Ω ⊂ R
n and f ∗ denotes the non-

increasing rearrangement of f :

f ∗(t) = inf{τ : λ f (τ) � t} , t > 0 ,

where λ f (τ) = |{x∈ R
n : | f (x)|> τ}| ,τ > 0 is the distribution function of the function

f .

Note that

‖ f‖LMp∞,1(Rn) = ‖ f‖Lp(Rn) , ‖ f‖WLMp∞,1(Rn) = ‖ f‖WLp(Rn).

DEFINITION 2. Let 0 < θ � ∞. We denote by Ωθ the set of all functions w
which are non-negative, measurable on (0,∞) , not equivalent to 0 and such that for
some t > 0

‖w‖Lθ (t,∞) < ∞. (2)

REMARK 1. In [6] it was proved that if w is a non-negative measurable function
on (0,∞) which is not equivalent to 0, then the space LMpθ ,w(Rn) is non-trivial, i. e.
consists not only of functions equivalent to 0 on R

n , if and only if w ∈ Ωθ . For this
reason it will always be assumed that w ∈ Ωθ .

Let A,B be some sets and ϕ ,ψ be non-negative functions defined on A×B . (It
may happen that ϕ(α,β ) = +∞ or ψ(α,β ) = +∞ for some α ∈ A,β ∈ B .) We say
that ϕ is dominated by ψ (or ψ dominates ϕ ) on A×B uniformly in α ∈ A and write

ϕ(α,β ) � ψ(α,β ) uniformly in α ∈ A

or
ψ(α,β ) � ϕ(α,β ) uniformly in α ∈ A ,

if for each β ∈ B there exists c(β ) > 0 such that

ϕ(α,β ) � c(β )ψ(α,β )

for all α ∈ A . We also say that ϕ is equivalent to ψ on A×B uniformly in α ∈ A and
write

ϕ(α,β ) ≈ ψ(α,β ) uniformly in α ∈ A ,

if ϕ and ψ dominate each other on A×B uniformly in α ∈ A .
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LEMMA 1. [7] Let 0 < θ � ∞ and w1 , w2 ∈ Ωθ . Then for each 0 < p � ∞ the
equality

LMpθ ,w1(R
n) = LMpθ ,w2(R

n)

holds if and only if 1

‖w1‖Lθ (t,∞) ≈ ‖w2‖Lθ (t,∞) uniformly in t ∈ (0,∞).

The boundedness of the maximal operator from LMpθ1,w1 to LMpθ2,w2 for general
w1 and w2 was studied in [9], [10], [5], [6], and [4]. See detailed exposition of this
and related problems in recent survey papers [2], [3]. In [5], [6], and [4], for a certain
range of the parameters p,θ1 and θ2 , necessary and sufficient conditions on w1 and
w2 were obtained ensuring the boundedness of M from LMpθ1,w1 to LMpθ2,w2 , namely
the following statement was proved.

THEOREM 1. If n ∈ N , 1 < p < ∞, 0 < θ1 � θ2 � ∞, w1 ∈ Ωθ1 , and w2 ∈ Ωθ2 ,
then the condition ∥∥∥∥w2(r)

( r
t + r

) n
p

∥∥∥∥
Lθ2

(0,∞)
� ‖w1‖Lθ1

(t,∞) (3)

uniformly in t ∈ (0,∞) is necessary and sufficient for the boundedness of M from
LMpθ1,w1(R

n) to LMpθ2,w2(R
n). Moreover,

‖M‖LMpθ1,w1
(Rn)→LMpθ2 ,w2

(Rn) ≈ sup
0<t<∞

‖w1‖−1
Lθ1

(t,∞)

∥∥∥∥w2(r)
( r

t + r

) n
p

∥∥∥∥
Lθ2

(0,∞)
(4)

uniformly in w1 ∈ Ωθ1 and w2 ∈ Ωθ2 .
If p = 1 , then condition (3) is necessary and sufficient for the boundedness of M

from LM1θ1,w1(R
n) to WLM1θ2,w2(R

n) and

‖M‖LM1θ1 ,w1
(Rn)→WLM1θ2 ,w2

(Rn) ≈ sup
0<t<∞

‖w1‖−1
Lθ1

(t,∞)

∥∥∥w2(r)
( r

t + r

)n∥∥∥
Lθ2

(0,∞)
(5)

uniformly in w1 ∈ Ωθ1 and w2 ∈ Ωθ2 .

In (4) and (5) we assume that (+∞)−1 = 0 and 0 · (+∞) = 0.
In [5], [6] this was proved under the additional assumption θ1 � p . The general

case was considered in [4].

If θ2 < θ1 , then sufficient conditions on w1 and w2 for the boundedness of M
from LMpθ1,w1(R

n) to LMpθ2,w2(R
n) are given in [4]. However, the challenging prob-

lem of finding necessary and sufficient conditions on w1 and w2 ensuring the bound-
edness of M from LMpθ1,w1(R

n) to LMpθ2,w2(R
n) for the case θ2 < θ1 is still open. In

1 By the above convention this means that, given 0 < p � ∞ , for each 0 < θ � ∞ , w1 , w2 ∈ Ωθ there
exist c1 , c2 > 0 such that

c1‖w1‖Lθ (t,∞) � ‖w2‖Lθ (t,∞) � c2‖w1‖Lθ (t,∞)

for all t ∈ (0,∞). So, for a fixed 0 < p � ∞ , c1 and c2 may depend on 0 < θ � ∞ , w1 , w2 ∈ Ωθ , but are
independent of t ∈ (0,∞). However, for the whole range of the parameter p , c1 and c2 may also depend on
p .
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this paper we give its solution for a very particular case in which θ1 = ∞ and w1(r)≡ 1.
In other words we find, for all admissible values of the parameters p1, p2 , and θ , nec-
essary and sufficient conditions on w ensuring that the maximal operator is bounded
from Lp1(R

n) = LMp1∞,1(Rn) to LMp2θ ,w(Rn) .

2. Preliminary observations

We start with the following simple observations aimed at clarifying necessary as-
sumptions on 0 < p1, p2,θ � ∞ for which for certain w ∈ Ωθ the operator M can be
bounded from Lp1(R

n) to LMp2θ ,w(Rn) .

REMARK 2. Let 0 < θ � ∞ , w ∈ Ωθ , and 0 < p1 < p2 � ∞ . Then there exists
r0 > 0 such that ‖w‖Lθ (r0,∞) > 0. We can find f ∈ Lp1(R

n) such that f /∈ Lp2(Br0) .
Then M f /∈ Lp2(Br0) and therefore M f /∈ LMp2θ ,w(Rn) , because

‖M f‖LMp2θ ,w(Rn) � ‖M f‖Lp2 (Br0 ) ‖w‖Lθ (r0,∞) .

Thus, in the problem of the boundedness of the maximal operator M : Lp1(R
n) →

LMp2θ ,w(Rn) one should assume that p2 � p1 .

REMARK 3. Assume that 0 < θ � ∞ , w ∈ Ωθ , and p1 = p2 > 1. Then for each
ρ > 0

‖M‖Lp1 (Rn)→LMp1θ ,w(Rn) �
‖w(r)‖MχBρ ‖Lp1(Br)‖Lθ (ρ ,∞)

‖χBρ ‖Lp1(Bρ )
.

Since ‖MχBρ ‖Lp1 (Br) � ‖χBρ ‖Lp1(Bρ ) for all r � ρ , it follows that

‖M‖Lp1 (Rn)→LMp1θ ,w(Rn) � ‖w‖Lθ (ρ ,∞)

for all ρ > 0. Hence

‖M‖Lp1 (Rn)→LMp1θ ,w(Rn) � ‖w‖Lθ (0,∞) .

On the other hand, by applying the classical Lp1 -estimate for the maximal func-
tion, it follows that

‖M‖Lp1(Rn)→LMp1θ ,w(Rn) = sup
f ∈ Lp1 (R

n)
f �∼ 0

‖w(r)‖M f‖Lp1 (Br)‖Lθ (0,∞)

‖ f‖Lp1 (Rn)

� sup
f ∈ Lp1 (R

n)
f �∼ 0

‖w(r)‖ f‖Lp1 (Rn)‖Lθ (0,∞)

‖ f‖Lp1(Rn)
= ‖w‖Lθ (0,∞)

uniformly in w ∈ Ωθ . Thus

‖M‖Lp1 (Rn)→LMp1θ ,w(Rn) ≈ ‖w‖Lθ (0,∞) (6)
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uniformly in w ∈ Ωθ .
For similar reasons by the equality ‖χBρ ‖WL1(Bρ ) = ‖χBρ ‖L1(Bρ ) and the bounded-

ness of M from L1(Rn) to WL1(Rn) it follows that

‖M‖L1(Rn)→WLM1θ ,w(Rn) ≈ ‖w‖Lθ (0,∞) (7)

uniformly in w ∈ Ωθ .
Equivalences (6) and (7) also follow by equivalences (4) and (5) with w1 ≡ 1,

w2 = w , θ1 = ∞ , θ2 = θ , because

sup
0<t<∞

∥∥∥∥∥w(r)
(

r
t + r

) n
p

∥∥∥∥∥
Lθ (0,∞)

= ‖w‖Lθ (0,∞) .

If p1 = p2 = 1, then ‖M‖L1(Rn)→LM1θ ,w(Rn) = ∞ for all 0 < θ � ∞ and w ∈ Ωθ .
This follows if one considers the test-functions χBε and passes to the limit as ε → 0+ .

Summarizing, if one investigates the boundedness of M from Lp1(R
n) to

LMp2θ ,w(Rn) , then one should always assume that

0 < θ � ∞, 1 � p1 � ∞, 0 < p2 � p1 if p1 > 1, 0 < p2 < 1 if p1 = 1,

and w ∈ Ωθ .

REMARK 4. What happens if 0 < p2 < p1 ? If p1 > 1, then by applying Hölder’s
inequality and the boundedness of M from Lp1(R

n) to Lp1(R
n) it immediately follows

that

‖M f‖Lp2 (Br) � (vnr
n)

1
p2

− 1
p1 ‖M f‖Lp1 (Rn) � r

n( 1
p2

− 1
p1

)‖ f‖Lp1 (Rn)

uniformly in r > 0, where vn is the volume of the unit ball in R
n , and

‖M‖Lp1 (Rn)→LMp2θ ,w(Rn) = sup
f ∈ Lp1 (R

n)
f �∼ 0

‖w(r)‖M f‖Lp2 (Br)‖Lθ (0,∞)

‖ f‖Lp1 (Rn)

�
∥∥rn( 1

p2
− 1

p1
)
w(r)

∥∥
Lθ (0,∞)

uniformly in w ∈ Ωθ . Hence the condition

∥∥rn( 1
p2

− 1
p1

)
w(r)

∥∥
Lθ (0,∞) < ∞ (8)

is sufficient for boundedness of the maximal operator M from Lp1(R
n) to LMp2θ ,w(Rn) .

However, in spite of the fact that Hölder’s inequality is sharp, it appears that this
simple sufficient condition is also necessary if and only if θ = ∞ . If θ < ∞ it is
not necessary (though is rather close to being necessary). In this case necessary and
sufficient conditions are much more sophisticated (see Theorem 4.)
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If p2 < 1, then condition (8) with p1 = 1 is also sufficient for the boundedness of
M from L1(Rn) to LMp2θ ,w(Rn) . This follows since by the boundedness of M from
L1(Rn) to WL1(Rn)

‖M f‖Lp2 (Br) = ‖(M f )χBr
‖Lp2 (Br) � ‖((M f )χBr

)∗‖Lp2(0,|Br|)

�
(

sup
0<t�|Br|

t((M f )χBr
)∗(t)

)
‖t−1‖Lp2 (0,|Br|)

= (1− p2)
1
p2 (vnr

n)
1
p2

−1‖M f‖WL1(Br) � r
n( 1

p2
−1)‖ f‖L1(Rn)

uniformly in r > 0.

REMARK 5. Equivalence (6) and the way how it is obtained mean that the us-
age of the spaces LMp1θ ,w(Rn) does not contribute much to the study of the prop-
erties of M f for f ∈ Lp1(R

n) because (6) follows directly by the classical estimate
for ‖M f‖Lp1 (Rn) . The same refers to the case in which the space LMp1θ ,w(Rn) is re-
placed by the space LMp2θ ,w(Rn) with p2 < p1 and θ = ∞ . The situation is different
if p2 < p1 and θ < ∞ as Theorem 4 and Remark 8 below show.

3. Main results

Let f∗(x) = f ∗(vn|x|n) , x ∈ R
n , be the radially symmetric non-increasing rear-

rangement of f . Recall that for all 0 < p � ∞ and 0 < r � ∞

‖ f‖Lp(Br) � ‖ f ∗‖Lp(0, |Br|) = ‖ f∗‖Lp(Br) (9)

and
‖ f‖Lp(Rn) = ‖ f ∗‖Lp(0,∞) = ‖ f∗‖Lp(Rn) . (10)

Also, for all 0 < p � ∞ and 0 < r � ∞ ,

‖ f‖WLp(Br) � ‖ f ∗‖WLp(0,|Br|) = ‖ f∗‖WLp(Br) (11)

and
‖ f‖WLp(Rn) = ‖ f ∗‖WLp(0,∞) = ‖ f∗‖WLp(Rn) . (12)

Denote by M(Rn) the space of all functions measurable on R
n and by K↓(Rn)

the cone of all functions f of the form f (x) = g(|x|) , x ∈ R
n, where g is non-negative

and non-increasing on [0,∞) .
Note that for all 0 < p � ∞ and for all 0 < r � ∞

‖ f‖WLp(Br) = sup
0<t�|Br|

t
1
p ( f∗χBr

)∗(t) = sup
t>0

t
1
p ( f ∗χ(0,|Br |) )

∗(t)

= sup
t>0

t
1
p f ∗(t)χ(0,|Br |)(t) = sup

0<t� |Br|
t

1
p f ∗(t) , f ∈ K↓(Rn) . (13)

In particular

‖ f∗‖WLp(Br) = sup
0<t� |Br|

t
1
p f ∗(t) , f ∈ M(Rn) .
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LEMMA 2. Let n ∈ N and 1 � p � ∞ .
If p > 1 , then

‖M f‖Lp(Br) � ‖ f∗‖Lp(Br) (14)

uniformly in f ∈ Lloc
p (Rn) and in r ∈ (0,∞] , and if p = 1 , then

‖M f‖WL1(Br) � ‖ f∗‖L1(Br) (15)

uniformly in f ∈ Lloc
1 (Rn) and in r ∈ (0,∞] .

Proof. The proofs of this and the next lemma are based on the following inequal-
ity: there exist a1 , a2 > 0 such that for all f ∈ M(Rn)

a1

t

t∫
0

f ∗(τ)dτ � (M f )∗(t) � a2

t

t∫
0

f ∗(τ)dτ (16)

for all t > 0. (See, for example, [1].)
Let p > 1. By (9), (16) and the Hardy inequality

‖M f‖Lp(Br) � ‖(M f )∗‖Lp(0, |Br|) � a2

∥∥∥1
t

t∫
0

f ∗(τ)dτ
∥∥∥

Lp(0, |Br|)

� p′a2 ‖ f ∗‖Lp(0, |Br|) = p′a2‖ f∗‖Lp(Br) .

If p = 1, then by (11), (13) and (16)

‖M f‖WL1(Br) � ‖(M f )∗‖WL1(0,|Br|) = sup
0<t� |Br|

t(M f )∗(t)

� a2 sup
0<t� |Br|

t∫
0

f ∗(τ)dτ = a2 ‖ f ∗‖L1(0, |Br|) = a2‖ f∗‖L1(Br) . �

LEMMA 3. Let n ∈ N and 1 � p � ∞ . Then

‖ f‖Lp(Br) ≈

{‖M f‖Lp(Br) if 1 < p � ∞ ,

‖M f‖WL1(Br) if p = 1
(17)

uniformly in f ∈ K↓(Rn)∩Lloc
p (Rn) and in r ∈ (0,∞] .

Proof. Since | f | � M f almost everywhere on R
n , for p > 1 by (14)

‖ f‖Lp(Br) � ‖M f‖Lp(Br) � ‖ f∗‖Lp(Br) = ‖ f‖Lp(Br)

uniformly in f ∈ K↓(Rn)∩Lloc
p (Rn) and in r ∈ (0,∞) .
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If p = 1 then, taking into account that for f ∈ K↓(Rn)∩Lloc
1 (Rn) one has M f ∈

K↓(Rn) , hence by (13) and (16) it follows that

‖M f‖WL1(Br) = sup
0<t� |Br|

t(M f )∗(t)

� a1 sup
0<t� |Br|

t∫
0

f ∗(τ)dτ = a1 ‖ f ∗‖L1(0, |Br|) = a1 ‖ f∗‖L1(Br) = a1‖ f‖L1(Br)

for all f ∈ K↓(Rn)∩ Lloc
1 (Rn) and for all r ∈ (0,∞) . This inequality together with

inequality (15) imply equivalence (17) for p = 1. �

Denote L↓
p(Rn) = Lp(Rn)∩K↓(Rn) .

THEOREM 2. Let n ∈ N , 0 < p2 � p1 � ∞ , 0 < θ � ∞, and w ∈ Ωθ .
1. If p1 > 1 , then M is bounded from Lp1(R

n) to LMp2θ ,w(Rn) if and only if

L↓
p1

(Rn) ⊂ LMp2θ ,w(Rn),

and
‖M‖Lp1 (Rn)→LMp2θ ,w(Rn) ≈ ‖M‖

L↓p1(Rn)→LMp2θ ,w(Rn) (18)

≈ ‖I‖
L↓p1(Rn)→LMp2θ ,w(Rn) = ‖I‖Lp1(Rn)→LMp2θ ,w(Rn) (19)

uniformly in w ∈ Ωθ , where I is the corresponding embedding operator.
2. If p1 = p2 = 1 , then M is bounded from L1(Rn) to WLM1θ ,w(Rn) if and only

if

L↓
1(R

n) ⊂ LM1θ ,w(Rn),

and
‖M‖L1(Rn)→WLM1θ ,w(Rn) ≈ ‖M‖

L↓1(Rn)→WLM1θ ,w(Rn) (20)

≈ ‖I‖
L↓1(Rn)→LM1θ ,w(Rn) = ‖I‖L1(Rn)→LM1θ ,w(Rn) (21)

uniformly in w ∈ Ωθ .

Proof.
1. Proof of equivalence (18) for all 0 < p2 � p1 � ∞ . Note that by taking the

spherical coordinates inequality (16) takes the form

a1

|B|x||
∫

B|x|

f∗(y)dy � (M f )∗(x) � a2

|B|x||
∫

B|x|

f∗(y)dy .

Therefore

(M f )∗(x) � a2

|B|x||
∫

B|x|

( f∗)∗(y)dy � a2

a1
(M f∗)∗(x) .
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Since (M f∗)∗ = M f∗ we have

(M f )∗(x) � a2

a1
(M f∗)(x) , x ∈ R

n . (22)

Hence, taking into account inequality (9) and equality (10), we get that

‖M‖
L↓p1 (Rn)→LMp2θ ,w(Rn) � ‖M‖Lp1 (Rn)→LMp2θ ,w(Rn)

= sup
f ∈ Lp1 (R

n)
f �∼ 0

‖w(r)‖M f‖Lp2 (Br)‖Lθ (0,∞)

‖ f‖Lp1 (Rn)
� sup

f ∈ Lp1(R
n)

f �∼ 0

‖w(r)‖(M f )∗‖Lp2(Br)‖Lθ (0,∞)

‖ f‖Lp1(Rn)

� a2

a1
sup

f ∈ Lp1(R
n)

f �∼ 0

‖w(r)‖M f∗‖Lp2(Br)‖Lθ (0,∞)

‖ f∗‖Lp1(Rn)
� a2

a1
‖M‖

L↓p1(Rn)→LMp2θ ,w(Rn) ,

which proves equivalence (18).
2. Proof of the equality in (19) for all 0 < p2 � p1 � ∞ . By (9) and (10)

‖I‖
L↓p1(Rn)→LMp2θ ,w(Rn) � ‖I‖Lp1(Rn)→LMp2θ ,w(Rn)

= sup
f ∈ Lp1(R

n)
f �∼ 0

‖w(r)‖ f‖Lp2 (Br)‖Lθ (0,∞)

‖ f‖Lp1 (Rn)
� sup

f ∈ Lp1(R
n)

f �∼ 0

‖w(r)‖ f∗‖Lp2(Br)‖Lθ (0,∞)

‖ f∗‖Lp1(Rn)

� sup
g ∈ L↓

p1(R
n)

g �∼ 0

‖w(r)‖g‖Lp2(Br)‖Lθ (0,∞)

‖g‖Lp1(Rn)
= ‖I‖

L↓p1(Rn)→LMp2θ ,w(Rn) .

3. Proof of the equivalence in (19) for 0 < p2 � p1 � ∞ and p1 > 1 . Since
| f | � M f almost everywhere on R

n

‖I‖Lp1(Rn)→LMp2θ ,w(Rn) = sup
f ∈ Lp1 (R

n)
f �∼ 0

‖w(r)‖ f‖Lp2 (Br)‖Lθ (0,∞)

‖ f‖Lp1 (Rn)

� sup
f ∈ Lp1 (R

n)
f �∼ 0

‖w(r)‖M f‖Lp2 (Br)‖Lθ (0,∞)

‖ f‖Lp1 (Rn)
= ‖M‖Lp1 (Rn)→LMp2θ ,w(Rn) .

Since 1 < p1 � ∞ , by the boundedness of M from Lp1(R
n) to Lp1(R

n)

‖M‖Lp1 (Rn)→LMp2θ ,w(Rn) = sup
f ∈ Lp1(R

n)
f �∼ 0

‖w(r)‖M f‖Lp2 (Br)‖Lθ (0,∞)

‖ f‖Lp1 (Rn)

� sup
f ∈ Lp1(R

n)
f �∼ 0

‖w(r)‖M f‖Lp2 (Br)‖Lθ (0,∞)

‖M f‖Lp1 (Rn)
� ‖I‖Lp1(Rn)→LMp2θ ,w(Rn)
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uniformly in w ∈ Ωθ , which proves, by taking into account Steps 1 and 2, the equiva-
lence in (19).

4. Proof of equivalence (20) . Follows similarly to Step 1 since by inequalities
(11) and (22)

‖M f‖WL1(Br) � ‖(M f )∗‖WL1(Br) � a2

a1
‖M f∗‖WL1(Br) .

5. Proof of the equality and the equivalence in (21) . The equality in (21) is proved
in Step 2. As for the equivalence in (21) we note that, since for p = 1 equivalence (17)
holds uniformly in f ∈ L↓

1(R
n) and in r ∈ (0,∞] , we have

‖I‖
L↓1(Rn)→LM1θ ,w(Rn) = sup

f ∈ L↓
1(R

n)
f �∼ 0

‖w(r)‖ f‖L1(Br)‖Lθ (0,∞)

‖ f‖L1(Rn)

≈ sup
f ∈ L↓

1(R
n)

f �∼ 0

‖w(r)‖M f‖WL1(Br)‖Lθ (0,∞)

‖ f‖L1(Rn)
= ‖M‖

L↓1(Rn)→WLM1θ ,w(Rn) . �

LEMMA 4. Let n∈N , 0 < p2 � p1 � ∞ , 0 < θ � ∞ , and w ∈ Ωθ . Then for each
0 < ε < ∞

‖I‖Lp1(Rn)→LMp2θ ,w(Rn) � t−ε∥∥rn( 1
p2

− 1
p1

)+ε
w(r)

∥∥
Lθ (0,t) (23)

and

‖I‖Lp1(Rn)→LMp2θ ,w(Rn) � tε∥∥rn( 1
p2

− 1
p1

)−ε
w(r)

∥∥
Lθ (t,∞) (24)

uniformly in 0 < t < ∞ and w ∈ Ωθ .

Proof. First

‖I‖Lp1(Rn)→LMp2θ ,w(Rn) �
‖w(r)‖|x|− n

p1
+ε χBt

(x)‖Lp2 (Br)‖Lθ (0,t)

‖|x|− n
p1

+ε χBt
(x)‖Lp1 (Rn)

= (nvn)
1
p2

− 1
p1 p

1
p1
1 p

− 1
p2

2 ε
1
p1

(
n
( 1

p2
− 1

p1

)
+ ε
)− 1

p2 t−ε∥∥rn( 1
p2

− 1
p1

)+ε
w(r)

∥∥
Lθ (0,t)

which implies inequality in (23).

Next, let gε(x) = t
− n

p1
−ε if |x| � t and gε(x) = |x|− n

p1
−ε if |x| > t . If r � t , then

gε(x) � r
− n

p1
−ε

for all x ∈ Br , hence

‖gε‖Lp2(Br) � v
1
p2
n r

n( 1
p2

− 1
p1

)−ε
.

Since also

‖gε‖Lp1(Rn) = v
1
p1
n

(
1+

n
ε p1

) 1
p1 t−ε ,
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it follows that

‖I‖Lp1(Rn)→LMp2θ ,w(Rn) �
‖w(r)‖gε‖Lp2(Br)‖Lθ (t,∞)

‖gε‖Lp1 (Rn)

� v
1
p2

− 1
p1

n

(
1+

n
ε p1

)− 1
p1 tε ∥∥rn( 1

p2
− 1

p1
)−ε

w(r)
∥∥

Lθ (t,∞)

which implies inequality (24). �

COROLLARY 1. Let n ∈ N , 0 < p2 < p1 � ∞ , p1 > 1 , 0 < θ � ∞ , and w ∈ Ωθ .
Then

‖M‖Lp1 (Rn)→LMp2θ ,w(Rn) �
∥∥∥tn( 1

p2
− 1

p1
)
∥∥∥( r

r+ t

) n
p2 w(r)

∥∥∥
Lθ (0,∞)

∥∥∥
L∞(0,∞)

(25)

uniformly in w ∈ Ωθ , where the semi-norm ‖ · ‖Lθ (0,∞) is taken in the variable r and
the semi-norm ‖ · ‖L∞(0,∞) in the variable t .

Proof. By Theorem 2, inequality (23) with ε = n
p1

and inequality (24) with ε =
n( 1

p2
− 1

p1
)

‖M‖Lp1 (Rn)→LMp2θ ,w(Rn) � t
− n

p1
∥∥r n

p2 w(r)
∥∥

Lθ (0,t) + t
n( 1

p2
− 1

p1
)∥∥w(r)

∥∥
Lθ (t,∞)

uniformly in w ∈ Ωθ and 0 < t < ∞ . Hence

‖M‖Lp1(Rn)→LMp2θ ,w(Rn)

� sup
0<t<∞

(
t
− n

p1
∥∥r n

p2 w(r)
∥∥

Lθ (0,t) + t
n( 1

p2
− 1

p1
)∥∥w(r)

∥∥
Lθ (t,∞)

)
uniformly in w ∈ Ωθ .

This inequality implies inequality (25), because its right-hand side is equivalent to
the right-hand side of inequality (25) uniformly in w ∈ Ωθ . �

COROLLARY 2. Let n ∈ N , 0 < p2 < p1 � ∞ , p1 > 1 , and w ∈ Ω∞ . Then

‖M‖Lp1 (Rn)→LMp2∞,w(Rn) ≈ ‖rn( 1
p2

− 1
p1

)
w(r)‖L∞(0,∞) (26)

uniformly in w ∈ Ω∞ .

Proof. It suffices to notice that∥∥∥tn( 1
p2

− 1
p1

)
∥∥∥( r

r+ t

) n
p2 w(r)

∥∥∥
L∞(0,∞)

∥∥∥
L∞(0,∞)

=
∥∥∥∥∥∥tn( 1

p2
− 1

p1
)
( r

r+ t

) n
p2
∥∥∥

L∞(0,∞)
w(r)

∥∥∥
L∞(0,∞)

=
∥∥ξ n( 1

p2
− 1

p1
)(1+ ξ )−

n
p2
∥∥

L∞(0,∞) ·
∥∥rn( 1

p2
− 1

p1
)
w(r)

∥∥
L∞(0,∞) .
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(In the first line the first L∞(0,∞)-norm is taken in r and the second one in t . In the
second line the order of these norms is changed.) �

Let H be the Hardy operator

(Hg)(r) =
∫ r

0
g(t)dt, 0 < r < ∞ .

THEOREM 3. Let n ∈ N , 0 < p2 � p1 � ∞ , p2 < ∞ , 0 < θ � ∞ , and w ∈ Ωθ .
1 . If p1 > 1 , then

‖M‖Lp1(Rn)→LMp2θ ,w(Rn) ≈ ‖H‖
1
p2

L↓p1
p2

(0,∞)→L θ
p2

,v
(0,∞)

= ‖H‖
1
p2
L p1

p2
(0,∞)→L θ

p2
,v
(0,∞) (27)

uniformly in w ∈ Ωθ , where

v(r) =
(
w(r

1
n )r

1
θ ( 1

n−1)
)p2

, 0 < r < ∞ . (28)

2 . If p1 = p2 = 1 , then

‖M‖L1(Rn)→WLM1θ ,w(Rn) ≈ ‖H‖
L↓1(0,∞)→Lθ ,v(0,∞) = ‖H‖L1(0,∞)→Lθ ,v(0,∞) (29)

uniformly in w ∈ Ωθ .

Proof. 1. We apply Theorem 2. First we prove that for all the parameters under
consideration

‖I‖
L↓p1(Rn)→LMp2θ ,w(Rn) = c‖H‖

1
p2

L↓p1
p2

(0,∞)→L θ
p2

,v
(0,∞)

,

where c > 0 depends only on n, p1, p2 , and θ .
Let f ∈ L↓

p1(R
n) , hence f (x) = g(|x|) where g is a non-negative non-increasing

function on (0,∞) . By taking the spherical coordinates it follows that

‖ f‖Lp2(Br) =
(∫

Br

g(|x|)p2 dx

) 1
p2

= (nvn)
1
p2

( r∫
0

g(ρ)p2ρn−1 dρ
) 1

p2

= v
1
p2
n

( rn∫
0

g(τ
1
n )p2 dτ

) 1
p2

= v
1
p2
n
(
(Hϕ)(rn)

) 1
p2 ,

where
ϕ(τ) = g

(
τ

1
n
)p2 , τ ∈ (0,∞),

is a non-negative non-increasing function on (0,∞) .
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Hence

‖ f‖LMp2θ ,w(Rn) = v
1
p2
n ‖w(r)

(
(Hϕ)(rn)

) 1
p2 ‖Lθ (0,∞)

= v
1
p2
n ‖w(r)p2(Hϕ)(rn)‖

1
p2
L θ

p2
(0,∞)

= v
1
p2
n n−

1
θ ‖vHϕ‖

1
p2
L θ

p2
(0,∞) = v

1
p2
n n−

1
θ ‖Hϕ‖

1
p2
L θ

p2
,v
(0,∞) .

Also

‖ f‖Lp1 (Rn) = v
1
p1
n

( ∞∫
0

g(τ
1
n )p1 dτ

) 1
p1

= v
1
p1
n ‖ϕ‖

1
p2
L p1

p2
(0,∞) .

Therefore, since f ∈ L↓
p1(R

n) ⇐⇒ ϕ ∈ L↓
p1
p2

(0,∞) ,

‖I‖
L↓p1(Rn)→LMp2θ ,w(Rn) = sup

f ∈ L↓
p1 (R

n)
f �∼ 0

‖ f‖LMp2θ ,w(Rn)

‖ f‖Lp1(Rn)

= n−
1
θ v

1
p2

− 1
p1

n

(
sup

ϕ ∈ L↓
p1
p2

(0,∞)

ϕ �∼ 0

‖Hϕ‖L θ
p2

,v
(0,∞)

‖ϕ‖L p1
p2

(0,∞)

) 1
p2

= n−
1
θ v

1
p2

− 1
p1

n ‖H‖
1
p2

L↓p1
p2

(0,∞)→L θ
p2

,v
(0,∞)

.

The equivalences in (27) and (29) follow by Theorem 2.
2. The equalities in (27) and (29) easily follow, similarly to Step 2 of the proof of

Theorem 2, since for all r > 0

|(H f )(r)| �
r∫

0

| f (t)|dt �
r∫

0

f ∗(t)dt = (H f ∗)(r) , r ∈ (0,∞).

Indeed, for all the parameters under consideration,

‖H‖
L↓p1

p2

(0,∞)→L θ
p2

,v
(0,∞) � ‖H‖L p1

p2
(0,∞) → L θ

p2
,v(0,∞)

= sup
f ∈ L p1

p2
(0,∞)

f �∼ 0

‖H f‖L θ
p2

,v
(0,∞)

‖ f‖L p1
p2

(0,∞)
� sup

f ∈ L p1
p2

(0,∞)

f �∼ 0

‖H f ∗‖L θ
p2

,v
(0,∞)

‖ f ∗‖L p1
p2

(0,∞)

� sup
g ∈ L↓

p1
p2

(0,∞)

g �∼ 0

‖Hg‖L θ
p2

,v
(0,∞)

‖g‖L p1
p2

(0,∞)
= ‖H‖

L↓p1
p2

(0,∞)→L θ
p2

,v
(0,∞) . �
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In the proof of the next theorem we shall use the following corollary of the Hardy
inequality.

LEMMA 5. Let α > β > 0 if 1 � s < ∞ and α � β > 0 if s = ∞ . Then for each
function ψ non-negative and measurable on (0,∞)

∥∥∥∥t−β− 1
s

t∫
0

τα ψ(τ)dτ
∥∥∥∥

Ls(0,∞)
� α

β

∥∥∥∥tα−β− 1
s

∞∫
t

ψ(τ)dτ
∥∥∥∥

Ls(0,∞)
. (30)

Proof. Note that for all t > 0

t∫
0

( ∞∫
τ

ψ(ξ )dξ
)

τα−1 dτ �
t∫

0

( ξ∫
0

τα−1 dτ
)

ψ(ξ )dξ =
1
α

t∫
0

ξ α ψ(ξ )dξ .

Hence, by applying the Hardy inequality, we get

∥∥∥∥t−β− 1
s

t∫
0

τα ψ(τ)dτ
∥∥∥∥

Ls(0,∞)

� α
∥∥∥∥t−β− 1

s

t∫
0

( ∞∫
τ

ψ(ξ )dξ
)

τα−1 dτ
∥∥∥∥

Ls(0,∞)
� α

β

∥∥∥∥tα−β− 1
s

∞∫
t

ψ(τ)dτ
∥∥∥∥

Ls(0,∞)
. �

THEOREM 4. Let n ∈ N , 0 < p2 � p1 � ∞ , 0 < θ � ∞ , and w ∈ Ωθ .
1 . If 1 < p2 = p1 , 0 < θ � ∞ or 0 < p2 < p1 , p1 > 1 , θ = ∞ , then

‖M‖Lp1(Rn)→LMp2θ ,w(Rn) ≈
∥∥rn( 1

p2
− 1

p1
)
w(r)

∥∥
Lθ (0,∞) (31)

uniformly in w ∈ Ωθ .
In particular, if 1 < p � ∞ , 0 < θ � ∞ , then

‖M‖Lp(Rn)→LMpθ ,w(Rn) ≈
∥∥w(r)

∥∥
Lθ (0,∞) (32)

uniformly in w ∈ Ωθ . Also for all 0 < θ � ∞

‖M‖L1(Rn)→WLM1θ ,w(Rn) ≈
∥∥w(r)

∥∥
Lθ (0,∞) (33)

uniformly in w ∈ Ω∞ .
2. If 0 < p2 < p1 , p1 > 1 , and θ < ∞ , then

‖M‖Lp1 (Rn)→LMp2θ ,w(Rn) ≈ ‖tn( 1
p2

− 1
p1

)− 1
s ‖w(r)‖Lθ (t,∞)‖Ls(0,∞) (34)

≈

∥∥∥tn( 1
p2

− 1
p1

)− 1
s

∥∥∥( r
r+ t

) n
p2 w(r)

∥∥∥
Lθ (0,∞)

∥∥∥
Ls(0,∞)

(35)
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uniformly in w ∈ Ωθ , where

s =

{
p1θ

p1−θ if θ < p1 ,

∞ if θ � p1 .
(36)

(Here the semi-norm ‖·‖Lθ (0,∞) is taken in the variable r and the semi-norm ‖·‖Ls(0,∞)
in the variable t .)

Proof. 1. If p1 = p2 � 1, equivalences (32) and (33) are proved in Remark 3. If
0 < p2 < p1 and θ = ∞ , then equivalence (31) is proved in Corollary 2.

2. In the rest of the proof v is the function defined by formula (28). If θ � p1

(hence p1
p2

� θ
p2

), by Theorem 2 on page 42 of [8] it follows that uniformly in w ∈ Ωθ

‖H‖
1
p2
L p1

p2
(0,∞)→L θ

p2
,v

(0,∞) ≈ sup
t>0

t
1
p2

− 1
p1

( ∞∫
t

v(ρ)
θ
p2 dρ

) 1
θ

= sup
t>0

t
1
p2

− 1
p1

( ∞∫
t

w(ρ
1
n )θ ρ

1
n−1 dρ

) 1
θ

= n−
1
θ sup

t>0
t

1
p2

− 1
p1

( ∞∫
t
1
n

w(r)θ dr

) 1
θ

= n−
1
θ ‖tn( 1

p2
− 1

p1
)‖w(r)‖Lθ (t,∞)‖L∞(0,∞) . (37)

3. Let θ < p1 (hence p1
p2

> θ
p2

). Since p1
p2

> 1 by Theorem 1 on page 47 of [8] if
θ
p2

� 1 and by Theorem 2.4 of [11] if θ
p2

< 1 it follows that uniformly in w ∈ Ωθ

‖H‖
1
p2
L p1

p2
(0,∞)→L θ

p2
,v
(0,∞) ≈ ‖tn( 1

p2
− 1

p1
)− 1

s ‖w(r)‖Lθ (t,∞)‖Ls(0,∞) . (38)

By Theorem 3 equivalences (37) and (38) imply equivalence (34).
4. Equivalence (35) follows by Lemma 5 since∥∥∥tn( 1

p2
− 1

p1
)− 1

s

∥∥∥( r
r+ t

) n
p2 w(r)

∥∥∥
Lθ (0,∞)

∥∥∥
Ls(0,∞)

≈
∥∥t− n

p1
− 1

s
∥∥r n

p2 w(r)
∥∥

Lθ (0,t)

∥∥
Ls(0,∞) +‖tn( 1

p2
− 1

p1
)− 1

s ‖w(r)‖Lθ (t,∞)‖Ls(0,∞)

uniformly in w ∈ Ωθ and by inequality (30)

∥∥t− n
p1

− 1
s
∥∥r n

p2 w(r)
∥∥

Lθ (0,t)

∥∥
Ls(0,∞) =

∥∥∥∥t− nθ
p1

− θ
s

t∫
0

r
nθ
p2 w(r)θ dr

∥∥∥∥
1
θ

L s
θ

(0,∞)

�
( p1

p2

) 1
θ
∥∥∥∥tnθ( 1

p2
− 1

p1
)− θ

s

∞∫
t

w(r)θ dr

∥∥∥∥
1
θ

L s
θ

(0,∞)

=
( p1

p2

) 1
θ ‖tn( 1

p2
− 1

p1
)− 1

s ‖w(r)‖Lθ (t,∞)‖Ls(0,∞) .

(Note that s
θ = p1

p1−θ > 1.) �
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REMARK 6. Since θ � s , the right-hand side of equivalence (35) does not exceed
the right-hand side of equivalence (31) which conforms with Remark 4. Indeed by the
appropriate inequality for the mixed semi-norms∥∥∥tn( 1

p2
− 1

p1
)− 1

s

∥∥∥( r
r+ t

) n
p2 w(r)

∥∥∥
Lθ ,r(0,∞)

∥∥∥
Ls,t(0,∞)

�
∥∥∥ ∥∥∥tn( 1

p2
− 1

p1
)− 1

s
( r

r+ t

) n
p2 w(r)

∥∥∥
Ls,t (0,∞)

∥∥∥
Lθ ,r(0,∞)

=
∥∥ξ n( 1

p2
− 1

p1
)− 1

s (1+ ξ )−
n
p2
∥∥

Ls(0,∞) ·
∥∥rn( 1

p2
− 1

p1
)
w(r)

∥∥
Lθ (0,∞) . (39)

EXAMPLE 1. Let n ∈ N , 0 < p2 � p1 � ∞ , p1 > 1, 0 < θ � ∞ , λ1,λ2 ∈ R , and

w(r) =
{

r−λ1 if 0 < r � 1 ,

r−λ2 if 1 � r < ∞ .
(40)

Then w ∈ Ωθ if and only if λ2 > 1
θ for θ < ∞ and λ2 � 0 for θ = ∞ .

Under this assumption M is bounded from Lp1(R
n) to LMp2θ ,w(Rn) if and only

if
1) for p2 < p1 � θ � ∞

λ1 � n
( 1

p2
− 1

p1

)
+

1
θ

, λ2 � n
( 1

p2
− 1

p1

)
+

1
θ

, (41)

2) for p2 < p1 , θ < p1

λ1 < n
( 1

p2
− 1

p1

)
+

1
θ

, λ2 > n
( 1

p2
− 1

p1

)
+

1
θ

, (42)

3) for p2 = p1

λ1 � 0 if θ = ∞ , λ1 <
1
θ

if θ < ∞ (43)

( if p2 = p1 = 1, this condition is necessary and sufficient for the boundedness of M
from L1(Rn) to WLM1θ ,w(Rn) ) .

EXAMPLE 2. (Particular case of Example 1.) Let n ∈ N , 0 < p2 � p1 � ∞ ,
p1 > 1, 0 < θ � ∞ , λ > 0 for θ < ∞ and λ � 0 for θ = ∞ .

Then M is bounded from Lp1(R
n) to LMλ

p2θ (Rn)≡ LM
p2θ ,r−λ− 1

θ
(Rn) if and only

if

p1 � θ and λ = n
( 1

p2
− 1

p1

)
.

(The necessity of the above equality also easily follows by the dilation argument.)
If p1 = p2 = p > 1, then M is bounded from Lp(Rn) to LMλ

pθ (Rn) only in the
trivial case θ = ∞ and λ = 0. Similarly, if p1 = p2 = 1, then M is bounded from
L1(Rn) to WLMλ

1θ (Rn) only in this trivial case.
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EXAMPLE 3. Let n ∈ N , 0 < p2 < p1 , p1 > 1, 0 < θ < p1 , γ ∈ R , and

w(r) = r
−n( 1

p2
− 1

p1
)+ 1

θ (1+ | lnr|)−γ .

Then M is bounded from Lp1(R
n) to LMp2θ ,w(Rn) if and only if γ > 1

θ − 1
p1

.

REMARK 7. Examples 1 and 3 imply, in particular, that the right-hand side of
equivalence (34) is not equivalent to the right-hand side of equivalence (31) for all
0 < p2 < p1 � ∞ , p1 > 1, and 0 < θ < ∞ .

Open problem. Find necessary and sufficient conditions on a function w ∈ Ωθ
ensuring that the maximal operator M is bounded from L1(Rn) to LMp2θ ,w(Rn) where
0 < p2 < 1 and 0 < θ � ∞ .

Some comments. Condition (8) with p1 = 1 is still a sufficient condition for the
boundedness of M in this case. However, the technique used in this paper does not
allow obtaining necessary and sufficient conditions on w ensuring the boundedness.
The reason for that is that in this case

‖M‖L1(Rn)→LMp2θ ,w(Rn) ≈ ‖I‖
WL↓↓1 (Rn)→LMp2θ ,w(Rn)

uniformly in w ∈ Ωθ , where WL↓↓
1 (Rn) is the subspace of WL1(Rn) consisting of

all functions of the form M f with f ∈ L↓
1(R

n) . (This follows by Theorem 2 and by
an argument similar to the one of Step 3 of the proof of that theorem based on the
equivalence ‖ f‖L1(Rn) ≈ ‖M f‖WL1(Rn) .)
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