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Abstract. For a,b > 0 with a �= b , let P = (a− b)/(4arctan
√

a/b−π) , A = (a+ b)/2 , G =√
ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In

this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of
arithmetic mean A and geometric mean G :(

2
3 Ap1 + 1

3 Gp1
)1/p1 < P <

(
2
3 Ap2 + 1

3 Gp2
)1/p2 ,

where p1 = 4/5 and p2 = logπ/2 (3/2) are the best possible constants. Moreover, our sharp
bounds for P are compared with other known ones, which yields a chain of inequalities involving
Seiffert mean P .

1. Introduction and main results

Throughout the paper, we assume that a,b > 0 with a �= b .
Let w ∈ (0,1) . The r -th weighted power mean of positive numbers a,b > 0 is

defined as

Mr (a,b;w) := (war +(1−w)br)1/r if r �= 0 and M0 (a,b;w) = awb1−w. (1.1)

It is well-known that Mr (a,b;w) is increasing with respect to r on R (see [1]). In
particular, Mr (a,b) := Mr (a,b;1/2) is the standard power mean. As special cases, the
arithmetic mean and geometric mean are A = A(a,b) = M1 (a,b) and G = G(a,b) =
M0 (a,b) , respectively. Let L = (a−b)/(loga− logb) , I = e−1

(
bb/aa

)1/(b−a)
denote

the logarithmic mean and identric mean, respectively.
The Seiffert’s mean defined by

P = P(a,b) =
a−b

4arctan
√

a/b−π
(1.2)

or

P = P(a,b) =
a−b

2arcsin a−b
a+b

(1.3)
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was introduced in [17], it has attracted many scholars’ attention, and the inequalities
involving P(a,b) have been the subject of intensive research. In [18], the author proved
that

L < P < I (1.4)

and further showed that [19]:

P >
3AG

2A+G
, (1.5)

P >
AG
L

, (1.6)

2
π

A < P < A. (1.7)

Jagers [9] and Hästo [5] gave bounds for P in terms of power means:

M1/2 < P < M2/3, (1.8)

2
√

2
π

M2/3 < P < M2/3, (1.9)

respectively. Later, Hästo obtained a sharp lower bound for P [6]:

P > Mlogπ 2. (1.10)

In 2001, Sándor [16] established the following

A+G
2

< P <

√
A+G

2
A, (1.11)

A2/3G1/3 < P <
2A+G

3
. (1.12)

The more results can be found in [4], [7], [12], [14], [20], [21].
The main purpose of this paper is to strengthen the inequalities (1.12), that is, to

determine the best p ∈ (0,1) such that the inequality

P >
( 2

3Ap + 1
3Gp)1/p

(1.13)

or its reverse inequality holds. Our main results are the following

THEOREM 1. The inequality (1.13) holds for all a,b > 0 with a �= b if and only
if p � p1 = 4/5 . Moreover, we have

α1

(
2
3A4/5 + 1

3G4/5
)5/4

< P < α2

(
2
3A4/5 + 1

3G4/5
)5/4

, (1.14)

where α1 = 1 and α2 = 3 4
√

24/(2π) = 1.0568... are the best possible constants.



SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED POWER MEANS 501

THEOREM 2. The inequality (1.13) is reversed for all a,b > 0 with a �= b if and
only if p � p2 = logπ/2 (3/2) = 0.89788... . Moreover, we have

β1

(
2
3
Ap2 +

1
3
Gp2

)1/p2

< P < β2

(
2
3
Ap2 +

1
3
Gp2

)1/p2

, (1.15)

where β1 ≈ 0.99237 and β2 = 1 are the best possible constants.

Due to (1.3) and with x = arcsin a−b
a+b ∈ (0,π/2), we have

P
A

=
sinx
x

,
G
A

= cosx.

Thus Theorem 1 and 2 can be changed as the following two equivalent theorems.

THEOREM A. The inequality

sinx
x

>
( 2

3 + 1
3 (cosx)p)1/p

(1.16)

holds for x ∈ (0,π/2) if and only if p � p1 = 4/5 . Moreover, we have

α1

(
2
3 + 1

3 (cosx)4/5
)5/4

<
sinx
x

< α2

(
2
3 + 1

3 (cosx)4/5
)5/4

, (1.17)

where α1 = 1 and α2 = 3 4
√

24/(2π) = 1.0568... are the best possible constants.

THEOREM B. The inequality (1.16) is reversed for x ∈ (0,π/2) if and only if
p � p2 = logπ/2 (3/2) = 0.89788... . Moreover, we have

β1
(

2
3 + 1

3 (cosx)p2
)1/p2 <

sinx
x

< β2
(

2
3 + 1

3 (cosx)p2
)1/p2 , (1.18)

where β1 ≈ 0.99237 and β2 = 1 are the best possible constants.

REMARK 1. Cusa-Huygens inequality [8] refers to

sinx
x

< 2
3 + 1

3 cosx (1.19)

holds for x ∈ (0,π/2). It is obvious that Our Theorem A and B are improvements of
(1.19). Other improvements and refinements for Cusa-Huygens inequality can be found
in [2], [10], [13], [14], [15].

A hyperbolic counterpart of the inequality (1.16) is due to Zhu [22, Theorem 1.1].

2. Lemmas

LEMMA 1. Let M (a,b) be a homogeneous mean of positive arguments a and b.
Then

M (a,b) =
√

abM
(
et ,e−t) ,

where t = 1
2 log(a/b) .
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LEMMA 2. Let the function t �→ Fp (t) be defined on (0,∞) by

Fp (t) =

{
log 2sinht

4arctan et−π − 1
p log

(
2
3 coshp t + 1

3

)
if p �= 0,

log 2sinht
4arctan et−π − cosh2/3 t if p = 0.

(2.1)

Then we have

lim
t→0+

Fp (t)
t4

=
1
45

− 1
36

p (2.2)

Fp (∞) = lim
t→∞

Fp (t) =

{
1
p log 3

2 − log π
2 if p > 0,

∞ if p � 0.
(2.3)

Proof. Using power series expansion we have

Fp (t) = −5p−4
180

t4 +O
(
t6
)

,

which yields (2.2).
To obtain (2.3), we write Fp (t) as

Fp (t) = log2− log
(
4arctanet −π

)− 1
p

log

(
2
3

(
cosht
sinht

)p

+
1
3

(
1

sinh t

)p)
,

from which (2.3) easily follows.
The proof ends. �

LEMMA 3. Let the function t �→ Fp (t) be defined on (0,∞) by (2.1) . Then Fp is
strictly increasing on (0,∞) if p ∈ (0,4/5] .

Proof. Differentiation and arrangement yield

F ′
p (t) =

2coshp t + cosh2 t
(cosh t sinht)(2coshp t +1)(4arctanet −π)

f1 (t) , (2.4)

where

f1 (t) = 4arctanet −π −2sinht +
2sinh3 t

cosh2 t +2coshp t
. (2.5)

Differentiation again and factoring lead to

f ′1 (t) =
4sinh2 t(

cosh3 t
)(

1+2coshp−2 t
)2 f2 (cosh t) , (2.6)

here
f2 (x) = (1− p)xp−2x2p−2 + pxp−2 +1, x ∈ (1,∞) . (2.7)
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Simple computation reveals that

x3−p f ′2 (x) = p(1− p)x2 +4(1− p)xp + p(p−2) := f3 (x) , (2.8)

f3
′ (x) = 2p(1− p)

(
x+2xp−1) . (2.9)

If p ∈ (0,4/5] , then
f3
′ (x) = 2p(1− p)

(
x+2xp−1)> 0

for all x > 1, that is, f3 is increasing on (1,∞) , it is derived that

f3 (x) > f3 (1) = 4−5p > 0,

which together with (2.8) leads to f ′2 (x) > 0, that is, f2 is increasing on (1,∞) . Hence,
we have

f2 (x) > f2 (1) = 0,

which in conjunction with (2.6) implies that f ′1 (t) > 0 for all t > 0, and then, f1 (t) >
f1 (0) = 0. Thus it is obtained that F ′

p (t) > 0, that is, the desired result.
The proof is completed. �
From the proof of Lemma 3 it is obtained that

f1 (t) = 4arctanet −π −2sinht +
2sinh3 t

cosh2 t +2coshp t
> 0,

which can be written as

2sinht
4arctanet −π

<
cosh2 t +2coshp t

1+2coshp t
, (2.10)

where p ∈ (0,4/5] . It is easy to verify that

d
dp

cosh2 t +2coshp t
1+2coshp t

= −coshp t
log(cosht)

(2coshp t +1)2
(cosh2t−1) < 0,

that is, the function p �→ cosh2 t+2coshp t
1+2coshp t is decreasing on R . By Lemma 1 the result can

be stated as a corollary of Lemma 3.

COROLLARY 1. We have

P <
A2 +2ApG2−p

G2 +2ApG2−p G, (2.11)

where the right hand of (2.11) decreases as p increases on (−∞,4/5] . Particularly,
putting p = 4/5 , 0 , ..., →−∞ we have

P < A4/5G−1/5 A6/5 +2G6/5

2A4/5 +G4/5
<

A2 +2G2

3G
< · · ·< A2

G
. (2.12)



504 Y. ZHEN-HANG

LEMMA 4. Let p ∈ (4/5,1) and the function t �→ Fp (t) be defined on (0,∞) by
(2.1) . Then there is a unique number t3 ∈ (0,∞) to satisfy f1 (t3) = 0 such that Fp is
decreasing on (0, t3) and increasing on (t3,∞) .

Proof. We start with (2.9) to prove this lemma. If p ∈ (4/5,1) then

f3
′ (x) = 2p(1− p)

(
x+2xp−1)> 0,

and note that

f3 (1) = 4−5p < 0 and f3 (∞) = sgn (p(1− p)) > 0,

it is seen that there is a unique number x1 ∈ (1,∞) such that f3 (x) < 0 for x ∈ (1,x1)
and f3 (x) > 0 for x ∈ (x1,∞) . From (2.8) it is deduced that f2 is decreasing on (1,x1)
and increasing on (x1,∞) . And then, f2 (x) < f2 (1) = 0 for x ∈ (1,x1) , but f2 (∞) =
sgn (1− p)> 0, it follows that there is a unique number x2 ∈ (x1,∞) such that f2 (x) <
0 for x ∈ (1,x2) and f2 (x) > 0 for x∈ (x2,∞) . Due to (2.6) this implies that there exits
a unique t2 ∈ (0,∞) to satisfy cosh t2 = x2 so that the function t �→ f1 (t) is decreasing
on (0, t2) and increasing on (t2,∞) . Hence, we have

f1 (t) < f1 (0) = 0 if t ∈ (0, t2) .

However,

lim
t→∞

f1 (t) =
π
4

> 0,

thus there is a unique number t3 ∈ (t2,∞) to satisfy f1 (t3) = 0 such that f1 (t) < 0
if t ∈ (0, t3) and f1 (t) > 0 if t ∈ (t3,∞) , which from (2.4) reveals that the function
t �→ Fp (t) is decreasing on (0,t3) and increasing on (t3,∞) .

This completes the proof. �

3. Proofs of Main Results

Proof of Theorem 1. By symmetry, we assume that b > a > 0. We have

P
(
et ,e−t)=

2sinh t
4arctanet −π

, A
(
et ,e−t)= cosht, G

(
et ,e−t)= 1,

where t = 1
2 log(b/a) > 0. From Lemma 1, in order to prove that inequality (1.13)

holds if and only if p � 4/5, it is enough to show that inequalities

log
2sinh t

4arctanet −π
> 1

p log
(

2
3 (cosht)p + 1

3

)
,

that is, Fp (t) > 0 holds if and only if p � 4/5, where Fp (t) is defined by (2.4).

Necessity. If Fp (t) > 0 holds for all t > 0, then by Lemma 2 we have⎧⎨
⎩

limt→0+
Fp(t)
t4

= 1
45 − 1

36 p � 0,

limt→∞ Fp (t) = 1
p log 3

2 − log π
2 � 0 if p > 0
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or ⎧⎨
⎩

limt→0+
Fp(t)
t4

= 1
45 − 1

36 p � 0,

limt→∞ Fp (t) = ∞ if p � 0.

Solving the inequalities for p yields p � 4/5.

Sufficiency. Suppose that p � 4/5. Since the function

p �→ 1
p

log
(

2
3 (cosht)p + 1

3

)
is clearly increasing, so the function p �→ Fp (t) is decreasing, thus it is suffices to show
that Fp (t) > 0 for all t > 0 if p = p1 = 4/5. By Lemma 3, we see that Fp1 is strictly
increasing on (0,∞) . It follows that

0 = Fp1 (0) < Fp1 (t) < Fp1 (∞) =
5
4

log
3
2
− log

π
2

,

which proves the sufficiency and inequalities (1.14). Clearly,

α1 = exp(0) = 1 and α2 = exp

(
5
4

log
3
2
− log

π
2

)
= 3 4

√
24/(2π)

are the best possible constants.
Thus the proof of Theorem 1 is finished. �

Proof of Theorem 2. Clearly, the reverse inequality of (1.13) is equivalent to Fp (t)
< 0 for t > 0. Now we show that Fp (t) < 0 holds for all t > 0 if and only if p � p2 =
(log3− log2)/(logπ − log2) .

Necessity. The condition p � p2 is necessary. Indeed, if Fp (t) < 0 holds for all
t > 0, then we have

lim
t→0+

Fp (t)
t4

=
1
45

− 1
36

p � 0,

lim
t→∞

Fp (t) =
1
p

log
3
2
− log

π
2

� 0 if p > 0,

which leads to p � logπ/2 (3/2) = p2 .

Sufficiency. The condition p � p2 is also sufficient. As mentioned in proof of
Theorem 1, the function p �→Fp (t) is decreasing, thus it is suffices to show that Fp (t)<
0 for all t > 0 if p = p2 .

Lemma 4 reveals that for p ∈ (4/5,1) there is a unique number t3 ∈ (t2,∞) to
satisfy

f1 (t) = arctanet − 2sinht +4coshp t sinh t + π cosh2 t +2π coshp t

8coshp t +4cosh2 t
= 0 (3.1)



506 Y. ZHEN-HANG

such that Fp is decreasing on (0,t3) and increasing on (t3,∞) . It is acquired that for
p2 = logπ/2 (3/2) ∈ (4/5,1)

Fp2 (t3) < Fp2 (t) < Fp2 (0) = 0 if t ∈ (0,t3) ,
Fp2 (t3) < Fp2 (t) < Fp2 (∞) = 0 if t ∈ (t3,∞) ,

that is,

Fp2 (t3) < log
2sinht

4arctan et−π( 2
3 (cosht)p2 + 1

3

)1/p2
< 0,

which proves the sufficiency and inequalities (1.15).
Furthermore, for p = p2 = logπ/2 (3/2) , solving the equation (3.1) for t by math-

ematical computation software yields t3 ≈ 2.6630245, and then

β1 = exp(Fp2 (t3)) ≈ 0.99237 and β2 = exp(0) = 1.

Clearly, β1 ≈ 0.99237 and β2 = 1 are the best possible constants.
This completes the proof of Theorem 2. �

4. Comparisons of certain bounds for P

It is mentioned in the Introduction that there has many bounds for P , some com-
parisons of them can refer to [7]. In this section, the bounds in the form of Mr1 (A,G;2/3)
will be compared with other ones in the form of Mr2 (a,b;1/2), where Mr (a,b;w) is
defined by (1.1).

LEMMA 5. The inequalities

( 2
3Ap + 1

3Gp)1/p
<

(
a2/3 +b2/3

2

)3/2

<
( 2

3Aq + 1
3Gq)1/q

(4.1)

hold if and only if p � 10/9 and q � log2 (9/4) .

Proof. By Lemma 1, in order to prove this lemma, it is enough to prove that for
t > 0 inequalities

1
p log

(
2
3 (cosh t)p + 1

3

)
< 3

2 logcosh 2
3 t < 1

q log
(

2
3 (cosh t)q + 1

3

)
(4.2)

hold if and only if p � 10/9 and q � log2 (9/4) .
Define that

Gp (t) :=
1
p

log

(
2
3

(cosh t)p +
1
3

)
− 3

2
logcosh

2
3
t. (4.3)
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Then we easily get

lim
t→0+

Gp (t)
t4

=
1
36

p− 5
162

, (4.4)

Gp (∞) =
{ 1

2 log2− 1
p log 3

2 if p > 0,

−∞ if p � 0.
(4.5)

On the other hand, differentiation yields

G′
p (t) =

(
2sinh t

3 cosht
)
logcosh t(

cosh 2
3 t cosh t

)
(2coshp t +1)

L

(
coshp−1 t,cosh

1
3
t

)
×g1 (t) , (4.6)

where

g1 (t) = p−1− logcosh 1
3 t

logcosht
(4.7)

and L(x,y) is the logarithmic mean of positive numbers x and y .
Differentiation again leads to

3(cosh 1
3 t cosht) log2(cosh t)
3cosh 1

3 t sinht
g′1 (t)

= log
(
cosh 1

3 t
)− sinh 1

3 t cosh t

3cosh 1
3 t sinht

log(cosht) := g2 (t) , (4.8)

g′2 (t) = −2
9

sinh3 2
3 t

cosh2 1
3 t sinh2 t

log(cosht) < 0 (4.9)

for t > 0. It is acquired that g2 (t) < g2 (0) = 0, which implies that g1 is decreasing on
(0,∞) .

Now we are in a position to prove the desired results.
(i) We prove the first inequality of (4.2) holds if and only if p � 10/9. In fact,

if the first inequality of (4.2) holds, that is, Gp (t) < 0 for all t > 0, then by (4.4) and
(4.5) we have ⎧⎨

⎩
limt→0+

Gp(t)
t4

= 1
36 p− 5

162 � 0,

Gp (∞) = 1
2 log2− 1

p log 3
2 � 0 if p > 0

or ⎧⎨
⎩

limt→0+
Gp(t)

t4
= 1

36 p− 5
162 � 0,

Gp (∞) = −∞ if p � 0.

Solving the above inequalities leads to p � 10/9.
Conversely, if p � 10/9, then since g1 is decreasing on (0,∞) , it is obtained that

g1 (t) < g1
(
0+)= lim

t→0+

(
p−1− logcosh 1

3 t

logcosh t

)
= p− 10

9
� 0,
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which in combinationwith (4.6) reveals that G′
p (t)< 0. Thus we conclude that Gp (t)<

Gp (0) = 0, that is, the first inequality of (4.2) holds.
(ii) Next we show that the second inequality of (4.2) holds if and only if p �

log2 (9/4) .
If the second inequality of (4.2) holds, that is, Gp (t) > 0 for all t > 0, then by

(4.4) and (4.5) we have⎧⎨
⎩

limt→0+
Gp(t)

t4
= 1

36 p− 5
162 � 0,

Gp (∞) = 1
2 log2− 1

p log 3
2 � 0 if p > 0,

which yields p � log2 (9/4) .
Conversely, if p � log2 (9/4) , since the function p → Gp (t) is increasing, then it

suffices to show that Gp (t) > 0 for all t > 0 if p = log2 (9/4) . By the monotonicity of
the function g1 and the fact that

g1
(
0+) = lim

t→0+

(
log2

9
4
−1− logcosh 1

3 t

logcosht

)
= log2

9
4
− 10

9
> 0,

g1 (∞) = lim
t→∞

(
log2

9
4
−1− logcosh 1

3 t

logcosh t

)
= log2

9
4
− 4

3
< 0,

it is seen that there is a unique number t0 ∈ (0,∞) such that g1 (t) > 0 if t ∈ (0, t0) and
g1 (t) < 0 if t ∈ (t0,∞) , which together with (4.6) indicates that the function t →Gp (t)
is increasing on (0, t0) and decreasing on (t0,∞) . Therefore, we conclude that

Gp (t) > Gp (0) = 0 for t ∈ (0,t0) ,

Gp (t) > Gp (∞) = 0 for t ∈ (t0,∞) ,

which is the desired result.
Thus the proof ends. �

LEMMA 6. Let r0 = (log2)/ logπ . Then inequalities

( 2
3Ap + 1

3Gp)1/p
>

(
ar0 +br0

2

)1/r0

(4.10)

hold if and only if p � logπ/2 (3/2) , and the two sides of (4.10) are not comparable for
all a,b > 0 with a �= b if p < logπ/2 (3/2) .

Proof. From (1.10) and Theorem 2 it follows that (4.10) holds if p � logπ/2 (3/2) ,
that is, the condition p � logπ/2 (3/2) is sufficient to (4.10) holds for all a,b > 0 with
a �= b .
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We now show that the condition p � logπ/2 (3/2) is necessary. Indeed, by sym-
metry of a and b , we assume that b > a and let x = a/b ∈ (0,1) . Then inequality
(4.10) is equivalent with

Up (x) :=
1
p

log

(
2
3

(
x+1

2

)p

+ 1
3

(√
x
)p
)
− 1

r0
log

(
xr0 +1

2

)
> 0,

where x ∈ (0,1) .
If (4.10) holds for all a,b > 0 with a �= b , then

Up
(
0+)=

{ 1
p log 2

3 − log2+ 1
r0

log2 if p > 0

−∞ if p � 0

has to be nonnegative, which leads to p � logπ/2 (3/2) . This completes the proof of
sufficiency.

Next we show that the two sides of (4.10) are not comparable for all a,b > 0 with
a �= b if p < logπ/2 (3/2) . Clearly, Up (0+) < 0 and

lim
x→1−

Up (x)

(x−1)2
=

1
12

− 1
8
r0 =

2logπ −3log2
24logπ

> 0.

From this it is seen that there exits x1,x2 ∈ (0,1) such that Up (x) < 0 for x ∈ (0,x1)
and Up (x) > 0 for x ∈ (x2,1) , that is, the sign of Up (x) is not a constant. Thus the
proof is completed. �

LEMMA 7. The inequality

(
2
3Ap + 1

3Gp)1/p
>

(
a1/2 +b1/2

2

)2

(4.11)

holds if and only if p � log2 3− 1 = 0.58496... , and the two sides of (4.11) are not
comparable for all a,b > 0 with a �= b if p < log2 3−1 .

Proof. Since the right hand of (4.11) can be written as (A+G)/2, then the in-
equality (4.11) is equivalent with

Vp (x) =
1
p

log

(
2
3
xp +

1
3

)
− log

(
1
2
x+

1
2

)
> 0,

where x = A/G > 1.
If Vp (x) > 0 for all x > 1 then p > 0. If not, then

lim
x→∞

Vp (x) = −∞ if p � 0, (4.12)

which yields a contradiction. Thus we get

Vp (∞) = lim
x→∞

Vp (x) =
1
p

log
2
3
− log

1
2

� 0 if p > 0, (4.13)
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which yields p � log2 3−1.
Conversely, if p � log2 3−1, then since the function p �→Vp (x) is increasing, we

need to prove Vp (x) > 0 for all x > 1.
Differentiation leads to

V ′
p (x) =

−xp

x(x+1)(2xp +1)
(
x1−p−2

)
,

which indicates that there is a unique number x0 = 21/(1−p) such that V ′
p (x) > 0 if

x ∈ (1,x0) and V ′
p (x) < 0 if x ∈ (x0,∞) . Thus we conclude that

Vp (x) > Vp (1) = 0 if x ∈ (1,x0) and Vp (x) > Vp (∞) � 0 if x ∈ (x0,∞) ,

that is, the desired result.
We now illustrate that the two sides of (4.11) are not comparable for all a,b > 0

with a �= b if p < log2 3−1. In fact, if p < log2 3−1, then via (4.12) and (4.13) it is
easily seen that Vp (∞) < 0. On the other hand, it is easy to derive

lim
x→1+

Vp (x)
x−1

=
1
6

> 0.

Consequently, there exits x1,x2 ∈ (1,∞) such that Vp (x)> 0 for x∈ (1,x1) and Vp (x)<
0 for x ∈ (x2,∞) , that is, sgn (Vp (x)) is not a constant.

This completes the proof. �

Using Theorem 1, 2 and Lemma 5, 6, 7, the following theorem is immediate.

THEOREM 3. Let q � log2 (9/4) , logπ/2 (3/2) � r � 10/9 , log2 3−1 � s � 4/5 .
Then we have (

2
3Aq + 1

3Gq)1/q
> M2/3 >

(
2
3Ar + 1

3Gr)1/r
(4.14)

> P >
( 2

3As + 1
3Gs)1/s

> M1/2.

REMARK 2. In [11] Kouba proved that inequalities

(
2
3Ap + 1

3Gp)1/p
< I <

(
2
3Aq + 1

3Gq)1/q
(4.15)

hold if and only if p � 6/5 and q � (log3− log2)/(1− log2) .
Relation (4.14) in combination with (4.15) leads to

( 2
3Ap + 1

3Gp)1/p
> I >

( 2
3Aq + 1

3Gq)1/q
> M2/3 (4.16)

>
(

2
3Ar + 1

3Gr)1/r
> P >

(
2
3As + 1

3Gs)1/s
> M1/2,

where p � (log3− log2)/(1− log2) , log2 (9/4)� q � 6/5, logπ/2 (3/2)� r � 10/9,
log2 3−1 � s � 4/5.
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