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GEOMETRIC CONSTANTS AND

CHARACTERIZATIONS OF INNER PRODUCT SPACES

RYOTARO TANAKA, TOMOYOSHI OHWADA AND KICHI-SUKE SAITO

Abstract. Let X be a real normed space, let Ψ2 denote the set of all convex functions on [0,1]
such that max{1− t,t} � ψ(t) � 1 , and let Φ2 denote the set of all concave function on [0,1]
such that ψ(0) = ψ(1) = 1 . For each ψ ∈ Φ2 ∪Ψ2 , it is shown that ‖‖x‖−1x + ‖y‖−1y‖ �
Cψ‖x− y‖‖(x,y)‖−1

ψ for all nonzero vectors x, y ∈ X , where Cψ = 4maxψ(t) . The case of

ψ = ψp ( p > 0), defined as ψp(t) = ((1− t)p + t p)1/p , is due to Al-Rashed, and is due to
Dunkl and Williams when p = 1 . In particular, it is shown that for certain ψ ∈Φ2 , the inequality
holds for Cψ = 2ψ(1/2) if and only if X is an inner product space; this generalizes the works
of Al-Rashed and Kirk-Smiley.
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