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GEOMETRIC CONSTANTS AND
CHARACTERIZATIONS OF INNER PRODUCT SPACES

RYOTARO TANAKA, TOMOYOSHI OHWADA AND KICHI-SUKE SAITO

(Communicated by S. Varosanec)

Abstract. Let X be a real normed space, let P2 denote the set of all convex functions on [0, 1]
such that max{l —7,z} < y(¢) <1, and let ®, denote the set of all concave function on [0, 1]
such that y(0) = w(1) = 1. For each y € ®, UW,, it is shown that ||[lx]|~'x+ [ly[| ~'y|| <
Cu,Hx7y|H|(x,y)H;l for all nonzero vectors x, y € X, where Cy, = 4max y(t). The case of
W =1y, (p>0), defined as y,(r) = ((1 —t)"—l—t”)l/p, is due to Al-Rashed, and is due to
Dunkl and Williams when p = 1. In particular, it is shown that for certain y € @, , the inequality
holds for Cy = 2y(1/2) if and only if X is an inner product space; this generalizes the works
of Al-Rashed and Kirk-Smiley.

1. Introduction and Preliminaries

Anorm || || on R? is called absolute if ||(x,y)|| = ||(|x|,|y])|| for all (x,y) € R?,
and normalized if ||(1,0)| = ||(0,1)|| = 1. Let AN, denote the family of all absolute
normalized norms on R2, and let ¥, denote the family of all continuous convex func-
tions y on [0, 1] such that max{1—17,¢} < y(¢) <1 for # € [0,1]. Then as in Bonsall
and Duncan [3], AN, and ¥, are in a one-to-one correspondence under the equation
y(t) = ||(1—1t,t)| for r €[0,1].

The notion of y-direct sum of Banach spaces was introduced in Takahashi—Kato—
Saito [14]. More precisely, for y € ¥, and Banach spaces X, V', y-direct sum X ©y Y
is defined to be their direct sum equipped with the norm

1Ge )Ly = ILCP DLy

where || - ||, term in the right-hand side is the absolute normalized norm on R2.
Throughout this paper, unless otherwise stated, let X be a real normed linear space
of dimension not less than two. For each x € X, let sgnx = ||xH_1x. In order to make
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a detailed analysis of the triangle inequality in uniformly convex spaces, Clarkson [4]
introduced the concept of angular distance o[x,y], which is defined by

o, y] = [[sgnx —sgny]|

for each x, y € X\ {0}. In Al-Rashed [1], for each p > 0, the function f, is defined
by

([lell” + [l 1")*/7

alfx,y]
[l — v

fp(x7y) =

for x, y € X\ {0} with x # y, and proved that X is an inner product space if and only
if f,(x,y) <27 forany x, y € X\ {0} with x #y. The case of p = 1 is due to Kirk
and Smiley [11]. The aim of this paper is to give a generalization of this result.

Notice that f,,(x,y) < 2!/ forany x, y € X \ {0} with x #y implies 0 < p < I.
So it is worth considering concave version of the set W,. Let @, denote the family
of all continuous concave functions ¥ on [0, 1] such that y(0) = y(1) = 1. For each
¥ € @, we define the function | -[|,, on R? by

L Dy () i () # (0,0),
lee)ly = {o (I " ‘> if (x,y) = (0,0).

Let y,(t) = ((1—1)P +1P)1/P for 0 < p < oo and e (¢) = max{1—¢,¢}. Then y, € ,
if 0<p<1and y, ¥, if 1 <p<eo. Obviously, N, = {yi}.

For each y € @, and Banach spaces X, Y, we define the function || - ”V/ on X XY
by

1)y = KK DT, -

where || - ”V/ term in the right-hand side is the function on R? defined in above.
For each y € ®, U, we define the function f, by

R

fu(x,y) = Tl

afx,y]
for x, y € X\ {0} with x # y, and define the constant Cy(X) by

Cy(X) = sup{fy(x,y) : x, y € X\ {0}, x # y}.

Notice that fy, = f, and Cy, (X) = DW(X), where DW(X) is the Dunkl-Williams
constant (cf. [10]).
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2. Basic properties of the constant Cy, (X)
Some basic properties of fy, are collected in the following lemma.

LEMMA 1. For y € ®yUY,; and for all nonzero vectors x, y € X with x #y, we
have
(a) fq/ = 0.
(b) fy(x,y) =2y(1/2), whenever |\x|| = ||y]|.
(© fylx,y) <201 y)lly /llx=yID-
(d) fy(x,y) = fy(yx,1y), for any v #0.
(e)If y=7yx with y# 1, then

0 if y>0,

fu(x,y) = {2“1’”/” ity <0.

PROPOSITION 1. Let y € @, UWs. Then, 2max y(r) < Cy(X).

Proof. By part (e) of Lemma 1, we have
Sfulx ) =2 (1)
vitT=) TV
for each € (0,1). Also, we have 2([|(1,7)],,/(1—7)) — 2 as y — —0. Thus we
obtain 2max y/(r) < Cy(X). O
The following result is due to Dunkl and Williams [6].
THEOREM 1. 2 < DW(X)=Cy, (X) <4.

The next result shows the basic property of the constant Cy (X).

THEOREM 2. Let ¢, v € Dy UY,. Put

— i (O _ 4G
m = min g andM—maxW.

— =

Then
mCy(X) < Cy (X) < MCy (X).

Proof. This follows from the fact that
ml|-llp < I-1ly <My O
By letting ¢ = y; in the preceding theorem, we have

COROLLARY 1. Let v € @, UY;. Then

DW(X)miny(t) < Cy(X) < DW(X)max y/(z).
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From Proposition 1 and the fact that DW (X) < 4, we have

COROLLARY 2. Let w € ®,UY,. Then
2max y(r) < Cy(X) <4maxy(r).

From the fact that X is an inner product space if and only if DW (X) = 2, Corol-
laries 1 and 2 imply

THEOREM 3. Let X be an inner product space and let y € ®, UY,. Then
Cy(X) =2maxy(r).

As in Thoerem 6, if y is concave and satisfying the certain condition, then the fact
that Cy(X) = 2max () characterizes inner product spaces. So, the case of y € @, is
essential in this direction.

3. Characterizations of inner product spaces

We recall some definitions and facts that will be needed in the sequel. For x, y€ X,
x is said to be BJ-orthogonal to y, denoted by x Lg y, if |x+ yy| > ||x|| for all real
number y. The BJ-orthogonality is homogeneous, that is, x 1 gy implies ax Lg By
for any real numbers o, 3. However, it is not symmetric in general, that is, x lgy
does not necessarily imply y L p x. It is known that for a normed linear space X with
dimX > 3, BJ-orthogonality is symmetric if and only if X is an inner product space
(cf. [5, 8]). For more details in this direction, the reader is referred to Birkhoff [2] and
James [7, 8, 9].

We need the following lemma.

LEMMA 2. Let y € ®;. Then the function t — y(t)/(1 —t) is strictly increasing
on [0,1).

Proof. Let s, t be real numbers such that 0 < s <t < 1. Then by concavity of v,

we have
1—1¢ r—
y/(t):u/< s+ Sl)

1—s 1—s
1—1¢ t—
z v+ v()
1—1¢
.U
T Y0)

The next result shows the relationship between the constant Cy(X) and the BJ-
orthogonality.

THEOREM 4. Let y € ®; such that maxy/(t) = y(1/2). If Cy(X) =2y(1/2),
then the BJ-orthogonality is symmetric.
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Proof. Let x, y € X\ {0} such that x Lgy. Then
o+ Byl| = ||ox]|

for any real numbers ¢, 3. Let ¥ be a nonzero real number. Since

S
[yx+ylIl - v+l [
. _ln
Tyl
we have
2y(1/2) = fy(yx+y.y) = %a[yxw,y]
[ (v +y. )y
[[yx+yl|
_ eyl 1 ( [l )
[[vx+ || v+l -+l )

Putting # = [[y[[/([|72+yll + [[[]) , then
v(1/2) _ y()

1/2 71—t

By Lemma 2, we have r < 1/2. Thus

[y +yxll = Iyl
holds for all y € R, and so y L g x. This completes the proof. [J

COROLLARY 3. ([1]) Let 0<p < 1. IfCy,(X) = 2V/7  then the BJ-orthogonality
is symmetric.

As was mentioned in the beginning of this section, the symmetry of the BJ-
orthogonality characterizes inner product spaces among all normed spaces with dimen-
sion not less than 3. Thus we have

COROLLARY 4. Suppose that dimX > 3. Let y € ®, such that maxy(t) =
y(1/2). Then X is an inner product space if and only if Cy(X) =2y(1/2).

As will be seen in Theorem 6, it turns out that the restriction on the dimension on
X is redundant if we add a certain assumption on V.
The following result is due to Lorch [12, p. 525] which is useful for our purpose.

THEOREM 5. The following are equivalent:
(1) X is an inner product space.
(ii) For any x, y € X with ||x|| = ||y|| and for any a € R\ {0}, we have

lecx+ oty > [+l
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The next lemma will be needed.

LEMMA 3. Let y € ®,. Then the following are equivalent:
(i) For all t € [0,1], we have

w(t) > 2y(1/2)v/i(l 1),

(i1) For all nonzero real number o, we have
(e, Dy = 1L D]l

Proof. Suppose that (i) holds. For each o > 0,
241 2 1
(1) = o+ ( o ) .

o o2+1"02+1

Put = 1/(a® +1). Then we have

v(t)

—1 _
el = —H=

>2y(1/2) = [[(L, 1],

Conversely, assume that (ii) holds. For each 7 € (0,1), we have

y()  |[(Vi-t Vi
viei ety

This completes the proof. [

> (LD, =2y(1/2).
v

There are many elements of @, satisfying the condition (i) in Lemma 3. First
example is the following.

EXAMPLE 1. Let 0< p <1 andlet a be a nonzero real number. Since (|or|” — 1)

>0, we have
_ —py 1/
(e, M|, = (Jaul” + e 77) 7P =27 = (1, 1),
Hence, by Lemma 3,

vp(t) > 2y, (1/2) /I —1) (1 € [0,1]).

The next example contains elements of @, that do not satisfy the condition (i) in
Lemma 3.

EXAMPLE 2. For each 1 <y <3/2, let yy(t) = min{1+1¢,7,2—1}. Then,
¥y(1) = yy(1 —1) and

2 .
w()? | iy itre 0y,
1(1—1) Ty ifre[y=1,1/2].
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Also, we have

d y(? | SRE e (0,7-1),
= - e _
dri(1—1) 1722((11[;2) ifr € (y—1,1/2].
This implies that the function
(1)’
—
t(1—1)

is decreasing on (0,1/3]U[y—1,1/2] and increasing on [1/3,y—1]. Thus, if y<4/3,

we have 5 )
vy () > vy(1/2)
t(1—1)~ (1/2)(1—(1/2
On the other hand, if y > 4/3, then

. 2
5 =412

(/32 v(1/2? 2 _
Tty = 8 and iy = 4vr(1/2)” =477,

Therefore, we have

wy(t) 2 2yy(1/2)/1(1 —1) (1 € [0,1])
if 1<y<v2,and

vy (1/3) <2yy(1/2)1/(1/3)(1 = (1/3))
if V2 <y<3/2.

Our aim in this note is the following

THEOREM 6. Let y € @, such that max y(t) = y(1/2) and

W(r) > 29(1/2)/ilT=1) (r € [0,1]).
Then X is an inner product space if and only if Cy(X) =2y/(1/2).

Proof. Let o be a nonzero real number and let x, y € X \ {0} with ||x|| = [|y||. If
|ax+ o~ 'y|| =0, then o> =1, in which case ||ox+ o~ ly|| = ||x+y]|. So, we assume
that ||oex + o~ 'y|| > 0. Then by Lemma 3, we have

2y(1/2) = fy(ox,—a™'y)
~1
lea ),
ot o ]
1.1l
>yt
ot oty
_ 2wl
o +-or 1y

[+l

This implies ||oex + a~'y|| > ||x+y||. Thus, by Theorem 5, X is an inner product
space. This completes the proof. [J
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COROLLARY 5. ([1]) Let 0 < p < 1. Then X is an inner product space if and

only if Cy,(X) = 21/p,
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