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SOME INEQUALITIES FOR Lp –DUAL AFFINE SURFACE AREA

FENG YIBIN AND WANG WEIDONG

(Communicated by I. Perić)

Abstract. Lutwak proposed the notion of Lp -affine surface area according to the Lp -mixed
volume. Recently, Wang and He introduced the concept of Lp -dual affine surface area combing
with the Lp -dual mixed volume. In this article, some inequalities for Lp -dual affine surface area
are established.

1. Introduction and main results

Let K n denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space Rn . For the set of convex bodies containing the origin
in their interiors, the set of convex bodies whose centroid lie at the origin and the set
of origin-symmetric convex bodies in Rn , we write K n

o , K n
c and K n

s , respectively.
Let Sn

o denote the set of star bodies (about the origin) in Rn . Let Sn−1 denote the unit
sphere in Rn and V (K) the n -dimensional volume of body K . For the standard unit
ball B in Rn , denote ωn = V (B) .

The notion of affine surface area was given by Leichtweiß (see [6]). For K ∈K n ,
the affine surface area, Ω(K) , of K is defined by

n−
1
n Ω(K)

n+1
n = inf{nV1(K,Q∗)V (Q)

1
n : Q ∈ Sn

o}.

Here Q∗ denotes the polar of body Q .
According to the Lp -mixed volume, Lutwak introduced the notion of Lp -affine

surface area in [9]. For K ∈ K n
o , p � 1, the Lp -affine surface area, Ωp(K) , of K is

defined by

n−
p
n Ωp(K)

n+p
n = inf{nVp(K,Q∗)V (Q)

p
n : Q ∈ Sn

o}. (1.1)

Obviously, if p = 1, Ω1(K) is just the classical affine surface area Ω(K) .
In addition, Lutwak gave the notion of Lp -mixed affine surface area in [9]. Further,

Wang and Leng in [16] defined i th Lp -mixed affine surface area, Ωp,i(K) , of K (for
i = 0, Ωp,i(K) is just the Lp -affine surface area Ωp(K) ) and extended Lutwak’s some
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results. Regarding the study of Lp -affine surface area, many results have been obtained
in these articles (see [9, 15–17, 22, 23]).

According to the notion of Lp -affine surface area introduced by Lutwak. In 2008,
Wang and He gave the notion of Lp -dual affine surface area associated with the Lp -
dual mixed volume in [21]. For K ∈ Sn

o and 1 � p < n , Lp -dual affine surface area,
Ω̃−p(K) , of K is defined by

n
p
n Ω̃−p(K)

n−p
n = inf{nṼ−p(K,Q∗)V (Q)−

p
n : Q ∈ K n

c }. (1.2)

Associated with the definition of Lp -dual affine surface area, Wang and He (see
[21]) proved the following results:

THEOREM 1.A. If K ∈ K n
c , 1 � p < n, then

Ω̃−p(K)n−p � nn−pω−2p
n V (K)n+p,

with equality if and only if K is an ellipsoid.

THEOREM 1.B. If K,L ∈ K n
c and 1 � p < n, then

Ω̃−p(K+̃n+pL)
n−p

n � Ω̃−p(K)
n−p

n + Ω̃−p(L)
n−p

n ,

with equality if and only if K and L are dilates. Here K+̃n+pL denotes the Ln+p -radial
linear combination of K and L (see [21]).

In this article, we shall continuously study the Lp -dual affine surface area Ω̃−p(K) .
Firstly, associated with Theorem 1.A, we give its dual form as follows:

THEOREM 1.1. If K ∈ K n
c , 1 � p < n, then

Ω̃−p(K)n−p � nn−pω2n
n V (K∗)−(n+p), (1.3)

with equality if and only if K is an ellipsoid.

Secondly, combining with Lp -curvature image, we obtain a kind of corresponding
form of Theorem 1.A.

THEOREM 1.2. If K ∈ F n
s , 1 � p < n, then

Ω̃−p(ΛpK)n−p � nn−pω−2p
n V (ΛpK)n+p, (1.4)

with equality if and only if K is an ellipsoid.

Further, corresponding to Theorem 1.B, we get a Brunn-Minkowski inequality of
the Lp -dual affine surface area about the Lq -radial linear combination.

THEOREM 1.3. For K,L ∈ K n
c , λ ,μ � 0 (not both zero) and 1 � p < n, if q >

n+ p, then

Ω̃−p(λ ◦K+̃qμ ◦L)
q(n−p)
n(n+p) � λ Ω̃−p(K)

q(n−p)
n(n+p) + μΩ̃−p(L)

q(n−p)
n(n+p) , (1.5)

with equality if and only if K and L are dilates.

Besides, associated with the Lq -harmonic radial combination of star bodies, we
give another Brunn-Minkowski inequality for the Lp -dual affine surface area.
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THEOREM 1.4. If K,L ∈ K n
c , 1 � p < n, q � 1 and λ ,μ � 0 (not both zero),

Ω̃−p(λ �K +−q μ �L)−
q(n−p)
n(n+p) � λ Ω̃−p(K)−

q(n−p)
n(n+p) + μΩ̃−p(L)−

q(n−p)
n(n+p) , (1.6)

with equality if and only if K and L are dilates.

The proofs of Theorem 1.1–1.4 will be completed in section 3 of this paper.

2. Preliminaries

2.1. Support function, radial function and polar of convex bodies

If K ∈ K n , then its support function, hK = h(K, ·) : Rn → (−∞,∞) , is defined by
(see[4, 14])

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn, (2.1)

where x · y denotes the standard inner product of x and y .
From the definition of the support function, we easily obtain for c > 0 and any

u ∈ Sn−1

h(cK,u) = ch(K,u), (2.2)

where cK = {cx : x ∈ K} .
If K is a compact star-shaped (about the origin) in Rn , then its radial function,

ρK = ρ(K, ·) : Rn \ {0}→ [0,∞) , is defined by (see[4, 14])

ρ(K,u) = max{λ � 0 : λ ·u ∈ K}, u ∈ Sn−1. (2.3)

Given c > 0, we can get for any u ∈ Sn−1

ρ(cK,u) = cρ(K,u). (2.4)

If ρK is continuous and positive, then K will be called a star body. Two star bodies
K , L are said to be dilates (of one another) if ρK(u)�ρL(u) is independent of u∈ Sn−1 .

If K ∈ K n
o , the polar body , K∗ , of K is defined by (see [4, 14])

K∗ = {x ∈ Rn : x · y � 1,y ∈ K}. (2.5)

From (2.5), we easily have (K∗)∗ = K and

hK∗ =
1

ρK
, ρK∗ =

1
hK

. (2.6)

For K ∈ K n
c and its polar body, the well-known Blaschke-santaló inequality (see

[10]) can be stated that:

THEOREM 2.A. If K ∈ K n
c , then

V (K)V (K∗) � ω2
n , (2.7)

with equality if and only if K is an ellipsoid.
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2.2. Some Lp -combinations

1. Firey Lp -combination. For K,L ∈ K n
o , p � 1 and λ ,μ � 0 (not both zero),

the Firey Lp -combination (also called the Lp -Minkowski combination), λ ·K+p μ ·L∈
K n

o , of K and L is defined by (see [1, 4, 11])

h(λ ·K +p μ ·L, ·)p = λh(K, ·)p + μh(L, ·)p, (2.8)

where the operation “+p ” is called Firey addition and λ ·K denotes the Firey scalar
multiplication. From (2.2) and (2.8), we can get

λ ·K = λ
1
p K.

For p = 1, Firey Lp -combination (2.8) is the Minkowski combination (see [4]).
2. Lp -radial combination. For K,L ∈ Sn

o , p � 1 and λ ,μ � 0 (not both zero),
the Lp -radial combination, λ ◦K+̃pμ ◦L ∈ Sn

o , of K and L is defined by (see [4, 14])

ρ(λ ◦K+̃pμ ◦L, ·)p = λ ρ(K, ·)p + μρ(L, ·)p, (2.9)

where the operation “+̃p ” is called Lp -radial addition and λ ◦K denotes the Lp -radial
scalar multiplication. From (2.4) and (2.9), we easily get

λ ◦K = λ
1
p K.

For p = 1, Lp -radial combination (2.9) is the classical radial combination (see [4]).
3. Lp -harmonic radial combination. For K,L ∈ Sn

o , p � 1 and λ ,μ � 0 (not
both zero), the Lp -harmonic radial combination, λ �K +−p μ �L ∈ Sn

o , of K and L is
defined by (see [2, 3, 9])

ρ(λ �K +−p μ �L, ·)−p = λ ρ(K, ·)−p + μρ(L, ·)−p, (2.10)

where the operation “+−p ” is called Lp -harmonic radial addition and λ �K denotes
the Lp -harmonic radial scalar multiplication. From (2.4) and (2.10), we can obtain

λ �K = λ− 1
p K.

For p = 1, Lp -harmonic radial combination (2.10) is the classical harmonic radial
combination (see [9]).

2.3. Lp -mixed volume

If K,L ∈ K n
o , then for p � 1 and ε > 0, the Lp -mixed volume, Vp(K,L) , of K

and L is defined by (see [11])

n
p
Vp(K,L) = lim

ε→0+

V (K +p ε ·L)−V(K)
ε

.
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Corresponding to each K,L ∈ K n
o , there is a positive Borel measure, Sp(K, ·) , on

Sn−1 such that (see [11])

Vp(K,L) =
1
n

∫
Sn−1

hp
L(u)dSp(K, ·). (2.11)

From (2.11), we have
Vp(K,K) = V (K). (2.12)

The Minkowski inequality for the Lp -mixed volume is called Lp -Minkowski in-
equality. The Lp -Minkowski inequality was given by Lutwak (see [9, 11]):

THEOREM 2.B. If K,L ∈ K n
o and p � 1 , then

Vp(K,L) � V (K)
n−p

n V (L)
p
n , (2.13)

with equality for p = 1 if and only if K and L are homothetic, for p > 1 if and only if
K and L are dilates.

2.4. Lp -dual mixed volume

Associated with the Lp -harmonic radial combination of star bodies, Lutwak in [9]
introduced the notion of Lp -dual mixed volume as follows: For K,L ∈ Sn

o , p � 1 and
ε > 0, the Lp -dual mixed volume, Ṽ−p(K,L) , of K and L is defined by (see [9])

n
−p

Ṽ−p(K,L) = lim
ε→0+

V (K +−p ε �L)−V(K)
ε

.

The definition above and Hospital’s role give the following integral representation
of Lp -dual mixed volume (see [9]):

Ṽ−p(K,L) =
1
n

∫
Sn−1

ρn+p
K (u)ρ−p

L (u)dS(u), (2.14)

where the integration is with respect to spherical Lebesgue measure S on Sn−1 .
From the formula (2.14), we get

Ṽ−p(K,K) = V (K) =
1
n

∫
Sn−1

ρn
K(u)dS(u). (2.15)

The Minkowski’s inequality for the Lp -dual mixed volume can be stated that (see
[9]):

THEOREM 2.C. If K,L ∈ Sn
o , p � 1 , then

Ṽ−p(K,L) � V (K)
n+p

n V (L)−
p
n , (2.16)

with equality if and only if K and L are dilates.
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2.5. Lp -curvature image

For K ∈K n
o , and real p � 1, the Lp -surface area measure, Sp(K) , of K is defined

by (see [11])
dSp(K, ·)
dS(K, ·) = h(K, ·)1−p. (2.17)

Equation (2.17) is also called Radon-Nikodym derivative, it turns out that the measure
Sp(K, ·) is absolutely continuous with respect to surface area measure S(K, ·) .

A convex body K ∈ K n
o is said to have Lp -curvature function (see [9]), fp(K, ·) :

Sn−1 →R , if its Lp -surface area measure Sp(K, ·) is absolutely continuous with respect
to spherical Lebesgue measures, and

fp(K, ·) =
dSp(K, ·)

dS
.

Let F n
o , F n

s denote the set of all bodies in K n
o , K n

s , respectively, that have a
positive continuous curvature function.

Lutwak showed the notion of Lp -curvature image in [9] as follows: For each
K ∈ F n

o and p � 1, defined, ΛpK ∈ Sn
o , Lp -curvature image of K by

ρ(ΛpK, ·)n+p =
V (ΛpK)

ωn
fp(K, ·). (2.18)

Note that for p = 1, this definition differs from the definition of classical curvature
image (see [9]). For the studies of classical curvature image and Lp -curvature image,
one may see [7, 8, 12–14, 17–20].

3. The proofs of theorems

In this section, we complete the proofs of Theorem 1.1–1.4.

Proof of Theorem 1.1. From the definition (1.2) and the inequality (2.16), we have

V (K∗)
n+p

n Ω̃−p(K)
n−p

n

�n
n−p

n Ṽ−p(K,Q∗)V (K∗)
n+p

n V (Q)−
p
n

�n
n−p

n Ṽ−p(K,Q∗)Ṽ−p(K∗,Q). (3.1)

Since K ∈ K n
c , taking Q = K∗ in (3.1), then from (2.7), (2.15) and (3.1), we get

V (K∗)
n+p

n Ω̃−p(K)
n−p

n � n
n−p

n V (K)V (K∗) � n
n−p

n ω2
n .

This gets (1.3).
According to the equality condition of (2.7), we see that equality holds in (1.3) if

and only if K is an ellipsoid. �
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COROLLARY 3.1. If K ∈ K n
c and 1 � p < n, then

Ω̃−p(K)Ω̃−p(K∗) � n2ω
4n

n−p
n [V (K)V (K∗)]−

n+p
n−p , (3.2)

with equality if and only if K is an ellipsoid.

Proof. From (1.3) and (2.5), we have

Ω̃−p(K)n−p � nn−pω2n
n V (K∗)−(n+p),

Ω̃−p(K∗)n−p � nn−pω2n
n V (K)−(n+p). (3.3)

Combining with (1.3) and (3.3), we get (3.2).
According to the equality condition of (1.3), we see that equality holds in (3.2) if

and only if K is an ellipsoid. �

LEMMA 3.1. [11] If K ∈ F n
o , p � 1 , then for any Q ∈ Sn

o ,

Ṽ−p(ΛpK,Q∗) =
V (ΛpK)

ωn
Vp(K,Q). (3.4)

LEMMA 3.2. [9] If K ∈ F n
s and p � 1 , then

V (ΛpK) � ω
2p−n

p
n V (K)

n−p
p , (3.5)

with equality if and only if K is an ellipsoid.

Proof of Theorem 1.2. From the definition (1.2), (2.13) and (3.4), we know

Ω̃−p(ΛpK)
n−p

n = n
n−p

n inf{Ṽ−p(ΛpK,Q∗)V (Q)−
p
n : Q ∈ K n

c }

= n
n−p

n inf

{
V (ΛpK)

ωn
Vp(K,Q)V (Q)−

p
n : Q ∈ K n

c

}

� n
n−p

n inf

{
V (ΛpK)

ωn
V (K)

n−p
n V (Q)

p
n V (Q)−

p
n : Q ∈ K n

c

}

= n
n−p

n
V (ΛpK)

ωn
V (K)

n−p
n . (3.6)

Combining with (3.5) and (3.6), hence we have (1.4).
According to the equality condition of (3.5), we see that equality holds in (1.4) if

and only if K is an ellipsoid. �

LEMMA 3.3. For K,L ∈ Sn
o , λ ,μ � 0 (not both zero) and p � 1 , if q > n + p,

then for any Q ∈ Sn
o ,

Ṽ−p(λ ◦K+̃qμ ◦L,Q)
q

n+p � λṼ−p(K,Q)
q

n+p + μṼ−p(L,Q)
q

n+p , (3.7)
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with equality if and only if K and L are dilates.

Proof. Since q > n+ p , thus n+p
q < 1. Hence from (2.9), (2.14) and Minkowski’s

integral inequality (see [5]), we get

Ṽ−p(λ ◦K+̃qμ ◦L,Q)
q

n+p

=
[
1
n

∫
Sn−1

ρ(λ ◦K+̃qμ ◦L,u)n+pρ(Q,u)−pdS(u)
] q

n+p

=
[
1
n

∫
Sn−1

[ρ(λ ◦K+̃qμ ◦L,u)qρ(Q,u)−
pq

n+p ]
n+p

q dS(u)
] q

n+p

=
[
1
n

∫
Sn−1

[(λ ρ(K,u)q + μρ(L,u)q)ρ(Q,u)−
pq

n+p ]
n+p

q dS(u)
] q

n+p

�λ
[
1
n

∫
Sn−1

ρ(K,u)n+pρ(Q,u)−pdS(u)
] q

n+p

+ μ
[
1
n

∫
Sn−1

ρ(L,u)n+pρ(Q,u)−pdS(u)
] q

n+p

=λṼ−p(K,Q)
q

n+p + μṼ−p(L,Q)
q

n+p .

This yield (3.7).
According to the equality condition of Minkowski’s integral inequality, we see that

equality holds in (3.7) if and only if K and L are dilates. �

Proof of Theorem 1.3. From (1.2) and (3.7), we have

[n
p
n Ω̃−p(λ ◦K+̃qμ ◦L)

n−p
n ]

q
n+p

= inf{[nṼ−p(λ ◦K+̃qμ ◦L,Q∗)V (Q)−
p
n ]

q
n+p : Q ∈ K n

c }
= inf{[nṼ−p(λ ◦K+̃qμ ◦L,Q∗)]

q
n+p [V (Q)−

p
n ]

q
n+p : Q ∈ K n

c }
� inf{[λ (nṼ−p(K,Q∗))

q
n+p + μ(nṼ−p(L,Q∗))

q
n+p ][V (Q)−

p
n ]

q
n+p : Q ∈ K n

c }
� inf{λ [nṼ−p(K,Q∗)V (Q)−

p
n ]

q
n+p : Q ∈ K n

c }
+ inf{μ [nṼ−p(L,Q∗)V (Q)−

p
n ]

q
n+p : Q ∈ K n

c }
=λ [n

p
n Ω̃−p(K)

n−p
n ]

q
n+p + μ [n

p
n Ω̃−p(L)

n−p
n ]

q
n+p .

So (1.5) is obtained.
According to the equality condition of (3.7), we see that equality holds in (1.5) if

and only if K and L are dilates. �

Using the proof method of Lemma 3.3 and combining with Lq -harmonic radial
combination (2.10), we easily obtain the following result for the Lp -dual mixed volume.

LEMMA 3.4. If K,L ∈ Sn
o , p � 1 , q � 1 and λ ,μ � 0 (not both zero), then for

any Q ∈ Sn
o ,

Ṽ−p(λ �K +−q μ �L,Q)−
q

n+p � λṼ−p(K,Q)−
q

n+p + μṼ−p(L,Q)−
q

n+p , (3.8)
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with equality if and only if K and L are dilates.

If p = q , then (3.8) can be found in [18].

Proof of Theorem 1.4. From (1.2) and (3.8), we have

[n
p
n Ω̃−p(λ �K +−q μ �L)

n−p
n ]−

q
n+p

= inf{[nṼ−p(λ �K +−q μ �L,Q∗)V (Q)−
p
n ]−

q
n+p : Q ∈ K n

c }
= inf{[nṼ−p(λ �K +−q μ �L,Q∗)]−

q
n+p [V (Q)−

p
n ]−

q
n+p : Q ∈ K n

c }
� inf{[λ (nṼ−p(K,Q∗))−

q
n+p + μ(nṼ−p(L,Q∗))−

q
n+p ][V (Q)−

p
n ]−

q
n+p : Q ∈ K n

c }
� inf{λ [nṼ−p(K,Q∗)V (Q)−

p
n ]−

q
n+p : Q ∈ K n

c }
+ inf{μ [nṼ−p(L,Q∗)V (Q)−

p
n ]−

q
n+p : Q ∈ K n

c }
=λ [n

p
n Ω̃−p(K)

n−p
n ]−

q
n+p + μ [n

p
n Ω̃−p(L)

n−p
n ]−

q
n+p .

So (1.6) is obtained.
According to the equality condition of (3.8), we see that the equality holds in (1.6)

if and only if K and L are dilates. �

Finally, we give a concept called the Lp -harmonic Blaschke combination about
star bodies and establish a Brunn-Minkowski type inequality for the Lp -dual affine
surface area.

For K,L ∈ Sn
o , p � 1 and λ ,μ � 0 (not both zero), the Lp -harmonic Blaschke

combination, λ ∗K+̂pμ ∗L , of K and L is defined by

ρ(λ ∗K+̂pμ ∗L, ·)n+p

V (λ ∗K+̂pμ ∗L)
= λ

ρ(K, ·)n+p

V (K)
+ μ

ρ(L, ·)n+p

V (L)
. (3.9)

Taking λ = μ = 1 in λ ∗K+̂pμ ∗L , then K+̂pL is just Lp -harmonic Blaschke addition
introduced in [24]. Associated with (3.9), we obtain the following fact.

THEOREM 3.1. If K,L ∈ K n
c , λ ,μ � 0 (not both zero) and 1 � p < n, then

Ω̃−p(λ ∗K+̂pμ ∗L)
n−p

n

V (λ ∗K+̂pμ ∗L)
� λ

Ω̃−p(K)
n−p

n

V (K)
+ μ

Ω̃−p(L)
n−p

n

V (L)
, (3.10)

with equality if and only if K and L are dilates.

Proof. From the definition (1.2) and (3.9), we get

n
p
n Ω̃−p(λ ∗K+̂pμ ∗L)

n−p
n

= inf{nṼ−p(λ ∗K+̂pμ ∗L,Q∗)V (Q)−
p
n : Q ∈ K n

c }

= inf

{∫
Sn−1

ρ(λ ∗K+̂pμ ∗L,u)n+pρ(Q∗,u)−pdS(u)V(Q)−
p
n : Q ∈ K n

c

}
.
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Thus

n
p
n Ω̃−p(λ ∗K+̂pμ ∗L)

n−p
n

V (λ ∗K+̂pμ ∗L)

= inf

{∫
Sn−1

ρ(λ ∗K+̂pμ ∗L,u)n+p

V (λ ∗K+̂pμ ∗L)
ρ(Q∗,u)−pdS(u)V(Q)−

p
n : Q ∈ K n

c

}

= inf

{∫
Sn−1

[λ
ρ(K,u)n+p

V (K)
+ μ

ρ(L,u)n+p

V (L)
]ρ(Q∗,u)−pdS(u)V(Q)−

p
n : Q ∈ K n

c

}

= inf

{
λ

V (K)

∫
Sn−1

ρ(K,u)n+pρ(Q∗,u)−pdS(u)V(Q)−
p
n

+
μ

V (L)

∫
Sn−1

ρ(L,u)n+pρ(Q∗,u)−pdS(u)V(Q)−
p
n : Q ∈ K n

c

}

� λ
V (K)

inf{nṼ−p(K,Q∗)V (Q)−
p
n : Q ∈ K n

c }

+
μ

V (L)
inf{nṼ−p(L,Q∗)V (Q)−

p
n : Q ∈ K n

c }.

This give (3.10).
The equality of (3.10) holds if and only if λ ∗K+̂pμ ∗L are dilates with K and L ,

respectively. This mean that the equality holds if and only if K and L are dilates. �
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