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Abstract. Let X be a real normed space, let Ψ2 denote the set of all convex functions on [0,1]
such that max{1− t,t} � ψ(t) � 1 , and let Φ2 denote the set of all concave function on [0,1]
such that ψ(0) = ψ(1) = 1 . For each ψ ∈ Φ2 ∪Ψ2 , it is shown that ‖‖x‖−1x + ‖y‖−1y‖ �
Cψ‖x− y‖‖(x,y)‖−1

ψ for all nonzero vectors x, y ∈ X , where Cψ = 4maxψ(t) . The case of

ψ = ψp ( p > 0), defined as ψp(t) = ((1− t)p + t p)1/p , is due to Al-Rashed, and is due to
Dunkl and Williams when p = 1 . In particular, it is shown that for certain ψ ∈Φ2 , the inequality
holds for Cψ = 2ψ(1/2) if and only if X is an inner product space; this generalizes the works
of Al-Rashed and Kirk-Smiley.

1. Introduction and Preliminaries

A norm ‖ · ‖ on R2 is called absolute if ‖(x,y)‖ = ‖(|x|, |y|)‖ for all (x,y) ∈ R2 ,
and normalized if ‖(1,0)‖ = ‖(0,1)‖ = 1. Let AN2 denote the family of all absolute
normalized norms on R2 , and let Ψ2 denote the family of all continuous convex func-
tions ψ on [0,1] such that max{1− t,t} � ψ(t) � 1 for t ∈ [0,1] . Then as in Bonsall
and Duncan [3], AN2 and Ψ2 are in a one-to-one correspondence under the equation
ψ(t) = ‖(1− t, t)‖ for t ∈ [0,1] .

The notion of ψ -direct sum of Banach spaces was introduced in Takahashi–Kato–
Saito [14]. More precisely, for ψ ∈ Ψ2 and Banach spaces X , Y , ψ -direct sum X⊕ψ Y
is defined to be their direct sum equipped with the norm

‖(x,y)‖ψ = ‖(‖x‖,‖y‖)‖ψ

where ‖ · ‖ψ term in the right-hand side is the absolute normalized norm on R2 .
Throughout this paper, unless otherwise stated, let X be a real normed linear space

of dimension not less than two. For each x ∈ X , let sgnx = ‖x‖−1x . In order to make
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a detailed analysis of the triangle inequality in uniformly convex spaces, Clarkson [4]
introduced the concept of angular distance α[x,y] , which is defined by

α[x,y] = ‖sgnx− sgny‖

for each x, y ∈ X \ {0} . In Al-Rashed [1], for each p > 0, the function fp is defined
by

fp(x,y) =
(‖x‖p +‖y‖p)1/p

‖x− y‖ α[x,y]

for x, y ∈ X \ {0} with x �= y , and proved that X is an inner product space if and only
if fp(x,y) � 21/p for any x, y ∈ X \ {0} with x �= y . The case of p = 1 is due to Kirk
and Smiley [11]. The aim of this paper is to give a generalization of this result.

Notice that fp(x,y) � 21/p for any x, y ∈ X \ {0} with x �= y implies 0 < p � 1.
So it is worth considering concave version of the set Ψ2 . Let Φ2 denote the family
of all continuous concave functions ψ on [0,1] such that ψ(0) = ψ(1) = 1. For each
ψ ∈ Φ2 , we define the function ‖ · ‖ψ on R2 by

‖(x,y)‖ψ =

{
(|x|+ |y|)ψ

( |y|
|x|+|y|

)
if (x,y) �= (0,0),

0 if (x,y) = (0,0).

Let ψp(t) = ((1−t)p + t p)1/p for 0 < p < ∞ and ψ∞(t) = max{1−t,t} . Then ψp ∈ Φ2

if 0 < p � 1 and ψp ∈ Ψ2 if 1 � p � ∞ . Obviously, Φ2 ∩Ψ2 = {ψ1} .

For each ψ ∈ Φ2 and Banach spaces X , Y , we define the function ‖ · ‖ψ on X ×Y
by

‖(x,y)‖ψ = ‖(‖x‖,‖y‖)‖ψ .

where ‖ · ‖ψ term in the right-hand side is the function on R2 defined in above.

For each ψ ∈ Φ2 ∪Ψ2 , we define the function fψ by

fψ (x,y) =
‖(x,y)‖ψ

‖x− y‖ α[x,y]

for x, y ∈ X \ {0} with x �= y , and define the constant Cψ(X) by

Cψ (X) = sup{ fψ(x,y) : x, y ∈ X \ {0}, x �= y}.

Notice that fψp = fp and Cψ1(X) = DW (X) , where DW (X) is the Dunkl–Williams
constant (cf. [10]).
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2. Basic properties of the constant Cψ(X)

Some basic properties of fψ are collected in the following lemma.

LEMMA 1. For ψ ∈ Φ2∪Ψ2 and for all nonzero vectors x, y ∈ X with x �= y, we
have
(a) fψ � 0 .
(b) fψ (x,y) = 2ψ(1/2) , whenever ‖x‖ = ‖y‖ .
(c) fψ (x,y) � 2(‖(x,y)‖ψ/‖x− y‖) .
(d) fψ (x,y) = fψ (γx,γy) , for any γ �= 0 .
(e) If y = γx with γ �= 1 , then

fψ (x,y) =

{
0 if γ > 0,

2
‖(1,γ)‖ψ

1−γ if γ < 0.

PROPOSITION 1. Let ψ ∈ Φ2 ∪Ψ2 . Then, 2maxψ(t) � Cψ(X) .

Proof. By part (e) of Lemma 1, we have

fψ

(
x,

−t
1− t

x

)
= 2ψ(t)

for each t ∈ (0,1) . Also, we have 2(‖(1,γ)‖ψ/(1− γ)) → 2 as γ → −0. Thus we
obtain 2maxψ(t) � Cψ(X) . �

The following result is due to Dunkl and Williams [6].

THEOREM 1. 2 � DW (X) = Cψ1(X) � 4 .

The next result shows the basic property of the constant Cψ (X) .

THEOREM 2. Let φ , ψ ∈ Φ2 ∪Ψ2 . Put

m = min ψ(t)
φ(t) and M = max ψ(t)

φ(t) .

Then
mCφ (X) � Cψ (X) � MCφ (X).

Proof. This follows from the fact that

m‖ · ‖φ � ‖ · ‖ψ � M‖ · ‖φ . �

By letting φ = ψ1 in the preceding theorem, we have

COROLLARY 1. Let ψ ∈ Φ2∪Ψ2 . Then

DW (X)minψ(t) � Cψ(X) � DW (X)maxψ(t).
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From Proposition 1 and the fact that DW (X) � 4, we have

COROLLARY 2. Let ψ ∈ Φ2∪Ψ2 . Then

2maxψ(t) � Cψ(X) � 4maxψ(t).

From the fact that X is an inner product space if and only if DW (X) = 2, Corol-
laries 1 and 2 imply

THEOREM 3. Let X be an inner product space and let ψ ∈ Φ2 ∪ Ψ2 . Then
Cψ(X) = 2maxψ(t) .

As in Thoerem 6, if ψ is concave and satisfying the certain condition, then the fact
that Cψ(X) = 2maxψ(t) characterizes inner product spaces. So, the case of ψ ∈ Φ2 is
essential in this direction.

3. Characterizations of inner product spaces

We recall some definitions and facts that will be needed in the sequel. For x, y∈X ,
x is said to be BJ-orthogonal to y , denoted by x ⊥B y , if ‖x + γy‖ � ‖x‖ for all real
number γ . The BJ -orthogonality is homogeneous, that is, x ⊥B y implies αx ⊥B βy
for any real numbers α, β . However, it is not symmetric in general, that is, x ⊥B y
does not necessarily imply y ⊥B x . It is known that for a normed linear space X with
dimX � 3, BJ -orthogonality is symmetric if and only if X is an inner product space
(cf. [5, 8]). For more details in this direction, the reader is referred to Birkhoff [2] and
James [7, 8, 9].

We need the following lemma.

LEMMA 2. Let ψ ∈ Φ2 . Then the function t 
→ ψ(t)/(1− t) is strictly increasing
on [0,1) .

Proof. Let s, t be real numbers such that 0 � s < t < 1. Then by concavity of ψ ,
we have

ψ(t) = ψ
(

1− t
1− s

s+
t − s
1− s

1

)

� 1− t
1− s

ψ(s)+
t− s
1− s

ψ(1)

>
1− t
1− s

ψ(s). �

The next result shows the relationship between the constant Cψ(X) and the BJ -
orthogonality.

THEOREM 4. Let ψ ∈ Φ2 such that maxψ(t) = ψ(1/2) . If Cψ (X) = 2ψ(1/2) ,
then the BJ -orthogonality is symmetric.
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Proof. Let x, y ∈ X \ {0} such that x ⊥B y . Then

‖αx+ βy‖� ‖αx‖
for any real numbers α, β . Let γ be a nonzero real number. Since

α[γx+ y,y] =
∥∥∥∥ γx
‖γx+ y‖ +

(
1

‖γx+ y‖ −
1
‖y‖

)
y

∥∥∥∥
� ‖γx‖

‖γx+ y‖ ,

we have

2ψ(1/2) � fψ (γx+ y,y) =
‖(γx+ y,y)‖ψ

‖γx‖ α[γx+ y,y]

�
‖(γx+ y,y)‖ψ

‖γx+ y‖
=

‖γx+ y‖+‖y‖
‖γx+ y‖ ψ

( ‖y‖
‖γx+ y‖+‖y‖

)
.

Putting t = ‖y‖/(‖γx+ y‖+‖y‖) , then

ψ(1/2)
1/2

� ψ(t)
1− t

.

By Lemma 2, we have t � 1/2. Thus

‖y+ γx‖� ‖y‖
holds for all γ ∈ R , and so y ⊥B x . This completes the proof. �

COROLLARY 3. ([1]) Let 0 < p � 1 . If Cψp(X)= 21/p , then the BJ -orthogonality
is symmetric.

As was mentioned in the beginning of this section, the symmetry of the BJ -
orthogonality characterizes inner product spaces among all normed spaces with dimen-
sion not less than 3. Thus we have

COROLLARY 4. Suppose that dimX � 3 . Let ψ ∈ Φ2 such that maxψ(t) =
ψ(1/2) . Then X is an inner product space if and only if Cψ (X) = 2ψ(1/2) .

As will be seen in Theorem 6, it turns out that the restriction on the dimension on
X is redundant if we add a certain assumption on ψ .

The following result is due to Lorch [12, p. 525] which is useful for our purpose.

THEOREM 5. The following are equivalent :
(i) X is an inner product space.
(ii) For any x, y ∈ X with ‖x‖ = ‖y‖ and for any α ∈ R\ {0} , we have

‖αx+ α−1y‖ � ‖x+ y‖.
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The next lemma will be needed.

LEMMA 3. Let ψ ∈ Φ2 . Then the following are equivalent :
(i) For all t ∈ [0,1] , we have

ψ(t) � 2ψ(1/2)
√

t(1− t).

(ii) For all nonzero real number α , we have

‖(α,α−1)‖ψ � ‖(1,1)‖ψ .

Proof. Suppose that (i) holds. For each α > 0,

(α,α−1) =
α2 +1

α

(
α2

α2 +1
,

1
α2 +1

)
.

Put t = 1/(α2 +1) . Then we have

‖(α,α−1)‖ψ =
ψ(t)√
t(1− t)

� 2ψ(1/2) = ‖(1,1)‖ψ .

Conversely, assume that (ii) holds. For each t ∈ (0,1) , we have

ψ(t)√
t(1− t)

=
∥∥∥∥
(√

1− t√
t

,

√
t√

1− t

)∥∥∥∥
ψ

� ‖(1,1)‖ψ = 2ψ(1/2).

This completes the proof. �
There are many elements of Φ2 satisfying the condition (i) in Lemma 3. First

example is the following.

EXAMPLE 1. Let 0 < p � 1 and let α be a nonzero real number. Since (|α|p−1)2

� 0, we have

‖(α,α−1)‖p = (|α|p + |α|−p)1/p � 21/p = ‖(1,1)‖p.

Hence, by Lemma 3,

ψp(t) � 2ψp(1/2)
√

t(1− t) (t ∈ [0,1]).

The next example contains elements of Φ2 that do not satisfy the condition (i) in
Lemma 3.

EXAMPLE 2. For each 1 � γ � 3/2, let ψγ (t) = min{1 + t,γ,2− t} . Then,
ψγ(t) = ψγ(1− t) and

ψγ (t)2

t(1− t)
=

⎧⎨
⎩

(1+t)2

t(1−t) if t ∈ (0,γ −1],
γ2

t(1−t) if t ∈ [γ −1,1/2].
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Also, we have

d
dt

ψγ (t)
2

t(1− t)
=

⎧⎨
⎩

(1+t)(3t−1)
t2(1−t)2 if t ∈ (0,γ −1),

γ2(2t−1)
t2(1−t)2 if t ∈ (γ −1,1/2].

This implies that the function

t 
→ ψγ (t)2

t(1− t)
is decreasing on (0,1/3]∪ [γ−1,1/2] and increasing on [1/3,γ−1] . Thus, if γ � 4/3,
we have

ψγ (t)
2

t(1− t)
� ψγ(1/2)2

(1/2)(1− (1/2))
= 4ψγ(1/2)2.

On the other hand, if γ > 4/3, then

ψγ (1/3)2

(1/3)(1−(1/3)) = 8 and
ψγ (1/2)2

(1/2)(1−(1/2)) = 4ψγ(1/2)2 = 4γ2.

Therefore, we have

ψγ (t) � 2ψγ(1/2)
√

t(1− t) (t ∈ [0,1])

if 1 � γ �
√

2, and

ψγ(1/3) < 2ψγ(1/2)
√

(1/3)(1− (1/3))

if
√

2 < γ � 3/2.

Our aim in this note is the following

THEOREM 6. Let ψ ∈ Φ2 such that maxψ(t) = ψ(1/2) and

ψ(t) � 2ψ(1/2)
√

t(1− t) (t ∈ [0,1]).

Then X is an inner product space if and only if Cψ(X) = 2ψ(1/2) .

Proof. Let α be a nonzero real number and let x, y ∈ X \{0} with ‖x‖ = ‖y‖ . If
‖αx+α−1y‖= 0, then α2 = 1, in which case ‖αx+α−1y‖= ‖x+y‖ . So, we assume
that ‖αx+ α−1y‖ > 0. Then by Lemma 3, we have

2ψ(1/2) � fψ (αx,−α−1y)

=
‖(α,α−1)‖ψ

‖αx+ α−1y‖‖x+ y‖

�
‖(1,1)‖ψ

‖αx+ α−1y‖‖x+ y‖

=
2ψ(1/2)

‖αx+ α−1y‖‖x+ y‖.

This implies ‖αx + α−1y‖ � ‖x + y‖ . Thus, by Theorem 5, X is an inner product
space. This completes the proof. �
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COROLLARY 5. ([1]) Let 0 < p � 1 . Then X is an inner product space if and
only if Cψp(X) = 21/p .
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