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SOME INEQUALITIES FOR L,-DUAL AFFINE SURFACE AREA

FENG YIBIN AND WANG WEIDONG

(Communicated by I. Peri¢)

Abstract. Lutwak proposed the notion of L, -affine surface area according to the L, -mixed
volume. Recently, Wang and He introduced the concept of L, -dual affine surface area combing
with the L, -dual mixed volume. In this article, some inequalities for L, -dual affine surface area
are established.

1. Introduction and main results

Let 2" denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean space R". For the set of convex bodies containing the origin
in their interiors, the set of convex bodies whose centroid lie at the origin and the set
of origin-symmetric convex bodies in R", we write 2", JZ" and £, respectively.
Let S denote the set of star bodies (about the origin) in R". Let "~ ' denote the unit
sphere in R" and V(K) the n-dimensional volume of body K. For the standard unit
ball B in R", denote @, =V (B).

The notion of affine surface area was given by Leichtweil} (see [6]). For K € ™",
the affine surface area, Q(K), of K is defined by

+1

n i Q(K) " = inf{nVy (K, Q")V(Q)" s Q € S"}.

Here Q* denotes the polar of body Q.

According to the L,-mixed volume, Lutwak introduced the notion of L, -affine
surface area in [9]. For K € 2", p > 1, the L,-affine surface area, Qp(K), of K is
defined by

R Q,(K)*T = inf{nV,(K,Q)WV(Q)7 : Q € S} (1.1)

Obviously, if p =1, Q;(K) is just the classical affine surface area Q(K).

In addition, Lutwak gave the notion of L, -mixed affine surface areain [9]. Further,
Wang and Leng in [16] defined ith L,-mixed affine surface area, Q, ;(K), of K (for
i=0, Qp;(K) is just the L,-affine surface area Q,(K) ) and extended Lutwak’s some

Mathematics subject classification (2010): 52A20, 52A40.
Keywords and phrases: Lj-dual affine surface area, L,-mixed volume, L,-dual mixed volume,
Brunn-Minkowski inequality.

Research is supported in part by the Natural Science Foundation of China (Grant No. 10671117) and Science Foun-
dation of China Three Gorges University.

© M, Zagreb 431

Paper MIA-17-32


http://dx.doi.org/10.7153/mia-17-32

432 FENG YIBIN AND WANG WEIDONG

results. Regarding the study of L, -affine surface area, many results have been obtained
in these articles (see [9, 15-17, 22, 23]).

According to the notion of L, -affine surface area introduced by Lutwak. In 2008,
Wang and He gave the notion of L, -dual affine surface area associated with the L), -
dual mixed volume in [21]. For K € §) and 1 < p <n, Lj-dual affine surface area,

Q_,(K), of K is defined by
P~ n—=p ~ " _r n
nnQ_,(K) " =inf{nV_,(K,Q")V(Q) " : Q€ J#"}. (1.2)

Associated with the definition of L,-dual affine surface area, Wang and He (see
[21]) proved the following results:

THEOREM 1.A. If K € %, 1 < p <n, then

Q H(K)" P =n"Pw, V(K)"P,

with equality if and only if K is an ellipsoid.

THEOREM 1.B. If K,L € JZ" and 1 < p <n, then

~ n n—p

Q ,(KTuipl) 7 2Q ,(K) 7 +Q (L),
with equality if and only if K and L are dilates. Here K+, pL denotes the Ly -radial
linear combination of K and L (see [21]).

In this article, we shall continuously study the L, -dual affine surface area Q. »(K).
Firstly, associated with Theorem 1.A, we give its dual form as follows:

THEOREM 1.1. If K € %, 1 < p <n, then
Q_,(K)"P <" P2V (K*)~P)] (1.3)
with equality if and only if K is an ellipsoid.

Secondly, combining with L, -curvature image, we obtain a kind of corresponding
form of Theorem 1.A.

THEOREM 1.2. If K€ Z]', 1 < p <n, then
Q p(AK)"P = 0" P @, PV (ApK)", (1.4)
with equality if and only if K is an ellipsoid.
Further, corresponding to Theorem 1.B, we get a Brunn-Minkowski inequality of
the L, -dual affine surface area about the L,-radial linear combination.
THEOREM 1.3. For K, L € 2", A, =0 (not both zero) and 1 < p <n, if g >
n+ p, then

q(n—p)

~ q(n—p) ~ 4(n—p) ~
Q_p(x o K_T_q” o L) n(n+p) 2 AQ_p(K) n(n+p) + ”Q—p(L) n(n+p) , (1 5)
with equality if and only if K and L are dilates.

Besides, associated with the L,-harmonic radial combination of star bodies, we
give another Brunn-Minkowski inequality for the L, -dual affine surface area.
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THEOREM 1.4. If K, L€ 2", 1< p<n, g=1and A,u > 0 (not both zero),

q(n—p) q(n—p)

~ q(n—p) ~ ~
Qip(k *K+7qu *L) n(n+p) 2 A‘pr(K) n(n+p) + ‘LLQ,p(L) n(n+p) , (16)

with equality if and only if K and L are dilates.

The proofs of Theorem 1.1-1.4 will be completed in section 3 of this paper.

2. Preliminaries

2.1. Support function, radial function and polar of convex bodies

If K € %", then its support function, hg = h(K,-) : R" — (—o0,0), is defined by
(see[4, 14])
h(K,x) =max{x-y:y€ K}, xeR", (2.1)

where x -y denotes the standard inner product of x and y.
From the definition of the support function, we easily obtain for ¢ > 0 and any
ues!
h(cK,u) = ch(K,u), (2.2)

where ¢cK = {cx:x € K}.
If K is a compact star-shaped (about the origin) in R”, then its radial function,
px =p(K,-) :R"\ {0} — [0,e0), is defined by (see[4, 14])

p(K,u)=max{A>0:1-uckK}, ucs" . (2.3)
Given ¢ > 0, we can get for any u € §"~!
p(cK,u) =cp(K,u). (2.4)

If px is continuous and positive, then K will be called a star body. Two star bodies
K, L are said to be dilates (of one another) if px (1), pr(u) is independent of u € S"~!.
If K € 2", the polar body , K*, of K is defined by (see [4, 14])

K'={xeR":x-y<1l,yeK}. (2.5)
From (2.5), we easily have (K*)* = K and

1 1

hg = oK’ Pk+ = e (2.6)

For K € %" and its polar body, the well-known Blaschke-santal6 inequality (see
[10]) can be stated that:

THEOREM 2.A. If K € %", then
VK)V(K") < 0, 2.7)

with equality if and only if K is an ellipsoid.
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2.2. Some L,-combinations

1. Firey L,-combination. For K,L € JZ)", p > 1 and A, >0 (not both zero),
the Firey L, -combination (also called the L, -Minkowski combination), A-K+,u-Lc

', of K and L is defined by (see [1, 4, 11])

where the operation “+,” is called Firey addition and A - K denotes the Firey scalar
multiplication. From (2.2) and (2.8), we can get

A-K=ATK.

For p =1, Firey Lj,-combination (2.8) is the Minkowski combination (see [4]).
2. L,-radial combination. For K,L € S7, p > 1 and A,u > 0 (not both zero),

0’

the L, -radial combination, AoK —Ppy oL e S), of K and L is defined by (see [4, 14])

p(AoK+puoL, )P =Ap(K,)’+up(L,-)", (2.9)
where the operation “+,” is called L, -radial addition and A oK denotes the L, -radial
scalar multiplication. From (2.4) and (2.9), we easily get

A oK = A7K.

For p =1, L,-radial combination (2.9) is the classical radial combination (see [4]).
3. L,-harmonic radial combination. For K,L € S, p > 1 and A, > 0 (not

[

both zero), the L,-harmonic radial combination, AxK—+_ pUxL €S, of K and L is
defined by (see [2, 3, 9])

PA*xK+_puxL,-)"=2Ap(K,")"P+up(L,-)"", (2.10)

where the operation “+_,” is called L,-harmonic radial addition and A « K denotes
the L, -harmonic radial scalar multiplication. From (2.4) and (2.10), we can obtain

AxK=A"7K.

For p =1, L,-harmonic radial combination (2.10) is the classical harmonic radial
combination (see [9]).

2.3. L,-mixed volume

If K,L € %), then for p>1 and € > 0, the L,-mixed volume, V,(K,L), of K
and L is defined by (see [11])

e—0T €

K+pe-L)—V(K
v kL) = lim LK D VI
P
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Corresponding to each K,L € 2

"', there is a positive Borel measure, S,(K,-), on
§"=1 such that (see [11])

1
VpK.L)= | ()dS,(K.). (2.11)
From (2.11), we have
V,(K,K) =V(K). (2.12)

The Minkowski inequality for the Lj,-mixed volume is called L,-Minkowski in-
equality. The L,-Minkowski inequality was given by Lutwak (see [9, 11]):

THEOREM 2.B. If K,L € £ and p > 1, then

n—p

V,(K,L) > V(K) 7 V(L)", (2.13)

=S

with equality for p =1 if and only if K and L are homothetic, for p > 1 if and only if
K and L are dilates.

2.4. L,-dual mixed volume

Associated with the L, -harmonic radial combination of star bodies, Lutwak in [9]
introduced the notion of L, -dual mixed volume as follows: For K,L € S, p > 1 and

0’

€ >0, the L, -dual mixed volume, V. p(K,L), of K and L is defined by (see [9])

- V(K +_pexL)—V(K
M KoL) = lim (KT exl) ZV(K)
—p e—0t €

The definition above and Hospital’s role give the following integral representation
of L,-dual mixed volume (see [9]):

VoK L) == [ prp (S ), (2.14)

n.Jsn—1

where the integration is with respect to spherical Lebesgue measure S on §"~!.
From the formula (2.14), we get

V_,(K,K)=V(K) = % - PR(u)dS(u). (2.15)

The Minkowski’s inequality for the L,-dual mixed volume can be stated that (see
[9D:
THEOREM 2.C. If K,L€ S}, p> 1, then

0’

~ n+p

Vo (K,L) > V(K) " V(L) (2.16)

Bl

with equality if and only if K and L are dilates.
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2.5. L,-curvature image

For K € %", andreal p > 1, the L, -surface area measure, S p(K ), of K is defined
by (see [11])
ds,(K,-) -
— 2 —p(K,) P, 2.17
) ) 2.17)

Equation (2.17) is also called Radon-Nikodym derivative, it turns out that the measure
Sp(K,-) is absolutely continuous with respect to surface area measure S(K,-).

A convex body K € JZ is said to have L,-curvature function (see [9]), f,(K,-) :
§"~! - R, ifits L,-surface area measure S, (K, -) is absolutely continuous with respect
to spherical Lebesgue measures, and

fP(K7') = %

Let Z, Z! denote the set of all bodies in J£)", JZ;", respectively, that have a
positive continuous curvature function.

Lutwak showed the notion of L,-curvature image in [9] as follows: For each
K € .Z} and p > 1, defined, ApK € S, Ly-curvature image of K by

p(AK, )P =—L2Ff(K,). (2.18)

V(ApK)
O

Note that for p =1, this definition differs from the definition of classical curvature
image (see [9]). For the studies of classical curvature image and L,-curvature image,
one may see [7, 8, 12-14, 17-20].

3. The proofs of theorems

In this section, we complete the proofs of Theorem 1.1-1.4.

Proof of Theorem 1.1. From the definition (1.2) and the inequality (2.16), we have

V_,(K*,0). (3.1)
Since K € 7", taking Q = K* in (3.1), then from (2.7), (2.15) and (3.1), we get

V(K" Qo (K) ' <n' T VKV (KT) <"t 0l
This gets (1.3).
According to the equality condition of (2.7), we see that equality holds in (1.3) if
and only if K is an ellipsoid. [J
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COROLLARY 3.1. If K € # and 1 < p <n, then

~ ) An_ n+p

Q,(K)Q (K" <nlo P [V(K)V(K)] ", (3.2)

with equality if and only if K is an ellipsoid.
Proof. From (1.3) and (2.5), we have

Q_(K)"™P <" P2V (K*) "),

Q (K™ <" PV (K) ), (3.3)

Combining with (1.3) and (3.3), we get (3.2).
According to the equality condition of (1.3), we see that equality holds in (3.2) if
and only if K is an ellipsoid. [J

LEMMA 3.1. [11] If K€ .F!, p> 1, then for any Q € S",

V(AK)

V_p(ApK. Q") = V,(K,0). (3.4)

LEMMA 3.2. 9] If K € #] and p > 1, then

2p—n

VAK) <’ V(K)T (3.5)

with equality if and only if K is an ellipsoid.
Proof of Theorem 1.2. From the definition (1.2), (2.13) and (3.4), we know

P
n

Q_p(AK) T =n"T inf{V_,(A,K,Q)WV(Q) " : Q € 4"}

n"pinf{ YKy (k. ovio)F 0e f}

n

n—p A K
’inf{u

Wy

Ly(0)5v(g) :Qe%f}

n—p V(ApK) n—p
=nn ———=V(K) . 3.6
V() (6)
Combining with (3.5) and (3.6), hence we have (1.4).
According to the equality condition of (3.5), we see that equality holds in (1.4) if
and only if K is an ellipsoid. [

LEMMA 3.3. For K,Le€ S", A, >0 (not both zero) and p > 1, if ¢ > n+p,
then for any Q € S

0’

(QL oK—|—q‘LLoL Q)% (K Q)% p(LyQ)%a (3.7)
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with equality if and only if K and L are dilates.

Proof. Since q > n+ p, thus % < 1. Hence from (2.9), (2.14) and Minkowski’s
integral inequality (see [5]), we get

V_p(AoKTguoL,Q)™7

) q
1 ~ _ n+p
=[5 [ ookt oL o as]

1 pq__ntp

Tl /SH [p(A o KFquoL,u)ip(Q,u)” 7] TdS(u)] -

pq _ntp

N %/snflmp(’(’“)’f+up(L,u>‘f)p(Q, G dS(u)}m

e w
(K. Tp(Qy Past)| " |1 [ plL Tp(Q.) Pastu

>2 [1

n Jsn—1
—AV_,(K,Q)"7 +uV_,(L,Q)™7.
This yield (3.7).

According to the equality condition of Minkowski’s integral inequality, we see that
equality holds in (3.7) if and only if K and L are dilates. [J

Proof of Theorem 1.3. From (1.2) and (3.7), we have

q

7 Q-p(AoKFgpoL) |7

inf{[nV_,(A o KFyuoL,Q*)V
inf{[nV_p(A o Kot o L,0")| 7 [V(Q)~#]77 : Q € 4"}

inf{[A(nV_ (K, Q") + u(nV_p(L.Q*)*F|[V(Q) #1777 : 0 € 4"}

inf{A[nV_,(K,Q*)V(Q) " Mt 0 e gm

+inf{unV_ (L, 0 )V(Q) 777 : Q € "}

n—p._._4

= A" Q (K) T + u[nn QL) ]

Ww Qe XM

(Q

VoWV

So (1.5) is obtained.
According to the equality condition of (3.7), we see that equality holds in (1.5) if
and only if K and L are dilates. [J

Using the proof method of Lemma 3.3 and combining with L,-harmonic radial
combination (2.10), we easily obtain the following result for the L, -dual mixed volume.

LEMMA 3.4. If K, L€ S?, p>1, g>=1 and A,u > 0 (not both zero), then for
any Q €S},

p(AxK g uxL.0) T > AV, (K.0) T + UV, (LO) T, (38)
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with equality if and only if K and L are dilates.
If p = gq, then (3.8) can be found in [18].
Proof of Theorem 1.4. From (1.2) and (3.8), we have

P~ q

7 Qo (Ak K+ qpuxl) 7]
inf{[nV_p(A K +_q L, Q" )V (Q) 7] s Qe,%f"}
inf{[nV_p(A %K +_quxL, Q)] #7[V(Q) ¥ 77 oe A’}
> inf{[A(nV_,(K,Q"))” "+P+u(nV p(L,QY) FRIV(Q) H] 7 1 Q € ")
> inf{A [V ,(K,Q")V(Q) 7] "7 : 0 € "}

+inf{u[nV (L0 )V(Q) #]777 : Q€ A}
= AR Qp(K) T 4 pnn Q (L)

(L) n }_ﬁ

So (1.6) is obtained.
According to the equality condition of (3.8), we see that the equality holds in (1.6)
if and only if K and L are dilates. [

Finally, we give a concept called the Lj,-harmonic Blaschke combination about
star bodies and establish a Brunn-Minkowski type inequality for the L,-dual affine
surface area.

For K,L€ S, p>1 and A,u > 0 (not both zero), the L, -harmonic Blaschke
combination, A * K+,u L, of K and L is defined by

p(l *K-T-pll *L,.)n+p p(K7-)"+p p(L7-)"+p
- = +u :
V(AxK+,uxL) V(K) V(L)

(3.9)

Taking A = =11in AxKF,u =L, then K+,L is just L,-harmonic Blaschke addition
introduced in [24]. Associated with (3.9), we obtain the following fact.

THEOREM 3.1. If K,L € 2", A, > 0 (not both zero) and 1 < p < n, then

Q ,(AxKF,uxL) " _ Q ,(K) QL)

VKL, el 2 TVE) VL)

(3.10)

with equality if and only if K and L are dilates.
Proof. From the definition (1.2) and (3.9), we get

nrQ (A K+ pu « L)
—inf{nV_,(A*K3,u+L,Q*)V(Q) % : Q€ A"}

—int{ [ plh <K s L) p(Q" ) SV Q)

P
n

:QG%"}.
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Thus

>

=

This

nFQ (A KoL)
V(AxK+,1=L)
: p (A% K+ pp*Lu)"tP L -
mf{ -1 (V()L *KP_T_ ,LL*I?) p(Q",u) " PdS(u)V(Q)
P

: p(K.u)™ P p(Lu)"*P
mf{/snlM VK +u V(L)

P
n

:QG%”}

1p(Q",u)PdS(u)V(Q) " : Q € %}

EIS]

it { 7 [ P (0" ) PastViQ)

+% [ PLu)" 7p(Q,u) PdS()V ()~

P
n

:QG%”}

P
n

inf{nV_,(K,Q")V(Q) " : Q € 4"}

V(K)
u
V(L)
give (3.10).
The equality of (3.10) holds if and only if A * K+, u * L are dilates with K and L,

+ L inf{nV_,(L,Q")V(Q)" " : Q € A},

respectively. This mean that the equality holds if and only if K and L are dilates. [J
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