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HIGHER ORDER DYNAMIC INEQUALITIES ON TIME SCALES

S. H. SAKER, R. P. AGARWAL AND DONAL O’REGAN

(Communicated by H. M. Srivastava)

Abstract. In this paper, we will prove some new dynamic inequalities of higher orders on time
scales. The results contain some continuous and discrete inequalities as special cases. We will
prove the results by making use of Hölder’s inequality and Taylor monomials on time scales.

1. Introduction

In this paper, we study dynamic inequalities where the domain of the unknown
function is a so-called time scale T . The cases when the time scale equals to the re-
als or to the integers represent the classical theories of differential and of difference
inequalities. A cover story article in New Scientist [24] discusses several other possi-
ble applications. Continuous and discrete inequalities are important in the analysis of
qualitative properties of solutions of differential and difference equations [3, 18, 19]
and as a result we believe that dynamic inequalities on time scales will be important
in the analysis of qualitative properties of solutions of dynamic equations [20, 21]. In
this paper, we will prove some new dynamic inequalities involving higher order on time
scales.

The three most popular examples of calculus on time scales are differential cal-
culus, difference calculus, and quantum calculus (see Kac and Cheung [9]), i.e, when
T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. For more details of time
scale analysis we refer the reader to the two books by Bohner and Peterson [6], [7]
which summarize and organize much of the time scale calculus. The study of dynamic
inequalities of Opial type on time scales was initiated by Bohner and Kaymakçalan [5]
in 2001; see also the recent papers [10], [23] and [25] and the references cited therein.

In [5] the authors showed that if x : [0,b]∩T → R is delta differentiable with
x(0) = 0, then ∫ b

0
|x(t)+ xσ (t)|

∣∣∣xΔ(t)
∣∣∣Δt � b

∫ b

0

∣∣∣xΔ(t)
∣∣∣2 Δt. (1.1)

In addition they proved that if r and q are positive rd-continuous functions on [0,b],∫ b
a (Δt/r(t)) < ∞, q nonincreasing and x : [0,b]∩T → R is delta differentiable with

x(0) = 0, then∫ b

0
qσ (t)

∣∣∣(x(t)+ xσ (t))xΔ(t)
∣∣∣Δt �

∫ b

0

Δt
r(t)

∫ b

0
r(t)q(t)

∣∣∣xΔ(t)
∣∣∣2 Δt. (1.2)
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In [10] Karpuz, Kaymakçalan and Öcalan proved an inequality similar to the inequality
(1.2) where qσ (t) is replaced by q(t) , namely

∫ b

a
q(t)

∣∣∣(x(t)+ xσ (t))xΔ(t)
∣∣∣Δt � Kq(a,b)

∫ b

0

∣∣∣xΔ(t)
∣∣∣2 Δt, (1.3)

where q is a positive rd-continuous function on [a,b], and x : [a,b]∩T → R is delta
differentiable with x(a) = 0 and

Kq(a,b) =
(

2
∫ b

a
q2(u)(σ(u)−a)Δu

) 1
2

. (1.4)

In [20] the author proved that if y : [a,X ]T → R is delta differentiable with y(a) = 0,
then ∫ X

a
s(x) |y(x)+ yσ (x)|

∣∣∣yΔ(x)
∣∣∣Δx � K1(a,X)

∫ X

a
r(x)

∣∣∣yΔ(x)
∣∣∣2 Δx,

where s ∈ Crd([a,X ]T,R) and r be a positive rd-continuous function on (a,X)T such
that

∫ X
a r−1(t)Δt < ∞ , and

K1(a,X) =
√

2

(∫ X

a

s2(x)
r(x)

(∫ x

a

Δt
r(t)

)
Δx

) 1
2

+ sup
a�x�X

(
μ(x)

|s(x)|
r(x)

)
.

For contributions of different types of inequalities on time scales, we refer the reader
to the papers [2, 16, 17] and the references cited therein. The inequalities that we will
prove in this paper are inequalities on higher order derivatives. The main results will be
proved by making use of the Hölder inequality (see [6, Theorem 6.13])

∫ b

a
| f (t)g(t)|Δt �

[∫ b

a
| f (t)|γ Δt

] 1
γ
[∫ b

a
|g(t)|ν Δt

] 1
ν
, (1.5)

where a , b ∈ T and f ; g ∈Crd(T), γ > 1 and 1
ν + 1

γ = 1. In our analysis we will also
make use of the well known inequality (see [12, page 500])

|a+b|r � 2r−1 (|a|r + |b|r) , (1.6)

where a , b are positive real numbers and r � 1, and also we will use the Taylor mono-
mials on time scales. Some special cases on continuous and discrete spaces can be
derived from our results.

2. Main Results

Before we state and prove the main results, for completeness, we recall the fol-
lowing concepts related to the notion of time scales [8]. A time scale T is an arbitrary
nonempty closed subset of the real numbers R . We assume throughout that T has the
topology that it inherits from the standard topology on the real numbers R. The for-
ward jump operator and the backward jump operator are defined by: σ(t) := inf{s ∈
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T : s > t}, and ρ(t) := sup{s ∈ T : s < t}, where sup /0 = infT . A point t ∈ T, is said
to be left–dense if ρ(t) = t and t > infT, is right–dense if σ(t) = t, is left–scattered if
ρ(t) < t and right–scattered if σ(t) > t.

A function g : T → R is said to be right–dense continuous (rd–continuous) pro-
vided g is continuous at right–dense points and at left–dense points in T, left hand
limits exist and are finite. The set of all such rd–continuous functions is denoted by
Crd(T). The graininess function μ for a time scale T is defined by μ(t) := σ(t)− t ,
and for any function f : T → R the notation f σ (t) denotes f (σ(t)). We will assume
that supT = ∞ , and define the time scale interval [a,b]T by [a,b]T := [a,b]∩T.

In this paper we will refer to the (delta) integral which we can define as fol-
lows: If GΔ(t) = g(t) , then the Cauchy (delta) integral of g is defined by

∫ t
a g(s)Δs :=

G(t)−G(a). It can be shown (see [6]) that if g ∈ Crd(T), then the Cauchy integral
G(t) :=

∫ t
t0

g(s)Δs exists, t0 ∈ T , and satisfies GΔ(t) = g(t) , t ∈ T. Now, we define
the Taylor monomials or generalized polynomials as defined originally by Agarwal
and Bohner [1]. These monomials are important because they are related to Cauchy
functions for certain dynamic equations which are important in variations of constants
formulas. The Taylor monomials hk : T×T → R , k ∈ N0 = N∪{0} , are defined re-
cursively as follows: The function h0 is defined by h0(t,s) = 1, for all s,t ∈ T , and
given hk for k ∈ N0 , the function hk+1 is defined by

hk+1(t,s) =
∫ t

s
hk(τ,s)Δτ , for all s,t ∈ T.

If we let hΔ
k (t,s) denote for each fixed s ∈ T , the derivative of h(t,s) with respect to t ,

then
hΔ

k (t,s) = hk−1(t,s), k ∈ N, t ∈ T,

for each fixed s ∈ T . We also consider the function g0 defined by g0(t,s) = 1, for all
s,t ∈ T , and given gk for k ∈ N0 , the function gk+1 is defined by

gk+1(t,s) =
∫ t

s
gk(σ(τ),s)Δτ , for all s,t ∈ T.

If we let gΔ
k (t,s) denote for each fixed s ∈ T , the derivative of g(t,s) with respect to t ,

then
gΔ

k (t,s) = gk−1(σ(t),s), k ∈ N, t ∈ T,

for each fixed s ∈ T . By Theorem 1.112 in [6], we see that hk(t,s) = (−1)kgk(s, t).
We denote by C(n)

rd (T) the space of all functions f ∈ Crd(T) such that f Δi ∈ Crd(T)
for i = 0,1,2, ...,n for n ∈ N . For the function f : T → R we consider the second
derivative f Δ2 provided f Δ is delta differentiable on T with derivative f Δ2 = ( f Δ)Δ.
Similarly, we define the nth−order derivative f Δn = ( f Δn−1)Δ. Now, we are ready to
state the Taylor formula that we will need to prove the main results in this paper. This

formula as proved in [4] states that: Assume that f ∈C(n)
rd (T) and s ∈ T , then

f (t) =
n−1
∑

k=0
f Δk (s)hk(t,s)+

∫ t
s hn−1(t,(σ(τ)) f Δn (τ)Δτ. (2.1)
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As a special case if m < n , then

f Δm(t) =
n−m−1

∑
k=0

f Δk+m(s)hk(t,s)+
∫ t
s hn−m−1(t,(σ(τ)) f Δn(τ)Δτ. (2.2)

Now, we are ready to state and prove our main results.

THEOREM 2.1. Let T be a time scale with a, τ ∈ T and p, q be positive real
numbers such that p > 1, 1/p+ 1/q = 1, and let r, s be nonnegative rd-continuous

functions on (a,τ)T. If y ∈ C(n)
rd ([a,τ]∩T) with yΔi(a) = 0 , for i = 0,1,2, ...,n− 1 ,

then ∫ τ

a
s(t) |y(t)+ yσ(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt � K(a,τ, p,q)

∫ τ

a
r(t)

∣∣∣yΔn(t)
∣∣∣p+q

Δt, (2.3)

where K(a,τ, p,q) = K1(a,τ, p,q)+K2(a,τ, p,q),

K1(a,τ, p,q) = 22p−1
(

q
p+q

) q
p+q

×

⎛
⎜⎝∫ τ

a

(s(t))
p+q

p

(r(t))
q
p

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

,

and

K2(a,τ, p,q) = 2p−1
(

q
p+q

) q
p+q

×

⎛
⎜⎝∫ τ

a

μ p+q(t)(s(t))
p+q

p

(r(t))
q
p

⎛
⎝∫ t

a

h
p+q

p+q−1
n−2 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

.

Proof. From Taylor’s formula (2.1), since yΔi(a) = 0, for i = 0,1,2, ...,n−1, we
have

y(t) =
∫ t

a
hn−1(t,σ(s))yΔn(s)Δs, for t ∈ [a,τ]T. (2.4)

This implies that

|y(t)| �
∫ t

a

hn−1(t,σ(s))

(r(s))
1

p+q

(r(s))
1

p+q

∣∣∣yΔn(s)
∣∣∣Δs.

Applying the Hölder inequality (1.5) with

f (s) =
hn−1(t,σ(s))

(r(s))
1

p+q

, g(s) = (r(s))
1

p+q

∣∣∣yΔn(s)
∣∣∣ ,

γ =
p+q

p+q−1
and ν = p+q,
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we have

∫ t

a
hn−1(t,σ(s))

∣∣∣yΔn(s)
∣∣∣Δs �

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

(r(s))
1

p+q−1

Δs

⎞
⎠

p+q−1
p+q

×
(∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs

) 1
p+q

.

Then, for a � t � τ , we have

|y(t)|p �

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

(r(s))
1

p+q−1

Δs

⎞
⎠

p( p+q−1
p+q )(∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs

) p
p+q

. (2.5)

Since yσ = y+ μyΔ , we have

y(t)+ yσ (t) = 2y(t)+ μyΔ(t).

Applying the inequality (1.6), we get (where p > 1) that

|y+ yσ |p � 2p−1(2p |y|p + μ p
∣∣∣yΔ
∣∣∣p) = 22p−1 |y|p +2p−1μ p

∣∣∣yΔ
∣∣∣p . (2.6)

From (2.5), we have

|y(t)|p
∣∣∣yΔn(t)

∣∣∣q �

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

(r(s))
1

p+q−1

Δs

⎞
⎠

p( p+q−1
p+q )

×
∣∣∣yΔn(t)

∣∣∣q(∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs

) p
p+q

. (2.7)

Also, by using (2.2), we have

∣∣∣yΔ(t)
∣∣∣p ∣∣∣yΔn(t)

∣∣∣q �

⎛
⎝∫ t

a

h
p+q

p+q−1
n−2 (t,σ(s))

(r(s))
1

p+q−1

Δs

⎞
⎠

p( p+q−1
p+q )

×
∣∣∣yΔn(t)

∣∣∣q(∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs

) p
p+q

. (2.8)
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Substituting (2.8) and (2.7) into (2.6), we have

s(t) |y(t)+ yσ (t)|p
∣∣∣yΔn(t)

∣∣∣q � 22p−1s(t)

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

(r(s))
1

p+q−1

Δs

⎞
⎠

p( p+q−1
p+q )

×
∣∣∣yΔn(t)

∣∣∣q(∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs

) p
p+q

+2p−1μ p(t)s(t)

⎛
⎝∫ t

a

h
p+q

p+q−1
n−2 (t,σ(s))

(r(s))
1

p+q−1

Δs

⎞
⎠

p( p+q−1
p+q )

×
∣∣∣yΔn(t)

∣∣∣q(∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs

) p
p+q

. (2.9)

Setting

z(t) :=
∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs, (2.10)

we see that z(a) = 0, and

zΔ(t) = r(t)
∣∣∣yΔn(t)

∣∣∣p+q
> 0. (2.11)

From this, we have

∣∣∣yΔn(t)
∣∣∣p+q

=
zΔ(t)
r(t)

, and
∣∣∣yΔn(t)

∣∣∣q =
(

zΔ(t)
r(t)

) q
p+q

. (2.12)

Since s is nonnegative on (a,τ), we have from (2.7) and (2.12) that

22p−1s(t) |y(t)|p
∣∣∣yΔn(t)

∣∣∣q

� 22p−1s(t)
(

1
r(t)

) q
p+q

×
⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

p( p+q−1
p+q )

×(z(t))
p

p+q

(
zΔ(t)

) q
p+q

.

This implies that

22p−1
∫ τ

a
s(t) |y(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt

� 22p−1
∫ τ

a
s(t)

(
1

r(t)

) q
p+q

×
⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

p( p+q−1
p+q )

×(z(t))
p

p+q

(
zΔ(t)

) q
p+q Δt.
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Applying the Hölder inequality (1.5) with indices (p+q)/p and (p+q)/q on the right
hand side, we have

22p−1
∫ τ

a
s(t) |y(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt

� 22p−1

⎛
⎜⎝∫ τ

a
s

p+q
p (t)

(
1

r(t)

) q
p

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

×
(∫ τ

a
z

p
q (t)zΔ(t)Δt

) q
p+q

. (2.13)

From (2.11), and the chain rule formula

(xγ (t))Δ = γ
1∫

0

[hxσ +(1−h)x]γ−1 dhxΔ(t), (2.14)

which is a simple consequence of Keller’s chain rule [6, Theorem 1.90], we obtain

z
p
q (t)zΔ(t) � q

p+q

(
z

p+q
q (t)

)Δ
. (2.15)

Substituting (2.15) into (2.13) and using the fact that z(a) = 0, we have that

22p−1
∫ τ

a
s(t) |y(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt

� 22p−1

⎛
⎜⎝∫ τ

a
s

p+q
p (t)

(
1

r(t)

) q
p

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

×
(

p
p+q

) q
p+q
(∫ τ

a

(
z

p+q
q (s)

)Δ
Δs

) q
p+q

=

⎛
⎜⎝∫ τ

a
s

p+q
p (t)

(
1

r(t)

) q
p

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

×22p−1
(

q
p+q

) q
p+q

z(τ).

Using (2.10), we have from the last inequality that

22p−1
∫ τ

a
s(t) |y(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt � K1(a,τ, p,q)

∫ τ

a
r(t)

∣∣∣yΔn(t)
∣∣∣p+q

Δt. (2.16)
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Proceeding as above, we also have

2p−1
∫ τ

a
μ p(t)s(t)

⎛
⎝∫ t

a

h
p+q

p+q−1
n−2 (t,σ(s))

(r(s))
1

p+q−1

Δs

⎞
⎠

p( p+q−1
p+q )

×
∣∣∣yΔn(t)

∣∣∣q(∫ t

a
r(s)

∣∣∣yΔn(s)
∣∣∣p+q

Δs

) p
p+q

Δt

� K2(a,τ, p,q)
∫ τ

a
r(t)

∣∣∣yΔn(t)
∣∣∣p+q

Δt. (2.17)

Integrating (2.9) from a to τ and using (2.16) and (2.17), we have∫ τ

a
s(t) |y(t)+ yσ(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt

� (K1(a,τ, p,q)+K2(a,τ, p,q))
∫ τ

a
r(t)

∣∣∣yΔn(t)
∣∣∣p+q

Δt,

which is the desired inequality (2.3). The proof is complete. �

Here, we only state the following theorem, since its proof is the same as that of
Theorem 2.1, with [a,τ]T replaced by [τ,b]T and y(t) in (2.4) is replaced by

y(t) = (−1)n
∫ b

t
gn−1(σ(s),t)yΔn(s)Δs, for t ∈ [τ,b]T.

THEOREM 2.2. Let T be a time scale with τ, b ∈ T and p, q be positive real
numbers such that p > 1, 1/p+ 1/q = 1, and let r,s be nonnegative rd-continuous

functions on (τ,b)T. If y ∈C(n)
rd ([τ,b]∩T) with yΔi(b) = 0, for 0 � i � n−1, then∫ b

τ
s(t) |y(t)+ yσ (t)|p

∣∣∣yΔn(t)
∣∣∣q Δt � K∗(τ,b, p,q)

∫ b

τ
r(t)

∣∣∣yΔn(t)
∣∣∣p+q

Δt, (2.18)

where K∗(τ,b, p,q) = K∗
1 (τ,b, p,q)+K∗

2(τ,b, p,q),

K∗
1 (τ,b, p,q) = 22p−1

(
q

p+q

) q
p+q

×

⎛
⎜⎝∫ b

τ

(s(t))
p+q

p

(r(t))
q
p

⎛
⎝∫ b

t

g
p+q

p+q−1
n−1 (σ(s),t)

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

.

and

K∗
2 (τ,b, p,q) = 22p−1

(
q

p+q

) q
p+q

×

⎛
⎜⎝∫ b

τ

μ p+q(t)(s(t))
p+q

p

(r(t))
q
p

⎛
⎝∫ b

t

g
p+q

p+q−1
n−2 (σ(s),t)

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

.
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In the following, we assume that there exists τ ∈ (a,b)T such that

K1(p,q) = K1(a,τ, p,q) = K∗
1 (τ,b, p,q) < ∞,

K2(p,q) = K2(a,τ, p,q) = K∗
2 (τ,b, p,q) < ∞,

where K1(a,τ, p,q), K2(τ,b, p,q) , K∗
1 (a,τ, p,q), and K∗

2 (τ,b, p,q) are defined as in
Theorems 2.1 and 2.2. Note that since∫ b

a
s(t) |y(t)+ yσ(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt

=
∫ τ

a
s(t) |y(t)+ yσ(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt +

∫ b

τ
s(t) |y(t)+ yσ(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt,

then the proof of the following theorem will be a combination of Theorems 2.1 and 2.2.

THEOREM 2.3. Let T be a time scale with a, b ∈ T and p, q be positive real
numbers such that p > 1, 1/p+ 1/q = 1, and let r, s be nonnegative rd-continuous

functions on (a,b)T. If y∈C(n)
rd ([a,b]∩T) with yΔi(a)= yΔi(b)= 0 , for i = 0,1,2, ...,n−

1 , then∫ b

a
s(t) |y(t)+ yσ(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt � K(a,b)

∫ b

a
r(t)

∣∣∣yΔn(t)
∣∣∣p+q

Δt, (2.19)

where K(a,b) = K1(p,q)+K2(p,q).

For r = s in Theorem 2.1, we obtain the following result.

COROLLARY 2.1. Let T be a time scale with a, τ ∈ T and p, q be positive real
numbers such that p > 1, 1/p + 1/q = 1, and let r be a nonnegative rd-continuous

function on (a,τ)T. If y∈C(n)
rd ([a,τ]∩T) with yΔi(a) = 0 , for i = 0,1,2, ...,n−1 , then

∫ τ

a
r(t) |y(t)+ yσ(t)|p

∣∣∣yΔn(t)
∣∣∣q Δt � K∗(a,τ, p,q)

∫ τ

a
r(t)

∣∣∣yΔn(t)
∣∣∣p+q

Δt, (2.20)

where

K∗(a,τ, p,q) = 22p−1
(

q
p+q

) q
p+q

×

⎛
⎜⎝∫ τ

a
r(t)

⎛
⎝∫ t

a

h
p+q

p+q−1
n−1 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

+2p−1
(

q
p+q

) q
p+q

×

⎛
⎜⎝∫ τ

a
μ p+q(t)r(t)

⎛
⎝∫ t

a

h
p+q

p+q−1
n−2 (t,σ(s))

r
1

p+q−1 (s)
Δs

⎞
⎠

(p+q−1)

Δt

⎞
⎟⎠

p
p+q

.
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From Theorems 2.2 and 2.3 one can derive similar results by setting r = s. The
details are left to the interested reader.

Setting r = 1 in (2.20), we have the following result.

COROLLARY 2.2. Let T be a time scale with a, τ ∈ T and p, qbe positive real

numbers such that p > 1, 1/p+1/q = 1. If y ∈C(n)
rd ([a,τ]∩T) is delta differentiable

with yΔi(a) = 0 , for i = 0,1,2, ...,n−1 , then

∫ τ

a
|y(t)+ yσ (t)|p

∣∣∣yΔn(t)
∣∣∣q Δt � L(a,b, p,q)

∫ τ

a

∣∣∣yΔn(t)
∣∣∣p+q

Δt, (2.21)

where

L(a,τ, p,q) = 22p−1
(

q
p+q

) q
p+q
(∫ τ

a

(∫ t

a
h

p+q
p+q−1
n−1 (t,σ(s))Δs

)(p+q−1)

Δt

) p
p+q

+2p−1
(

q
p+q

) q
p+q
(∫ τ

a
μ p+q(t)

(∫ t

a
h

p+q
p+q−1
n−2 (t,σ(s))Δs

)(p+q−1)

Δt

) p
p+q

.

Note that when T = R , we have yσ = y and μ(t) = 0. Then from Theorems 2.1
and 2.2 we have the following differential inequalities.

COROLLARY 2.3. Assume that p, q be positive real numbers such that p > 1,
1/p + 1/q = 1, and let r, s be nonnegative continuous functions on (a,τ). If y ∈
C(n)([a,τ]∩R) with y(i) = 0 , for i = 0,1,2, ...,n−1 , then

∫ τ

a
s(t) |y(t)|p

∣∣∣y(n)
(t)
∣∣∣q dt � C1(a,τ, p,q)

∫ τ

a
r(t)

∣∣∣y(n)
(t)
∣∣∣p+q

dt,

where

C1(a,τ, p,q) = 2p−1
(

q
p+q

) q
p+q

×
⎛
⎝∫ τ

a

(s(t))
p+q

p

(r(t))
q
p

(∫ t

a

(t− s)
p+q

p+q−1 (n−1)

(n−1)!r
1

p+q−1 (s)
ds

)(p+q−1)

dt

⎞
⎠

p
p+q

.

COROLLARY 2.4. Assume that p, q be positive real numbers such that p > 1,
1/p + 1/q = 1, and let r,sbe nonnegative continuous functions on (τ,b)R. If y ∈
C(n)([a,τ]∩R) with y(i)(b) = 0 , for i = 0,1,2, ...,n−1 , then

∫ b

τ
s(t) |y(t)|p

∣∣∣y(n)(t)
∣∣∣q dt � C2(τ,b, p,q)

∫ b

τ
r(t)

∣∣∣y(n)(t)
∣∣∣p+q

dt,



HIGHER ORDER TYPE INEQUALITIES 471

where

C2(τ,b, p,q) = 2p−1
(

q
p+q

) q
p+q

×
⎛
⎝∫ b

τ

(s(t))
p+q

p

(r(t))
q
p

(∫ b

t

(s− t)
p+q

p+q−1 (n−1)

(n−1)!r
1

p+q−1 (s)
ds

)(p+q−1)

dt

⎞
⎠

p
p+q

.

Note that when T = R , we have yσ = y , μ(t) = 0 and then Corollary 2.2 gives us
the following result.

COROLLARY 2.5. Assume that p, q be positive real numbers such that p > 1,
1/p+1/q = 1. If y ∈C(n)([a,τ]∩R) with y(i)(a) = 0 , for i = 0,1,2, ...,n−1 , then

∫ τ

a
|y(t)|p

∣∣∣y(n)(t)
∣∣∣q dt � 2p−1

(
q

(p+q)

) q
p+q

×
(

(τ −a)(p+q)(n−1)+(p+q)

M

) p
p+q ∫ τ

a

∣∣∣y(n)(t)
∣∣∣p+q

dt, (2.22)

where M = (n−1)!( p+q
p+q−1 (n−1)+1)(p+q−1))(p+q)(n−1)+ (p+q).

Note also that when p = 1, q = 1 and n = 1, we have the following result: If
y ∈C1([a,τ]∩R) with y(a) = 0, then

∫ τ

a
|y(t)|

∣∣∣y′(t)∣∣∣dt � 1
2
(τ −a)

∫ τ

a

∣∣∣y′(t)∣∣∣2 dt,

which is classical Opial’s inequality (see Opial [14] and Olech [13]).
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