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SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED
POWER MEANS OF ARITHMETIC MEAN AND GEOMETRIC MEAN

ZHEN-HANG YANG

(Communicated by I. Peri¢)

Abstract. For a,b >0 with a # b, let P = (a—b)/(4arctan\/a/b—m), A= (a+b)/2, G=
Vab denote the Seiffert mean, arithmetic mean, geometric mean of a and b, respectively. In
this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of
arithmetic mean A and geometric mean G:

(247 4 LP)' P < p < (2aP2 4 Lgr2)' /P2

where py =4/5 and p, =log;/,(3/2) are the best possible constants. Moreover, our sharp
bounds for P are compared with other known ones, which yields a chain of inequalities involving
Seiffert mean P.

1. Introduction and main results

Throughout the paper, we assume that a,b > 0 with a # b.
Let w € (0,1). The r-th weighted power mean of positive numbers a,b > 0 is
defined as

M, (a,by;w) := (wa"+ (1 — w)br)l/r if r % 0 and Mo (a,b;w) = a"b' ™", (L.1)

It is well-known that M, (a,b;w) is increasing with respect to r on R (see [1]). In
particular, M, (a,b) := M, (a,b;1/2) is the standard power mean. As special cases, the
arithmetic mean and geometric mean are A = A (a,b) = M, (a,b) and G = G(a,b) =
My (a,b), respectively. Let L= (a—b)/ (loga—logb), I=¢"" (b"/a”) V09 enote
the logarithmic mean and identric mean, respectively.

The Seiffert’s mean defined by

a—>b
P=P(a,b)= (1.2)
4arctany/a/b—m
or b
a—
P:P(a,b):m (13)
arcsin R
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was introduced in [17], it has attracted many scholars’ attention, and the inequalities
involving P (a,b) have been the subject of intensive research. In [18], the author proved
that

L<P<I (1.4)
and further showed that [19]:
3AG
—_— 1.
- 2A+G’ (1.5)
AG
P> — 1.6
> (L6)
2
;A<P<A. (1.7)

Jagers [9] and Hésto [5] gave bounds for P in terms of power means:

M1/2 < P<1Wz/37 (1.8)

2V2
TM2/3 < P<1Wz/37 (1.9)

respectively. Later, Hasto obtained a sharp lower bound for P [6]:
P> Mg 2. (1.10)
In 2001, Sandor [16] established the following

A+G A+G
17 o p<y /2 A
> <r< > s
24
AY3GV3 < p< ;’G. (1.12)

(1.11)

The more results can be found in [4], [7], [12], [14], [20], [21].
The main purpose of this paper is to strengthen the inequalities (1.12), that is, to
determine the best p € (0, 1) such that the inequality

P> (247 + 1gr)'/? (1.13)
or its reverse inequality holds. Our main results are the following

THEOREM 1. The inequality (1.13) holds for all a,b > 0 with a # b if and only
if p< p1=4/5. Moreover, we have

5/4 5/4
a1(§A4/5+§G4/5) <P<az(%A4/5+%G4/5> : (1.14)

where oy = 1 and o = 3+/24/ (21) = 1.0568... are the best possible constants.
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THEOREM 2. The inequality (1.13) is reversed for all a,b > 0 with a # b if and
onlyif p > pa =log,, (3/2) = 0.89788.... Moreover;, we have

2 1 1/pa 2 1 1/pa
Bl <§Ap2+§Gp2) <P<ﬁ2 <§Ap2+§Gp2) s (115)

where 1 ~0.99237 and B, = 1 are the best possible constants.
Due to (1.3) and with x = arcsin % € (0,m/2), we have

P sinx G cos
— = ——, — =cCoSsx.
A X A

Thus Theorem 1 and 2 can be changed as the following two equivalent theorems.
THEOREM A. The inequality
sinx

Pk (%+%(c0sx)p)l/p (1.16)

holds for x € (0,7 /2) if and only if p < py =4/5. Moreover, we have
5/4 g 5/4
o (% +1 (cosx)4/5> < Slxﬂ <0 (% +1 (cosx)4/5> , (1.17)

where oy = 1 and o =3+v/24/ (21) = 1.0568... are the best possible constants.

THEOREM B. The inequality (1.16) is reversed for x € (0,m/2) if and only if
p = p2=logg;(3/2) = 0.89788.... Moreover, we have

Bi(3+1% (cosx)m)l/p2 < ? <B(3+1 (cosx)m)l/m, (1.18)

where 1 ~0.99237 and B, = 1 are the best possible constants.

REMARK 1. Cusa-Huygens inequality [8] refers to

T < 24 Leosx (1.19)
X

holds for x € (0,7/2). It is obvious that Our Theorem A and B are improvements of
(1.19). Other improvements and refinements for Cusa-Huygens inequality can be found
in [2], [10], [13], [14], [15].

A hyperbolic counterpart of the inequality (1.16) is due to Zhu [22, Theorem 1.1].

2. Lemmas

LEMMA 1. Let M (a,b) be a homogeneous mean of positive arguments a and b.
Then

M(a,b) = \/EM(et,e_t) ,
where t = Llog(a/b).
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LEMMA 2. Let the function t — F), (t) be defined on (0,°°) by

F (Z { log 4ar§$22’t—n - %log (% cosh”7 + %) ifp#0,
p\l) = : .
log%—coshzﬂt ifp=0.

Then we have

_ F(1) 11
lim 22 = — — —
0 A T a5 36F
1 3 T
~logs —log5 if p >0,
Fp(w) = limF, (1)=¢ 7 =2 72
t—o0 oo lfpgo

Proof. Using power series expansion we have

F,(t)=— 51[1)8_04# +0 (l6> ,

which yields (2.2).
To obtain (2.3), we write F, () as

1 2 he\? 1
F,(t) =log2 —log (4arctanet — n) — I—)log <§ (Z?rfht) + 3 (

from which (2.3) easily follows.
The proof ends. [J

sinht

2.1)

2.2)

(2.3)

LEMMA 3. Let the function t — F), (t) be defined on (0,00) by (2.1). Then F), is

strictly increasing on (0,00) if p € (0,4/5].

Proof. Differentiation and arrangement yield

2cosh? 1 + cosh?t

F (t)= t
» () (coshtsinht) (2cosh”z 4 1) (4arctane’ — 71:)f1 )
where 5
2sinh” ¢
t) =4arctanée’ — t —2sinht + ——————.
fi®) cosh? +2cosh? ¢
Differentiation again and factoring lead to
, 4sinh?¢
fl(t): 2f2(COSht)a

(cosh3 1) (1+ ZCoshp’zt)

here
Hx)=(1—p)xP =262 4 pxP 241, x€(1,00).

(2.4)

(2.5)

(2.6)

2.7
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Simple computation reveals that

) =p(l=p)+4(1=p)x”+p(p—2):= f3(x), (2.8)
f(x) =2p(1—p) (x+2x""1). (2.9)

If p € (0,4/5], then

£ @) =2p(1—p) (x+2+"71) >0

forall x > 1, thatis, f3 is increasing on (1,e0), it is derived that

f(x)>f3(1)=4-5p>0,

which together with (2.8) leads to f3 (x) > 0, that s, f> isincreasing on (1,e0). Hence,
we have

f(x)> f2(1) =0,

which in conjunction with (2.6) implies that f] (z) > 0 for all 7 > 0, and then, f; () >
f1(0) =0. Thus it is obtained that F,, (1) > 0, that is, the desired result.
The proof is completed. [

From the proof of Lemma 3 it is obtained that

2sinh?7
t) = 4arctane’ — r —2sinht + —————— ,
fi(6) cosh®z +2cosh” ¢
which can be written as
2sinht cosh?z +2cosh? 1

< , 2.10
4arctane’ — 1 1+2cosh?”t ( )

where p € (0,4/5]. Itis easy to verify that

d cosh?t+2cosh? ¢ 1 ht
@ coshTit 2cosh t cops — —cosh?r 8O (cosh?) 5 (cosh2r —1) <0,
dp 1+2cosh”t (2cosh?t +1)
that is, the function p — % is decreasing on R. By Lemma 1 the result can

be stated as a corollary of Lemma 3.

COROLLARY 1. We have

A% 4 2APG*P

P - @
S Gr2argE e

2.11)
where the right hand of (2.11) decreases as p increases on (—es,4/5]. Particularly,
putting p=4/5, 0, ..., — —oo we have

1sA%P 42655 A2 426 _ A2

P < A*5G gy 2.12
< A5G~ T 3G <G 2.12)
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LEMMA 4. Let p € (4/5,1) and the function t — F), (t) be defined on (0,°) by
(2.1). Then there is a unique number t3 € (0,°0) to satisfy fi(t3) =0 such that F, is
decreasing on (0,t3) and increasing on (t3,°0).

Proof. We start with (2.9) to prove this lemma. If p € (4/5,1) then
£ @) =2p(1—p) (x+2x""") >0,
and note that

f3(1)=4-5p<0 and f;3(e) =sgn(p(1—p)) >0,

it is seen that there is a unique number x; € (1,e0) such that f3 (x) < 0 for x € (
and f3 (x) > 0 for x € (x,e0). From (2.8) it is deduced that f> is decreasing on (
and increasing on (xj,°). And then, f> (x) < f2 (1) =0 for x € (1,x), but f (e0) =
sgn (1 —p) >0, it follows that there is a unique number x3 € (x,e°) such that f, (x) <
0 for x € (1,x;) and f5 (x) > 0 for x € (xp,0). Due to (2.6) this implies that there exits
a unique 1, € (0,00) to satisfy coshz, = x, so that the function 7 — fj (r) is decreasing
on (0,1;) and increasing on (f,,°0). Hence, we have

fi(t) < fi(0)=0ifre (0,n).

17 1)
17 l)

However,
. T
lim fi (1) = 70

thus there is a unique number 73 € (f2,°0) to satisfy fj (t3) = 0 such that f; () <0
if 1 € (0,13) and f1(t) > 0 if 7 € (t3,°0), which from (2.4) reveals that the function
t+— F), () is decreasing on (0,73) and increasing on (f3,0).

This completes the proof. [l

3. Proofs of Main Results

Proof of Theorem 1. By symmetry, we assume that b > a > 0. We have
2sinht

Pde’)=———, A(c,e")=cosht, G(,e')=1

(¢.e7) 4arctane’ — 1 (¢!,¢7) = cos (he) =1,

where ¢ = $log(b/a) > 0. From Lemma 1, in order to prove that inequality (1.13)
holds if and only if p < 4/5, it is enough to show that inequalities

2sinht
0 —_—
£ darctane’ — 1

that is, F}, () > 0 holds if and only if p <4/5, where F), (¢) is defined by (2.4).
Necessity. If F},(t) > 0 holds for all > 0, then by Lemma 2 we have

> %log (3 (coshr)? + 1),

. Fp(t) 1
lim; o+ 37 = 55— 540 20,
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or

Solving the inequalities for p yields p <4/5.
Sufficiency. Suppose that p < 4/5. Since the function

1
p ;log (2 (cosht)” + 1)

is clearly increasing, so the function p +— F}, (¢) is decreasing, thus it is suffices to show
that F, () >0 forall r >0 if p = p; =4/5. By Lemma 3, we see that F), is strictly
increasing on (0,o0). It follows that

5.3 T
0=Fp, (0) <Fp, (1) < Fp, (w)zzlogi—log?

which proves the sufficiency and inequalities (1.14). Clearly,
5 3 T 4
oq =exp(0) =1 and o = exp Zlog 3~ logE = 3V24/ (27)

are the best possible constants.
Thus the proof of Theorem 1 is finished. [J

Proof of Theorem 2. Clearly, the reverse inequality of (1.13) is equivalentto F), (¢)
< 0 for r > 0. Now we show that F}, () <0 holds for all # > 0 if and only if p > py =
(log3 —1log2)/ (logm —log2).

Necessity. The condition p > p; is necessary. Indeed, if F}, (r) < O holds for all
t > 0, then we have

Fp(t) 1 1

o A T a5 36P

13
hmF():—log——log <0if p>0,

f—o0 2

which leads to p > log, ,(3/2) =

Sufficiency. The condition p > p, is also sufficient. As mentioned in proof of
Theorem 1, the function p — F, () is decreasing, thus it is suffices to show that F), () <
0 forall t >0 if p=p».

Lemma 4 reveals that for p € (4/5,1) there is a unique number #3 € (f,,%0) to
satisfy

. . 2
i (t) = arctane’ — 2sinht 44 cosh” ¢ sinht + ECOS? t+2mcosh’t _0 G.1)
8cosh”t +4cosh”t
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such that F), is decreasing on (0,73) and increasing on (3,0). It is acquired that for
p2=log;/;(3/2) € (4/5,1)

Fy, (t3) < Fp, (t) < Fp, (0)=0ifr € (0,13),
Fp, (13) < Fp, (1) < Fp, (0) = 0if 1 € (13,%),
that is,

2sinhz
4arctane’ —1
0,

2 1\1!/p2 <
(5 (coshr)? + )

F,, (t3) < log

which proves the sufficiency and inequalities (1.15).
Furthermore, for p = py =log,/, (3/2), solving the equation (3.1) for 7 by math-
ematical computation software yields 73 ~ 2.6630245, and then

Bi =exp(F)p, (3)) = 0.99237 and B, =exp(0) = 1.

Clearly, 31 2 0.99237 and 3, = | are the best possible constants.
This completes the proof of Theorem 2. [

4. Comparisons of certain bounds for P

It is mentioned in the Introduction that there has many bounds for P, some com-
parisons of them can refer to [7]. In this section, the bounds in the form of M, (4,G;2/3)
will be compared with other ones in the form of M,, (a,b;1/2), where M, (a,b;w) is
defined by (1.1).

LEMMA 5. The inequalities

a2/3 4 p2/3

3/2
(%A”+%G”>”p<< 2 ) < (3a7+ 460" (4.1)

hold if and only if p < 10/9 and q > log, (9/4).

Proof. By Lemma 1, in order to prove this lemma, it is enough to prove that for
t > 0 inequalities

I%log (3 (coshr)? + 1) < 3logcosh 31 < élog (3 (coshr)?+1) (4.2)
hold if and only if p < 10/9 and ¢ > log, (9/4).
Define that

1 2 1 3 2
G,(t):=~1 - ht)P += ) — =1 h=t. 4.3
p (1) . 0g<3(cos ) +3> 5 logcosh 3 (4.3)
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Then we easily get

Gy(t) 1 5

lim 22—~ 4.4
o 36" 162 ‘4
1 1 3.
5log2 ——~logs if p >0,
Gp (=) = { e 7 Tiep<o 45)

On the other hand, differentiation yields

2sinh £ cosht) logcosht 1
G,/n (t)= ( 12 3 ) £ L (cosh”lt,cosh —t) x g1 (1), (4.6)
(cosh 5t coshr) (2cosh?z +1) 3
where 1
logcosh ¢
HN=p—1——3 4.7
i) =p logcosht “.7)

and L(x,y) is the logarithmic mean of positive numbers x and y.
Differentiation again leads to

3 (cosh %tcosht) log?(coshr)
3cosh %t sinh?

g1 (1)

sinh %tcosht

= log (cosh 37) — log (cosht) := g2 (1), (4.8)

3cosh %t sinh?
2 sinh®3t
—— ———=——log(coshr) <0 4.9
9 cosh? 1t sinh?s e ) 9
for r > 0. It is acquired that g, (r) < g2 (0) =0, which implies that g; is decreasing on
(0,00).

Now we are in a position to prove the desired results.

(i) We prove the first inequality of (4.2) holds if and only if p < 10/9. In fact,
if the first inequality of (4.2) holds, that is, G, () < 0 for all # > 0, then by (4.4) and
(4.5) we have
Gp4(’)

_ 1 5
=32 12 S0

limt_,0+

Gp () = $log2 — lg% 0if p>0

or

: Gp(t) _ 1 5
hIntA»O+ f4 =367~ 162 < 07

G (o) = —e0if p <0,

Solving the above inequalities leads to p < 10/9.
Conversely, if p < 10/9, then since g is decreasing on (0, o), it is obtained that

logcosh 1z 10
<g (07 =1 —1-—— ) =p——x0,
&) g1( ) il(g (p logcosht ) b 9
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which in combination with (4.6) reveals that G/, (t) < 0. Thus we conclude that G, (1) <
G, (0) = 0, that is, the first inequality of (4.2) holds.

(i) Next we show that the second inequality of (4.2) holds if and only if p >
log, (9/4).

If the second inequality of (4.2) holds, that is, G, (r) > 0 for all > 0, then by
(4.4) and (4.5) we have

Gy(t) 1

i — _L

lim o+ == = 55p— 755 20,
g3 >
27

WV

1 1
Gp (o) = 5log2 — ;logz = 0if p >0,
which yields p > log, (9/4).
Conversely, if p > log, (9/4), since the function p — G, (t) is increasing, then it
suffices to show that G, (t) > 0 forall r > 0 if p =log, (9/4). By the monotonicity of
the function g; and the fact that

9 logcosh 17 9 10
07) = fim [logy = —1— —251) 1502 — 259
£1(07) ri$<0g24 logcosht> 027379 7Y
. 9 logcosh 1 9 4
Sl :1 1 - ] :1 _ — = 0
g1 () rg?o<0g24 logcosht %02z73 <

it is seen that there is a unique number 7y € (0, ) such that g; (r) > 0 if 7 € (0,7y) and
g1 (1) <0if 7 € (fy,o0), which together with (4.6) indicates that the function t — G, (¢)
is increasing on (0,7) and decreasing on (#p,c°). Therefore, we conclude that

G, (1) > G, (0)=0forz € (0,19),
Gp(t) > Gp(eo) =0fort € (t9,00),

which is the desired result.
Thus the proof ends. [

LEMMA 6. Let ry = (log2) /logn. Then inequalities

(4.10)

ro ro 1/'AO
(%AI’+%G1’)1/F> (a +b )

2

hold if and only if p > logg (3/2), and the two sides of (4.10) are not comparable for
all a,b> 0 with a# b if p <logg,(3/2).

Proof. From (1.10) and Theorem 2 it follows that (4.10) holds if p >log, (3/2),
that is, the condition p > log, (3/2) is sufficient to (4.10) holds for all a,b > 0 with

a#hb.
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We now show that the condition p > log,/,(3/2) is necessary. Indeed, by sym-
metry of ¢ and b, we assume that b > a and let x = a/b € (0,1). Then inequality
(4.10) is equivalent with

1 , (x+1\" » 1 X041
Up(x)::l—)log<§< 5 ) + 1 (V) —alog 5 >0,
where x € (0,1).
If (4.10) holds for all a,b > 0 with a # b, then

%log%—log2+%log2ifp>0

00~ {

—ooif p <0

has to be nonnegative, which leads to p > log,/, (3/2). This completes the proof of
sufficiency.

Next we show that the two sides of (4.10) are not comparable for all a,b > 0 with
a#bif p<log,,(3/2). Clearly, U, (0") <0 and

U 1 1 21 —3log2
fim Y2 _ 1 L 2logz—3log2

= 0.
1 (x—1)% 12 8 24logm -

From this it is seen that there exits x;,x, € (0,1) such that U, (x) <0 for x € (0,x;)
and U, (x) > 0 for x € (x5,1), that is, the sign of U, (x) is not a constant. Thus the
proof is completed. [l

LEMMA 7. The inequality

.11

2
1/2 4 pl/2
(%AP+ %GP)I/I’ > (L)

2

holds if and only if p > log,3 —1=0.58496..., and the two sides of (4.11) are not
comparable for all a,b >0 with a# b if p <log,3 —1.

Proof. Since the right hand of (4.11) can be written as (A+ G) /2, then the in-
equality (4.11) is equivalent with

where x=A/G > 1.
If V,(x) >0 forall x > 1 then p > 0. If not, then

lim V, (x) = —eo if p <0, 4.12)

X—>00

which yields a contradiction. Thus we get

X—00

1 2 1
Vp(oo):limVp(x):I—)logg—logE>0ifp>0, (4.13)
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which yields p > log,3 —1.
Conversely, if p >log, 3 — 1, then since the function p V), (x) is increasing, we
need to prove V), (x) >0 forall x> 1.
Differentiation leads to
—xP

Vp () = x(x+1)(2xP+1) (X1_p ~2),

which indicates that there is a unique number xo = 2!/~7) such that V} (x) > 0 if
x € (1,x) and V, (x) <0 if x € (xo,c0) . Thus we conclude that

Vy(x) >V, (1) =0if x € (1,x0) and V), (x) > V), (o) > 0 if x € (x0,0),

that is, the desired result.

We now illustrate that the two sides of (4.11) are not comparable for all a,b >0
with a # b if p <log,3—1. In fact, if p <log,3 —1, then via (4.12) and (4.13) it is
easily seen that V), (e<) < 0. On the other hand, it is easy to derive

Vplx) 1

lim ——=->0.
x—1>I}1+x—l 6

Consequently, there exits x1,x € (1,e0) such that V}, (x) >0 for x € (1,x1) and V,, (x) <
0 for x € (x2,00), that is, sgn (V) (x)) is not a constant.
This completes the proof. [l

Using Theorem 1, 2 and Lemma 5, 6, 7, the following theorem is immediate.

THEOREM 3. Let g >1log, (9/4), log,/, (3/2) <r<10/9, log,3—1<s<4/5.
Then we have

(2494160 > My 5 > (247 + LGN (4.14)

> P> (24 +16"" > My .

REMARK 2. In [11] Kouba proved that inequalities
(247 4+ 16" < 1 < (2474 LG9) '/ (4.15)

hold if and only if p < 6/5 and g > (log3 —log2) /(1 —log2).
Relation (4.14) in combination with (4.15) leads to

2ar+167)"7 > 1> (2494 169) 7 > My 5 (4.16)

> A +16) " s P> a0 +160)" " sy,
where p > (log3 —log2) /(1 —log2), log, (9/4) <q<6/5,logg/,(3/2) <r<10/9,
log,3—1<s<4/5.
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