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Abstract. We formulate and solve some special cases of the following (in general NP-hard)
extremal problem: “Given a graph G (or a hypergraph H ), label its vertices with given different
n non-negative numbers a1 � a2 � . . . � an � 0 in such a way that the sum of the products of
labels in adjacent vertices f = ∑aia j will be maximal (or minimal)”. Solving this problem for
some special families of graphs (e.g. paths, trees and stars) we obtain examples of “permutation
inequalities” fmin � f � fmax .

1. Introduction: the problem and its context

CONTENT. We discuss the following very general extremal problem: “Given a
function F : R

n→ R and a point a = (a1,a2, . . . ,an) ∈ R
n , whose components form a

decreasing sequence of non-negative numbers a1 � . . . � an � 0 find a permutation π :
{1,2, . . . ,n}→ {1,2, . . . ,n} for which the value of the “permutation function” fF,A :=
F(aπ(1),aπ(2), . . . ,aπ(n)) is maximal (or minimal)”. We solve this general problem for
some functions F of the class L of bilinear (or multilinear) functions with all nonzero
coefficients equal to 1. For such functions our problem can be rephrased in terms of
“maximal (or minimal) labelings” of graphs G (and hypergraphs H ) with numbers
a1,a2, . . . ,an .

AIM. The aim of this paper is to present three interrelated ideas:
1. The problem of finding maxima and minima (Problem 2) of permutation func-

tions f (Definiton 1) leads to various permutation inequalities fmin � f � fmax (Defini-
ton 2).

2. Graphs G (and hypergraphs H ) can be represented by bilinear (and multilinear)
functions F : Rn→ R having all nonzero coefficients equal to 1 (and vice versa); this
builds on an old idea (1869) of Camille Jordan [7]. For a definition of a graph see Harts-
field, Ringel [6], for a definition of a hypergraph see BERGE [1]. In a hypergraph there
are hyperedges instead of edges. A hyperedge connects more than two vertices. Every
hypergraph can be interpreted as a bipartite graph with two sets of vertices, “black” and
“white”; the black ones correspond to hyperedges and the white ones to vertices.
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3. Various families of graphs and hypergraphs “produce” various permutation
inequalities, and these inequalities may be used in turn for the comparison of their
structure!

STRUCTURE. The structure of the paper follows the pattern for exploring, in-
vestigating and discovering in mathematics, proposed by Berinde [2]: Study a simple
“source problem”, formulate its solution in a form of an algorithm and then generalize
it.

PROBLEM BACKGROUND, BASIC NOTIONS. Hardy, Littlewood and Pólya [5]
solved some special cases of the following extremal problem:

PROBLEM 1. Let F : R
n → R be a real valued function and let a1 � a2, ...,�

an � 0 be a decreasing sequence of nonnegative numbers. Find a permutation π :
{1,2, . . . ,n} → {1,2, . . . ,n} for which the value of f = F(aπ(1),aπ(2), . . . ,aπ(n)) is
maximal (or minimal).

DEFINITION 1. Let F = F(x1,x2, . . . ,xn) : R
n→ R be a real-valued function, let

A = {a1,a2, . . . ,an} be a decreasing sequence of nonnegative numbers and let π : Nn→
Nn be any permutation of their indices. Let f = Fπ ,A be a function, whose domain
consists of all sequences (aπ(i)) , called rearrangements of A . Then f is called a per-
mutation function corresponding to F and A . Any permutation πmax or πmin for which
f attains its maximal or minimal value ( fmax , fmin ) is called a maximal or minimal
permutation, respectively.

Now we can reformulate Problem 1 as follows:

PROBLEM 2. For the given permutation function f = fF,A find its extreme values
fmax and fmin and at least one maximal and minimal permutation πmax and πmin .

DEFINITION 2. Inequalities fmax � f and fmin � f , obtained as solutions of
Problem 2 for various permutation functions f = fA , are called permutation inequali-
ties.

REARRANGEMENT INEQUALITY. An example of such inequality (called also “the
rearrangement inequality”) with many important consequences (e.g. the arithmetic
mean – geometric mean inequality, the Cauchy-Schwarz inequality, and Chebyshev’s
sum inequality [10]) is given in the following lemma (proved easily by an induction
argument – see Prešić [9], p. 230, or Bruin [3]):

LEMMA 1. Let 0 � a1 � a2 � . . . � an , 0 � b1 � b2 � . . . � bn . Then

a1b1 +a2b2 + . . .+anbn = max(a1bi1 +a2bi2 + . . .+anbin),

where Sn is the set of all permutations σ = (i1, i2, ..., in) of numbers (1,2, . . . ,n) .
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This result is intuitively clear: to get the maximum, large numbers must be mul-
tiplied with large numbers. Likewise, to get the minimum, large numbers ai must be
multiplied with small numbers b j . “Minimal” problems are in general harder than
“maximal”.

The above rearrangement inequality can be given the following real-life interpreta-
tion: If n workers with ratings a1 � . . . � an work in pairs with another n workers with
ratings b1 � . . . � bn , and if the contribution of each two co-workers to the common
project is proportional to the product of their ratings, then the sum of the contributions
of these 2n workers will be maximal if the pairs are: (a1,b1), . . . ,(an,bn) .

EXAMPLE 1. Let A = B = {1,2, . . . ,n} . Then for f = ∑aib j we get fmax =
12 +22 + . . .+n2 = n(n+1)(2n+1)/6, while fmin = 1×n+2× (n−1)+ . . .+n×1.

EXAMPLE 2. Let F : R
6→R be defined by the formula F(x1,x2,x3,x4,x5,x6) =

x1x2x3 + x4x5x6 . Let A be any increasing sequence of nonnegative numbers a1 � a2 �
a3 � a4 � a5 � a6 and let f = fF,A be the corresponding permutation function. It is
easy to see that fmax = a1a2a3 +a4a5a6 for any values ai (at least two of the numbers
a1,a2,a3 are factors of the same monomial; if the third number is in another monomial,
then a straightforward application of Lemma 1 for n = 2 shows that the value of f
may be increased), while the structure of the formula for fmin depends on the concrete
values ai .

2. Method

In this section we present a method for finding fmax (and fmin ) of permutation
functions f = fF,A (or at least good approximations to them).

PROPOSITION 1. Let f = fF,A and let τ = τi, j : Nn→Nn denote the transposition
interchanging indices i and j . Then f (aπmax) � f (aτπmax) and f (aπmin) � f (aτπmin) .

In the algorithm below let the notation x← y denote the replacement of x with y .

ALGORITHM 1. To find an increasing sequence of approximations to fmax do:
Step 1. Start with any permutation π : Nn→ Nn of indices of (ai) .
Step 2. If you can find a τ = τi, j such that f (aτπ(i)) � f (aτπ( j)) then let π← τπ .
Step 3. Repeat Step 2 as long as its condition is fulfilled.
To find a decreasing sequence of approximations to fmin replace Step 2 with:
Step 2’. If you can find a τ = τi, j such that f (aτπ(i)) � f (aτπ( j)) then let π← τπ .

From now on we focus on permutation functions fF,A , where F is bilinear or
multilinear.

DEFINITION 3. A function F : Rn→R of the form = F(x1,x2, . . .,xn)=
n
∑

i, j=1
ci jxix j

is called a bilinear function. Likewise, a multilinear function F : R
n→R is of the form

F(x1,x2, . . . ,xn) = ∑n
i, j,...,k=1 ci, j,...,kxix j . . .xk . The family of all bilinear and multilinear

functions whose nonzero coefficients ci j or ci, j,...,k are all equal to 1 we denote by L .
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THEOREM 1. Let F : R
n → R be a bilinear or multilinear function and let

Δi, jF := F(xτi, j(k))−F(xk) = F(x1, . . . ,x j, . . . ,xi, . . . ,xn)−F(x1, . . . ,xi, . . . ,x j, . . . ,xn) .
Then:

i) If the variables xi and x j are not adjacent (i.e. they do not correspond to
adjacent vertices) then Δi, jF = (x j− xi)(Fj−Fi);

ii) If the variables xi and x j are adjacent (xi ∼ x j ), then Δi, jF = (x j− xi)((Fj−
Fi, jxi)− (Fi−Fi, jx j)). If F ∈ L and F bilinear then Δi, jF = (x j−xi)((Fj−xi)− (Fi−
x j)).

Proof. i) Δi, jF depends only of those monomials Mk that contain exactly one of
the variables xi or x j as a factor, hence: Δi, jF = (x j(Fj−Fi, jxi)+ xi(Fi−Fi, jx j))−
(xi(Fj−Fi, jxi)+ x j(Fi−Fi, jx j)) = (x j− xi)((Fj−Fi, jxi)− (Fi−Fi, jx j)) . If xi and x j

are not adjacent, then Fi, j = 0 and we get i). If F ∈ L and F bilinear then all the
nonzero Fi, j are equal to 1. Note that this proof does not work for general polynomial
functions! �

COROLLARY 1. Let F : R
n→R be a bilinear or multilinear function. If π = πmax

is the maximal permutation, then aπ(i) � aπ( j) if and only if Fi−Fi, ja j � Fj−Fi, jai .
If π = πmin is the minimal permutation, then aπ(i) � aπ( j) if and only if Fi−Fi, ja j �
Fj−Fi, jai .

THEOREM 2. Functions F ∈ L are in 1-1 correspondence with bipartite graphs
(bilinear functions F = ∑xix j correspond to graphs, multilinear F = ∑xix j . . .xk to
hypergraphs).

Proof. For F ∈ L let G = GF be a bipartite graph, whose edges connect “white”
vertices corresponding to variables xi with “black” vertices corresponding to monomi-
als xix j . . .xk of F . This G can be interpreted also as a hypergraph – each of the black
vertices corresponds to a hyperedge.

Figure 1: A labeled bipartite graph (hypergraph) corresponding to Example 2 (left) and a la-
beled graph corresponding to Lemma 1 (right).

If F is bilinear then all the hyperedges of G are in fact edges, the black vertices
can be omitted (see Figure 1) and G can be interpreted as a graph. �

For the functions f = fF,A obtained from functions F ∈ L our problem (Prob-
lem 2) and our transposition method (Theorem 1, Corollary 1) can be reformulated
in terms of “energy” and “potential” of “labeled graphs and hypergraphs” (Defini-
tions 4, 5, 6):
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DEFINITION 4. Let G = GF be a graph (or a hypergraph) corresponding to a
bilinear (or multilinear) function F and let π : Nn→Nn be a permutation of the indices
i of the set A = (ai) of nonnegative numbers. A function π∗ : V (G)→ A , assigning to
each vertex vi of G a number π∗(vi) = aπ(i) is called a labeling of G with the labels
from the set A .

DEFINITION 5. The energy EA,π(G) of a graph GA,π , whose vertices are labeled
with numbers ai ∈ A , is the sum ∑vi∼v j

π∗(vi)π∗(v j) of products of labels in adja-
cent vertices of G . The maximal and minimal energy of G is denoted EA,max(G) and
EA,min(G) . Similarly, the energy EA,π(H) of a labeled hypergraph HA,π is the sum
∑vi∼v j

π∗(vi)π∗(v j) . . .π∗(vk) of products of labels in adjacent vertices of G .

DEFINITION 6. Let HA,π corresponds to a multilinear function F : R
n→ R

n .
The energy of each black vertex um corresponding to a monomial Mm = xix j . . .xk

of F is the product Em = Em,A,π := π∗(vi)π∗(v j) . . .π∗(vk) of labels in vertices vi,v j,
. . . ,vk .

The potential Pi := ∑vi∼Mm
Em

π∗(vi)
of the vertex vi is the sum of all the energies of

monomials in which xi is a factor, divided by the label of vi .
The relative potential Pi, j = ∑vi∼Mm,v j∼Mm Em/π∗(vi) is the sum of the energies of

all the monomials containing both xi and x j , divided by the label of vi .

Note that in general Pi, j �= Pj,i . Now we can reformulate Problem 2 for f ∈ L :

PROBLEM 3. For a given graph G (or hypergraph H ) and a given set of labels
A find EA,max and EA,min and the corresponding maximal and minimal labelings π∗max
and π∗min .

Now we can give a necessary condition for maximal and minimal labelings.

PROPOSITION 2. Let τi, j : Nn→ Nn denote the permutation of indices of the set
of labels A interchanging only the indices i and j of vertices vi and v j . For every such
τi, j we have E(aπmax) � E(aτπmax) and E(aπmin) � E(aτπmin) .

Proof. This follows from Proposition 1 for the special case of functions F ∈
L . �

THEOREM 3. Let vi and v j be any two vertices of a labeled hypergraph HA,π .
Then:

i) Δi, jE = (π∗(v j)−π∗(vi)((Pj−Pi, jπ∗(vi))− ((Pi−Pj,iπ∗(v j)).
ii) if π∗= πmax then π∗(vi)� π∗(v j) if and only if Pj−Pi, jπ∗(vi)� Pi−Pj,iπ∗(v j).
iii) if π∗= πmin then π∗(vi)� π∗(v j) if and only if Pj−Pi, jπ∗(vi)� Pi−Pj,iπ∗(v j).
If vi and v j are not adjacent, then Pi, j = Pj,i = 0 and we get simpler conditions
i’) Δi, jE = (π∗(v j)−π∗(vi)(Pj−Pi).
ii’) if π∗ is a maximal labeling then π∗(vi) � π∗(v j) if and only if Pj � Pi.
iii’) if π∗ is a minimal labeling then π∗(vi) � π∗(v j) if and only if Pj � Pi.
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Proof. This is just a reformulation of Theorem 1 in terms of energy of hyper-
graphs. �

THEOREM 4. Let GA,π be a labeled graph corresponding to F = ∑vi∼v j
xix j .

Then:
i) The potential of a vertex vi can be expressed as: Pi,A,π = ∂F

∂xi
(aπ(1), . . . ,aπ(n)),

ii) EA,π(G) = (1/2)∑n
i=1 aπ(i)Pi,A,π = (1/2)∑n

i=1 aπ(i)Fi(aπ(1), . . . ,aπ(n)).

Proof. i) The partial derivative ∂F
∂xi

of the bilinear F = ∑vi∼v j
xix j is ∂F

∂xi
= ∑vi∼v j

x j .
ii) In the sum ∑n

i=1 aπ(i)Pi,A,π the energy xix j of each edge is counted twice. �
The next theorem (Theorem 5) expresses the difference of energies �i, jE in a

labeled graph after and before any transposition τi, j in terms of potentials of vertices vi

and v j .

THEOREM 5. For any labeled graph GA,π we have:
i.a) �i, jE = (π∗(vi)−π∗(v j)(Pi,A,π−Pj,A,π) if vi and v j are not adjacent.
i.b) �i, jE = (π∗(vi)−π∗(v j)((Pi,A,π −π∗(v j))− (Pj,A,π− (π∗(vi)) , if vi ∼ v j .
Let π∗(vi) � π∗(v j) . If the vertices vi and v j are not adjacent, then:
ii.a) if Pi,A,π � Pj,A,π then EA,πτi, j(G) � EA,πτi, j(G) ,
ii.b) if Pi,A,π � Pj,A,π then EA,πτi, j(G) � EA,πτi, j)(G) .
If the vertices vi and v j are adjacent, then:
iii.a) if Pi,A,π−π( j) � Pj,A,π−π(v j) then EA,π(τi, j(G) � EA,πτi, j)(G) ,
iii.b) if Pi,A,π−π( j) � Pj,A,π−π(vi) then EA,π(τi, j(G) � EA,πτi, j(G) .

Proof. The formulas i.a) and i.b) follow from Theorem 1, since we know (from
i) of Theorem 4 that Pi,A,π = ∂F

∂xi
(aπ(1), . . . ,aπ(n)) = ∑vi∼v j

v j . Hence ∂ 2F
∂xi∂x j

xi = 1 if

vi ∼ v j and ∂ 2F
∂xi∂x j

xi = 0 if vi is not adjacent to v j . Now we use π∗(vi) � π∗(v j) in i.a)

and i.b) and just check in each of the cases ii.a), ii.b), iii.a), iii.b) what is true: �E � 0
or �E � 0. �

ALGORITHM 2. To maximize the energy of the labeled graph G transpose the
labels in pairs of non-adjacent vertices vi and v j as long as there are such pairs that
π(∗vi) > π∗(v j) and Pi < Pj . Likewise, transpose the labels in pairs of adjacent vertices
vi and v j as long as there are such pairs that π∗(vi) > π∗(v j) and Pi−π∗(v j) < Pj−
π∗(vi) .

REMARK. Algorithm 2 is just a special case of Algorithm 1. The reader will
easily formulate the analogous version for the minimal rearrangement.

EXAMPLE 3. Using the described algorithm we can find the following labeling of
the cubic graph with 8 vertices (Figure 2). By Theorem 5 the energy of this labeling
cannot be increased by any transposition. Yet this does not prove that this is a maximal
labeling!
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Figure 2: Labeled graph (left) and potentials Pi of labels i .

Using Theorem 3 and an induction argument we can prove the following general-
ization of rearrangement inequality (Lemma 1):

LEMMA 2. Let A = ai, j be a matrix of labels such that 0 � a1,1 � a1,2 � . . . �
a1,n � 0 � a2,1 � a2,2 � . . . � a2,n . . . � 0 � am,1 � am,2 � . . .� am,n . Then a1,1a2,1 . . .am,1

+a1,2 +a2,2 . . .am,2 + . . .an,1an,2 . . .an,m = fmax is the maximal value of a permutation
function f = FA , where F = ∑m

i=1 ai,π(1) . . .ai,π(m) is the sum of n monomials with m
factors from different rows of a m×n matrix; different monomials have different factors
xi, j .

Proof. The hypergraph H corresponding to the function F is a disjoint union
of m complete graphs Kn (Figure 3 shows the maximal labeling of a hypergraph H
corresponding to a permutation function with m = 3 and n = 4 with labels taken from
sequences a1 = (1,5,9) , a2 = (1,5,9) , a3 = (3,7,11) , a4 = (4,8,12)). Now we use
the induction argument. For m = 1 there is nothing to prove. If the theorem holds for
some m = k , then it holds also for k + 1. For it is clear (apply Theorem 3) that the
largest m numbers must be the labels of the same copy of a hypergraph, corresponding
to a monomial with n factors. Then we just use the induction hypothesis. �

Figure 3: Maximal labeling of a hypergraph H .

3. Permutation inequalities f � fmax obtained from graphs

In this section we find and prove some permutation inequalities f � fmax (in-
equalities f � fmin are harder) obtained from computing energies of various families
of graphs.

PROPOSITION 3. The energy of a complete graph G = Kn on n vertices is for
every labeling π of its vertices with labels from a given set A the same: EA,π(Kn) =
(1/2)((∑ai)2−∑a2

i ).
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Proof. We compute EA,π(Kn) = ∑vi∼v j
π∗(vi)π∗(v j) = (1/2)∑π∗(vi)Pi =

(1/2)((∑ai)2 −∑a2
i ). In the special case A = {1,2, . . . ,n} we get by a straightfor-

ward calculation E(Kn) = (n(n + 1)/2)2− n(n + 1)(2n+ 1)/6 = n(n + 1)(3n2− n−
2)/24. �

EXAMPLE. For n ∈ {1,2,3,4,5} the values of E(Kn) are 0,2,11,35,85, and
these are exactly the values obtained by our formula; they can be calculated also by the
obvious recursive formula: E(Kn+1)−E(Kn) = (n+1)(1+2+ . . .+n) = n(n+1)2/2.

PROPOSITION 4. Let G = Km,n−m be a complete bipartite graph and let a =
∑π(vi) = a1 + a2 + . . . + an be the sum of all the labels ai ∈ A. If x = ∑m

i=1 π(vi)
is the sum of the labels in one part, then the upper bound for the maximal energy of
G is EA,π(Km,n−m) = ∑x(A− x) � a2/4 . This upper bound is attained if and only if
x = a− x = a/2 .

Proof. EA,π(Km,n−m) = (∑m
i=1 π(vi))(∑n

i=m+1 π(vi)) = ∑x(A− x) � a2/4, since
this quadratic function attains its maximal value at x = A/2 = A− x . �

REMARK. The problem of finding maximal energy of a complete bipartite graph,
labeled with nonnegative integers a1 � a2 . . . � an transforms to the problem of parti-
tions (see Garey and Johnson, [4], p. 223): we know the value a2/4 can be attained
if and only if the set of labels A can be partitioned into two subsets with equal sums –
and this is exactly the problem of partitions, which is NP -hard!

PROPOSITION 5. Let a1 � . . . � an � 0 and let f : R
n → R

n be defined with
the formula: f (x1, . . . ,xn) := x1x2 + x2x3 + . . .+ xn−1xn . Then for any {x1, . . . ,xn} =
{a1, . . . ,an} the maximal value fmax of f is given by the right side of the inequality:
f (x1, . . . ,xn) = x1x2 + x2x3 + . . .+ xn−1xn � a1a2 + ∑n−2

i=1 aiai+2.

 

Figure 4: Maximal labelings of the path P10 and the cycle C10 .

Proof. The proposition claims that the maximal energy of the path Pn , labeled
with non-negative numbers ai , equals a1a2 + ∑n−2

i=1 aiai+2. (see Figure 4 left); this in-
terpretation immediately reveals also the maximal energy of the cycle on n points:
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Emax(Cn) = Emax(Pn)+ an−1an . We can assume n � 3. The proof is divided in five
steps:

i) Suppose (x1,x2, . . . ,xn) is a maximal permutation. Then a1 �= x1 , otherwise the
transposition of x1 and x2 would increase the value of f for (a1− x2)x3 � 0 and in
that case the rearrangement (x1,x2, . . . ,xn) would not be maximal. Likewise a1 �= xn .
Hence a1 = x j for some j such that 0 < j < n .

ii) At each side of the greatest number a1 = x j in the maximal rearrangement
(bm,bm−1, . . . ,b1,a1,c1, , . . . ,ck−1,ck) the numbers decrease towards both end posi-
tions: bm � bm−1 � . . . � b1 � an � c1 � . . . � ck−1 � ck . For suppose bi � b1

for some i > 1. Then the permutation (bi,bi−1, . . . ,b1)→ (b1, . . . ,bi−1,bi) increases
the value of f for bian + b1bi+1− (b1an + bibi+1) = (bi − b1)(an − bi+1) � 0. So
b1 = max{b1, . . . ,bm} . Likewise we prove b2 = max{b2, . . . ,bm} etc., hence b j � b j+1

for all j . Exactly the same reasoning for c-numbers gives the inequalities: c j � c j+1

for all j .
iii) Let (bm,bm−1, . . . ,b1,a1,c1, . . . ,ck−1,ck) be a maximal rearrangement. If b1 �

c1 then ii) implies c1 = a2 , since c1 � b1 � bi and c1 � c j . Likewise, ii) implies a3 ∈
{b1,c2} . It must be b1 = a3 , since f (bm, . . . ,b1,a1,c1,c2, . . . ,ck)− f (ck, . . . ,c2,b1,a1,
c1,b1, . . . ,bm) = a1(b1− c2)+ c1(c2−b1) = (a1− c1)(b1− c2) � 0 only if b1 � c2 .

iv) If ci+1 � bi � ci in a maximal rearrangement, then ci+2 � bi+1 � ci+1 . This
is proved as follows: bi+1 � ci+1 must be true, since only then the value of f on the
rearrangement with permuted and reflected parts (bm, . . . ,bi+1) and (ci+1, . . . ,ck) is
smaller: f (bm, . . . ,bi+1,bi, . . . ,b1,a1,c1, . . . ,ci,ci+1, . . . ,ck)− f (ck, . . . ,ci+1,bi, . . . ,b1,
a1,c1, . . . ,ci,bi+1, . . .bm) = bi(bi+1− ci+1)+ ci(ci+1−bi+1) = (bi− ci)(bi+1− ci+1) �
0.

Likewise ci+2 � bi+1 must be true, since only in that case the value of f on the
rearrangement with permuted and reflected parts (bm, . . . ,bi+1) and (ci+2, . . . ,ck) is
smaller: f (bm, . . . ,bi+1,bi, . . . ,b1,a1,c1, . . . ,ci,ci+1, . . . ,ck)− f (ck, . . . ,ci+1,bi, . . . ,b1,
a1,c1, . . . ,ci,bi+1, . . . ,bm) = bi(bi+1−ci+1)+ci(ci+1−bi) = (bi−ci+1)(bi+1−ci+2) �
0.

v) Consequently ci = a2i and bi = a2i+1 . There are just two rearrangements giv-
ing the maximal value of f , obtained from each other by a reflection symmetry. The
smallest two numbers an and an−1 lie at the end positions. �

Proposition 5 can be generalized to infinite paths (infinite in both directions) and
to subdivided stars Sm,n with m rays and mn+ 1 vertices (defined by Hartsfield [6]).
Notice that a path P2n+1 with 2n+ 1 vertices is the same as the star Sn,n with m = 2
rays.

PROPOSITION 6. Let a1 � . . . � an � . . . � 0 , ∑∞
i=1 ai = A < ∞ and let we have

the equality of sets {xi
∣
∣ i∈Z}= {a j

∣
∣ j∈N} . Then ∑∞

i=−∞ xixi+1 � a1a2+∑∞
j=1 a ja j+2 .

Proof. We just repeat the steps ii), iii), iv) and v) of the proof of Proposition 5
(step i) is unnecessary, since there are no leaves in this case). We can imagine this
maximal rearrangement on the number line: place a1 at 0, a2i−1 at i , and a2i at −i
(Figure 5). �
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Figure 5: Spiral-shaped maximal rearrangement on the number line, in the star S3,2 with m = 3
rays, and in the star S2,3 with m = 2 rays (or a path P7 ).

PROPOSITION 7. The maximal value of the permutation function f (x0,x1,1,x2,1,
. . . ,xm,1,x1,2,x2,2, . . . ,xm,2, . . . ,x1,n,x2,n, . . . ,xm,n) = x0 ∑m

i=1 xi,1 + ∑m
i=1 ∑n−1

j=1 xi, jxi, j+1

whose domain consists of all permutations of numbers a1 � . . . � amn+1 � 0 is given
by the permutation (a1,a2, . . . ,amn+1) , hence fmax = a1 ∑m

i=1 ai+1 + ∑mn−m
i=1 aiai+m.

Proof. The greatest number a1 must be in the center of the star: x0 = a1 , sur-
rounded by a2, . . . ,am+1 . As in step ii) of the proof of Proposition 5 we prove that
the labels decrease from the center to the m leaves. Using Lemma 1 and induc-
tion we see that xi,1 � xi,2 � . . . � xi,m � xi+1,m , hence x1,1 � x1,2 � . . . � x1,m �
x2,1 � x2,2 � . . . � x2,m � . . . xn,1 � xn,2 � . . . � xn,m , thus the maximal rearrange-
ment is (a1,a2, . . . ,amn+1) . �

REMARK. This maximal rearrangement can be obtained also by a “greedy algo-
rithm” [8]: Place a1 in the center of the star. Imagine it as an atom with m free bonds,
and other ai as atoms with two (or one) free bonds. Then for each i ∈ {1,2, . . . ,n}
connect ai with the greatest a j still having a free bond.

PROPOSITION 8. Let a1 � a2 � . . . � an � 0 . The maximal and minimal energy
of any tree Tn with n points lye between the maximal and minimal energy of a star
Sn,2 = K1,n−1 : an(a1 + . . .an−1) = Emin(Sn,2) � Emin(Tn) � Emax(Tn) � Emax(Sn,2) =
a1(a2 + . . .an).

Proof. We can assume n � 3 (the cases T1 and T2 are trivial). First let us prove
Emax(Tn) � Emax(Sn,2) . Placing a1 in the center of the star Sn,2 we see Emax(Sn,2) =
a1(a2 + . . .an) . If there is any leaf vi in Tn not adjacent to v labeled a1 , replace
the edge connecting vi and its only adjacent vertex with an edge connecting vi with
v ; this increases the energy of the tree. Repeat this replacements until all leafs are
adjacent to v . An analogous proof with the label an in the center of the star shows that
Emin(Sn,2) � Emin(Tn) . �
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