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REVERSES OF THE TRIANGLE
INEQUALITY IN INNER PRODUCT SPACES

LINGLING ZHANG, TOMOYOSHI OHWADA AND MUNEO CHO

(Communicated by M. S. Moslehian)

Abstract. We show that if xj,---,x, are vectors in a normed linear space (X, ||-||) and sy,---,s,
belong to the interval [0,0), then

Sa(s1,+ 50 ZHUXJH
is a non-negative valued continuous function such that f,,(sl,m,s,,) < fulty,- -+ ,t,) for all
s1,-+,8p and 1,1, in [0,0) with s; <#; (1 < j < n). By using it, we prove several versions

of reverse triangle inequality in inner product spaces and discuss equality attainedness of norm
inequalities in strictly convex Banach spaces.

1. Introduction

The generalized triangle inequality, namely

n n
> x| < X Ikl
i=1

J=1

where (X, ||-||) is a normed linear space over the real or complex field K and x;, j €
{1,2,---,n} are vectors in X plays a fundamental role in establishing various analytic
and geometric properties of such spaces. This inequality has been studied by several
authors (see e.g. [2, 9, 15]). We are interested to know under which conditions the
generalized triangle inequality on X is reversed, i.e., inequalities of the following type

n

n
2 llx;]| < ij +C

Jj=1

with C > 0, which we call (additive) reverse of the triangle inequality.
Kato, Saito and Tamura [8] proved the following reverse of the triangle inequality.
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THEOREM 1.1. ([8, Theorem 11) Let (X,||-|) be a Banach space, and x;j €
X\{0}, je{l,---,n}. Then
< (

n n
[l = || 2. max [|x; . (L.1)
2 J 1:21 J 2 ”xj” 1< j<n J

Moreover they proved equality attainedness of (1.1) in a strictly convex Banach
space.

THEOREM 1.2. ([8, Theorem 3]) Ler (X, ||-||) be a strictly convex Banach space,
and xj € X\{0}, j€{1,---,n}. Let ||xjo|| = minig jcu ||x;]| and ||xj, || = maxi j<n x|

Then the equality
= (n —_
holds if and only if either

2 il =
lxill = llxjll - (foralli,j € {1,---,n})

n n X
fo 2 TR
j=1 j=1 HXJH

|>ggwm

or

Bt B forall jeJi and Zx,
Il ol st

ijo I’
where J§ is a complement of Jy ={j € {1,---,n} : ||xj|| = ijl I} in {1,---,n}.

After that, several authors improved and generalized these inequalities (cf. [5, 6,
11, 12, 13, 14]).

On the other hand, Dragomir [3] established the reverse of triangle inequality in
real or complex inner product spaces as follows.

THEOREM 1.3. [3, Theorem 7] Let (H,{-,-)) be an inner product space over
the real or complex number field K and e,xj € H, j € {1,---,n} with |le| = 1. If
kj>0,je{l,---,n}, are such that

||xj|| —RC<€,.XJ‘> < kj7 Joreach je {1,"',1’1},
then the following inequality holds

n
2 il =

j=1
The equality holds in (1.2) if and only if

=

< Yk (1.2)

J=1

n
Z Xj
j=1

n

n
2 il = X kj
j=1

j=1
and

S (z x,-—ik,)e

J=1 J=1
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Ansari and Moslehian modified the above result in [1], and related results can also
be found in [4, 7].

The aim of this paper is to discuss equality attainedness of norm inequalities in
a strictly convex Banach space. Moreover, we investigate the relation between the
inequalities (1.1) and (1.2) in inner product spaces by using a continuous monotone
function.

2. Equality attainedness in strictly convex Banach spaces
Let (X, ||-]|) be a normed linear space over the real or complex number field K,

and x; € X, j € {1,2,---,n}. Throughout this paper, for each x; € X,j € {1,---,n},
denote by f, a function on H';:1[0,°°) as

f tla 7 Z”tj'x/”

((t1,~~~,tn) € ﬁ[o,«:)) )

i=1
For (s1,--+,8n), (t1, - ,tn) € H'j’-zl[O,w), denote (s1,---,8,) < (t1,---,1,) if 5; <t; for
all je{1,--.n}.

THEOREM 2.1. Let (X,]|-||) be a normed linear space, and xy,---,x, € X. Then
fu is a non-negative valued continuous function on H?ZI[O,OO) suchthat fu(sy, -+ ,8n) <
fn(t17 e atn) forall (Sl, e 7sn)a (tla e 7tl’l) 6 H?:l[();w) Wlth (S17 e asn) < (t17 e atn)-

Proof. Forany (sy,---,sp), (t1, -+ ,ty) € ITj—, [0,0), applying the triangle inequal-
ity, we have ’

]

‘fn(th “yln fn Sty 8 )‘

n n

D Nl = thxj' = 2 sl =
—1 =1

j=

i
={iz,x, Zsm“} {

j=

—_

—

(t; —si) x|+

N
™=

1

J

< Y|t = 5] sl +
j=1

< 2 [t =il +
J

=1
n
<2 |t =il Ixll-
=1

=

n
2 ljxj— 2 SjXj
=1 =1

=

n
S
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Thus f; is continuous.
Next we assume that (si,---,s,) < (f1,---,#,). Since, for each j € {l,---,n},
tj—s;j >0, we have

=D (15 —sj)xj+ D sjx;
=1

J=1

2 j — S .XJ

JXJ

<iHm—me-

n
Z Sjxj
j=1

=3 (- HW+zw,

=

= S il - 3 silbull +

j=1 j=1
n n n

= 2 el = 2 sl + || X s
=1 j=1 =1

Therefore the inequality f,(s1,---,$,) < fu(f1,---,1,) holds. This completes the proof.
O

This is a generalization of [8, Theorem 1]. Indeed if x; # 0 forall j € {1,---,n},
then we see that

Z SjXj

min; <<, [|x]| max < j<n || %;|
AN 1 N
[ [l

Thus, applying Theorem 2.1, we have

(jE {1,---,71}).

i <min1<j<nxj,___’minléjénxj”) < folle D)
[ [
</ (maxlg,/gnlllel maXl<,/<n||x1||>
[l T |l
Since

n n
)= Il = || X %
= =

min;gj<n [1X; ming g jc ||,

[l [l

) [min [}

|> max [lx;]

\
I
iR

and

maxig; X maxig; Xj
fn< cjenllull | maxicjnl 1):<n_

[l [0l

'M=
HE

~
I
—_
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we obtain [8, Theorem 1].

Next, we discuss when the equality f;,(s1,--,8,) = fu(t1,- - ,1,) holds in Theorem
2.1 in a strictly convex Banach space. To do it, we need the following lemma.

LEMMA 2.2. [8, Lemma 1] Let (X, ||-||) be a strictly convex Banach space. For
each xj € X\ {0}, j € {1,2,---,n}, the following assertions are equivalent:

(i) Zajxj ZaijjH with any positive numbers o, -+, 0 ;
j=1
(ii) X ail||x;|| with some positive numbers o, -+, 0, ;
J 11X
j=1
xj .
(iii) ——  (Vi,je{l,---,n}).
| ,|| %]

THEOREM 2.3. Let (X, ||-||) be a strictly convex Banach space and (sy,-++,sp)
and (t1,+,ta) € T1j_1[0,00) satisfy s; <t; for all j € {l,---,n}. Put J={j¢€

{1,---,n}:s; <t;}. Then the following assertions are equivalent:
(1) the equality

fn(slf"asn):fn(tlf"»tn) (21)
holds;

(i) either J = & or

n n n
> sl = X Mlejxsll - (2.2)
j=1 j=1 j=1
and
Y sjx ( Z xj||> Tl for some i € J;and (2.3)
J=1 = j=1 Xi
(iii) either J = & or
Mo N rallijed (2.4)
lell [l
and
n
2 Six; = ,x, H ” Sfor someicJ. (2.5)
j=1 i

Proof. (i)=(ii) We may assume that J # @&. If (2.1) holds, then it is clear that
(2.2) is valid and we need only to prove (2.3). If Z?:l sjxj =0, then, by (2.1) and (2.2),
we have

/xJ

n
2 si)x;ll
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and

n n
2 SJ'XJ' =0=
Jj=1 j=1

Jj=1

-3 (- >> vied).

Next, we consider the case Z;?: 15jxj # 0. As in the proof of Theorem 2.1, we see that

n
/xJ Z Jo X+ D8
JjeJ j=1
< Z( —Sj)Xj
jel

< (5 —sp)x; || +

2 $jXj
=1

Z SjXj

j=1

JjeJ
n
= 3l +

= 2 [l = 2 [lsiesl |+
j=1 j=1

(2.6)

n
2 ijJ' .
Jj=1

Hence if (2.1) holds, then we have

Z(IJ—S x,—|—251x,

jet j=1

Z;H( i —sixil|+ ZSJxJ

j=1

Applying Lemma 2.2, we see that, for each i € J,

Z;?:lijj (l‘i —si)xi Xi

Iy siill G —soxll il

Therefore, by (2.1), we have, foreach i € J,

n n
Z SiXj = Z SjXj
j=1 j=1

n
J=1

X;
[ xi]

D 1%j
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(i1)=-(i) It is clear that if J = &, then (2.1) holds. Thus we assume that J # &. In
this case, if (2.2) and (2.3) hold, then we have

n
j=1

n
D 1%j
i1

ixj

Z 15— )] | o
[lx ||

n

Z si)%; |l

j=1

n n
2 21 + 2 I[sj2¢; 1
j=1 j=1

iXj

and the equality (2.1) holds.
(iii)) = (1) Assume that (2.4) and (2.5) hold. Then, by (2.4), we see that, for each
i,jeld,
(ti—si)xi (1 —s))x;

1 = sa)xll 11t = )

By Lemma 2.2, we have

Z(ZJ —sj)x

jer

= 2 16—l

Hence, if Z;le sjx; =0, then
n

n
Z — )X+ D8

j=1 j=1

Y s = X [l —spwl
jeJ

jeJ
n n n
= 2 @ =sp)xsl| = X [[ejxs ]| = X [l
=1 j=1 j=1

n n
= 2 [lsill = 2 flsixill +
j=1 j=1

n
2 SJ'XJ' .
Jj=1

Thus we have (2.1).
On the other hand, if 2?:1 s;x; # 0, then, by (2.4) and (2.5), we see that, for each
i,jeld,
Ticisini o xp (i —sp)x

HEﬁ-zlsl'xz-’ IR RCEEDE

Applying Lemma 2.2, we have

n
D (tj—sj)xi+ Y sjx;
=1

jer

=2 || =sj)x5]| +

jel

n
IR
=1




546 Z. LINGLIN, T. OHWADA AND M. CHO

and

n
ZI,xJ z(lHth,H 2{1||ij.,'“—|— zlijj .
j=

(1)=- (iii) If (2.1) holds, then all the equalities in (2.6) hold. Thus, by Lemma 2.2,
we have (2.4) and (2.5). This completes the proof. [J

Recall that, by Theorem 2.1, if (¢1,---,7,) belongs to T [1,e0), then

fn(17"'71) gfn(tlf"atn)a

that is, we have the reverse triangle inequality as follows:

n n n
Dl =12 x5 < X Mgl —
=1 =1 =1

COROLLARY 2.4. Let (X, ||-||) be a strictly convex Banach space and (ty,- - ,t,)
€ Mj_y[l,e0). Put I={j€{l,---,n}:1<t;}. Then the following assertions are
equivalent:

(1) the equality
fn(L"';l) :fn(tly"'atn)

holds;
(i1) either I = @ or

JXj

n n
2 x> X Nl =
j=1 j=1

and

(2

ZH x| il for some i€l
i

~
HM:
—

and
(iii) either I = & or

Yo 4 foralli,jel
(il {1l
and
n n
Xi .
X Xi|| — forsomeicl.
25= | L9 T
In Corollary 2.4, if we put
maxi <<y ||x;
tj: 1§J§n” J” (V]G{l,,n}),

Xj

then we can obtain Theorem 1.2 [8, Theorem 3].
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COROLLARY 2.5. (cf. [8, Theorem 3]) Ler (X, |||) be a strictly convex Ba-
nach space and xi,---,x, belong to X \{0}. If we put I ={j € {1,---,n}: |xj]| <
maxi<j<n ||xj||}, then the following assertions are equivalent:

(1) the equality
- (n— D max |

n

n n -xj
D il = D>
j=1 j=1

j=1 HXIH
holds;
(i) either I = & (equivalently ||x;|| = ||x;|| forall i,j € {1,---,n}) or
n n
[l = n— ax ||
P X | ) iz
and

|> max [|lx ,H—i—EH J||} ” IH forsome i€ I,
l

Lol 2
and

(iii) either I = & or
Bl B foralli,jel
[l [l

and
n

2%
=1

for someicl.

n
2 Xj
j=1

Xi
x|

3. Inequalities in inner product spaces
Throughout this section, let (H, (-, -)) be an inner product space over K. Note

that all results in §2 are valid for (H, (-, -)). The following result makes it possible to
connect Kato, Saito and Tamura’s inequality to Dragomir’s one.

LEMMA 3.1. Let x; € H\{0}, j € {1,---,n} and (s1,-+,sn) € [1}_,[0,%0). For
each i€ {l,---,n},

n
. X
tlggfn(sl,"',ﬁ',"',sn) = ,=21 <||5./x1|| _Re<x—i’ 5./x1>> :

1
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Proof. Take t >0 and put, for i € {1,---,n}, X; =3, 4;5;x;. Then we see that

Z SjXj+1x;
J#

Fulst oot s0) = <2s,-x,-||+ t) -

i#i

n
= 2 lsjxjll+ (llexill = 11X+ 2xi]])

J#i
< txi|| — || X +tx; x|+ |1+ 1
= 5 s+ Ul = ol e i)
J#I i i i
2Re (x;, Xi) + || 1 Xi|?
= llsjesll = :
i#i il =+ | 3 X + x|
Re (x;, X;)
—>2||SIXJH H : (aS[—>oo)_
J# xill
Thus
i Re<xl7 l>
thmf"(slf"a I ZHSJXJH
o i JFI H l”

_ZHSI‘XJH Re< H >

J#

ZHS,XJH Re< K s (X + sixi) — s,-x,->
l

J#

:ZHSJ'XJ'H_ <R6<” H Eijj>_slxl”>
i i
n xl n
= Z ||SJ')CJ'|| —Re H—'7 ZSJ'XJ'
=1 il =
= 3 (bl -Re(( s ) ©
Jj=1 Xi

THEOREM 3.2. Let x; € H\ {0}, j € {1,---,n} and (s1,--+,sn) € [T}_;[1,).

Then, for each i € {1,---,n},
n
<Y <||ijj—Re< R s,xj>> (3.1)
=1 %

The equality holds in (3.1) if and only if

n n xl
AEDS ( —Re<m,s,-x,,»>) 32)
=1 ' i

n
2 il =

n
Z Xj
j=1
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and

Zor= 3 (re{ o) 160 ) gy oy

Proof. Since 1 <s; (je€{1,---,n}), by Theorem 2.1, we have
fn(l7"'71)<fn(s17"'7sn)<tli_{gfn(sl7'”75\7"'vsn)'

Thus, by Lemma 3.1, we deduce the desired inequality (3.1).
Assume that (3.2) and (3.3) hold. Since

3 (re{ g o) s
2 (R (g o) =m0l
=5 (bt me o m) - oo

=31 = % (Il ~Re( 2rsim) )

—1 j=1

we have

Xi

il

2(R< .,»xj>—||<s.,»—1>x.,»)‘-
2— 21 (ij,-—Re<” Ty

and the equality in (3.1) holds.
Conversely, if the equality holds in (3.1), then it is clear that (3.2) is valid and we
need only to prove (3.3). Since f, has monotonicity property, we see that

fn(la"' 71) <thmfn(17 75\7"' 71) gtlimfn(slv'“ 75\7"' 7sn)' (34)

If the equality holds in (3.1), then both equalities in (3.4) hold, that is,
n n n xl
Sl | 30 = 3 (1ot —re () (.3
j=1 j=1 j=1 xi|

1(ijj||—Re< E ijj>> (3.6)
j= Xi

M=
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By the equality in (3.5), we obtain

ZRe< >:Re a 7ix,- . (3.7)
|1H HXIH j=1

We note that in Schwarz’s type inequality Re(u, v) < ||lu| - ||v| (u,v € H) the case of
equality holds iff there exists a A > 0 such that u = Av. Consequently, the equality
holds in (3.7) iff there exists a A > 0 such that

-

szll

Hence, by (3.7), we have

A:

ZM

Jj=1

Xi 1
N
= <||xz-|| 2 >
and on the other hand, by (3.6), we get

x n X
Re( S S, znx,n 2(||s,,»xj—Re<—‘_,s.,»xj>)
B o]
n xl
Y (Re Tl 7% = sjllx; ]l + 11|
=1 i

3 (Re( sy )~ sy~ D).
J=1 Yi
Therefore we have

n n xl
Exj: 2 (Re<”—_;ijj>_(51 )XJH)
j=1 j=1 x[“ || ZH

This completes the proof. [l

Note that Theorem 3.2 is a genera_llization of [3, Theorem 7]. Indeed, we may state
that if, for each fixed i € {1,---,n}, k&, >0, j € {1, ,n}, satisfies the condition

sl = Re <|| 1 s”"><"5”

then the following inequality holds;

n
2 Il =

n

< YK (3.8)

j=1

n
2 Xj
j=1

The equality holds in (3.8) if and only if

n n .
Dbl = Y K
j=1

J=1
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and
n n .
_ i Xi
Doxi=| 2 lxill - Zk
297 \& Tl
As a corollary, we obtain the following result similar to [3, Theorem 7].

COROLLARY 3.3. Let x; € H\{0}, je{1,---,n}. If, foreachfixed i € {1,---,n},
kj- >0,je{l,---,n}, are such that

X; .
I —Re<x—’_”7x,-> <K,
1

n n n xl n l
Sl - |Su] < 3 (Il -Re (o)) < 3K 69
= =l A i

All equalities in (3.9) hold if and only if

n noo
2 il = Xk
Jj=1

J=1

then

and

éx’: (,g”x’” 2”) T

We are interested in the relation between Theorem 1.1 and Corollary 3.3. Recall
that

maxigj<n ||xj | maxjg<n ”xj |
n 9 )

[l [0l

n X;
lim f,(1,---,¢,---,1) = (x'—Re<—,x'>>.
= A 2 ol =Re (s

Therefore, it might seem to be impossible to do it. Indeed, we have the following

) max [lxj]

and

EXAMPLE 3.4. Let X = R%. If we take x; = $(cos@,sinf), x = 3(0,1),
x3 = (1,0), then [|x|| = ||x2]| = < 1 = [x3]|. Put

g(0)=1s <X—3 M7 ”x—3) = lim f3(1,1,1).

e ezl [l ]

Then we see that

1
8(0) = %+COSG+§Sin9—\/3+2(c0s9+sin9).



552 Z. LINGLIN, T. OHWADA AND M. CHO

In the case of 0 = %, we have

7
¢(%) :§+% lef V3+2v2
:(\/§+1)<2%—1> > 0.

B <||x3|| [lxsll xaH) > lim f3(1,1,1).

bedll” Teall” Tlxsll

Hence we get

On the other hand, in the case of 0 = 3 , we have

)
kY 3 1 1
f(F)=3-tas v
3 1
=2 -V3- 5 <

Thus we get

/3 (M,x—3” x3||> m f3(z,1,1).

el ezl s

It is possible to compare this with Theorem 1.1 and Corollary 1.3 in the special
case.

THEOREM 3.5. Lef x1,---,x, € H\ {0} and

I= {z e{l,---.n}: ||lx| < 112]22("”)61'}.
Then
(i) if 1 = @, for each i € {1,---,n}, the following holds

- ( |> max |
n .
<3 (nx,- —Re<i,xj>);
= x|
(i) if I ={ip} for some iy € {1,---,n}, then the following inequalities hold
n
<|ln—|Y
j=1 H J
<3 (bl-re( )
j=1 Xi

n
2 il =
j=1

n
2%
j=1

n
2 il =

n
ij
Jj=1

A max ||x;||
x| ] ) 1<i<n
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Proof. (ii) Since ||x;|| = ||x;|| (i,j € I), we see that
[ xall
fn<17"'717 71 fn
i bl Tl
n
Z ‘ 11212( ||xjH

hmfn( ) 7t717"'7"'71)22 ij” Re .
f—eo l/\() j=1 ” loH

Thus we have
12| )
max ||x;|| = JERRE 1,01
Dl<<” = f"( o

x,||

and

This completes the proof. [

COROLLARY 3.6. Let xj,xy € H\ {0} with ||x1]| < ||x2||. Then the following
inequalities hold
)l

<x1||+x2—Re< L x1+x2>

Finally, as an analogue of Theorem 1.1, we may state the following result as well:

X1 X2

leall 2l

el 4+ el — [t 42l < (z—‘

THEOREM 3.7. Let (H,(-,-)) be an inner product space, and x; € H\ {0}, j €
{1,---,n}. Then, for each fixed i € {1,---,n},

Syl - |3 S x | (3.10)
Xill — xil| < | n—Re( —, — max X; .
=] 2 Tl & Tl /) 2

The equality holds in (3.10) if and only if

jix,/><n—Re<x1 2 >> max [
o ﬁ””‘”‘(”‘ <|le| % >>” ’”}H T

=

and
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Proof. Ifweputsj:w(je{l,-- n}),then s; > 1 (je{l,---,n}).

[l

Thus, by Theorem 2.1 and Lemma 3.1, we have

fn(la"'71) hmfn(51, ,5\,"',5‘")

t—o0
i

2(” (o)

i(Hmaxqullxjx _Re< Xi maX1<j<n||xj||x.>>
! il ;1 !

1]

i P ) ma
2 IR T ) s

n
=|n—Re max ||x O
HXIH ; 1<j<n H jH
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