
Mathematical
Inequalities

& Applications

Volume 17, Number 2 (2014), 557–571 doi:10.7153/mia-17-42

ON THE OHLIN LEMMA FOR

HERMITE–HADAMARD–FEJÉR TYPE INEQUALITIES
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(Communicated by Zs. Páles)

Abstract. Using Ohlin’s Lemma [21] on convex stochastic ordering, we get a simple proof of
known Hermite-Hadamard-Fejér type inequalities. We also prove new inequalities. Using s -
convex stochastic ordering [12], we also give some Hermite-Hadamard-Fejér type inequalities
in the case of higher order convex functions. The obtained results are useful in proving some
inequalities between the quadrature operators [31], [32].

1. Introduction

Let f : I → R be a convex function defined on a real interval I and a,b ∈ I with
a < b . The following double inequality

f

(
a+b

2

)
� 1

b−a
·
∫ b

a
f (x)dx � f (a)+ f (b)

2
(1.1)

is known as the Hermite-Hadamard inequality for convex functions (see [13] and [20]).
In [14] Fejér gave a generalization of the inequality (1.1):

PROPOSITION 1.1. Let f : I → R be a convex function defined on a real interval
I , a,b∈ I with a < b and let g : [a,b]→ R be nonnegative and symmetric with respect
to the point (a+b)/2 (the existence of integrals is assumed in all formulas). Then

f

(
a+b

2

)
·
∫ b

a
g(x)dx �

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2
·
∫ b

a
g(x)dx. (1.2)

The double inequality (1.2) is known in the literature as the Hermite-Hadamard-
Fejér inequality (see [20], [13] and [22] for the historical background).
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REMARK 1.1.

(i) Note that for g(x) = w(x) such that
∫ b
a w(x)dx = 1, the inequality (1.2) can be

rewritten in the form

f

(
a+b

2

)
�

∫ b

a
f (x)w(x)dx � f (a)+ f (b)

2
. (1.3)

(ii) Conversely, from the inequality (1.3) it follows (1.2). Indeed, if
∫ b
a g(x)dx > 0,

it suffices to take w(x) =
(∫ b

a g(x)dx
)−1

g(x) . If
∫ b
a g(x)dx = 0, then (1.2) is

obvious.

For various modifications of (1.1) and (1.2) see e.g. [3], [4], [5], [10], [11], [13],
and the references given there.

In a recent paper [17] by M. Klaričić Bakula, J. Pečarić and J. Perić some improve-
ments of various forms of the Hermite-Hadamard inequality can be found; namely,
that of Fejér, Lupas, Brenner-Alzer, Beesack-Pečarić. These improvements imply the
Hammer-Bullen inequality.

In this paper we offer some useful tools for obtaining and proving of various forms
of the Hermite-Hadamard inequality, also for higher-order convex functions.

We describe the inequality (1.3) in terms of convex stochastic ordering. Using the
Ohlin lemma [21] we get a simple proof of (1.3).

We obtain a generalization of (1.3), in the case when the function w is not sym-
metric. We give some generalization of the Brenner and Alzer inequalities [9]. We also
consider a generalization of (1.3) in the case of higher order convex functions. The
so obtained inequalities are applied to prove some inequalities between the quadrature
operators.

2. Some generalizations of the Fejèr inequality

In the sequel we will to make use of the theory of stochastic order relations. Let
us review some notations.

As usual, FX denotes the cumulative distribution function (or the distribution func-
tion) of a random variable X and μX is the distribution corresponding to X .

For real valued random variables X ,Y with a finite expectation we say that X is
dominated by Y in convex ordering sense if E f (X) � E f (Y ) for all convex functions
f : R → R , for which the expectations exist. In that case we write X �cx Y , or μX �cx

μY .
A sufficient condition for convex stochastic ordering is the following Ohlin lemma

[21].

LEMMA 2.1. Let X ,Y be two random variables such that EX = EY . If the
distribution functions FX ,FY cross exactly one time, i.e., for some x0 holds

FX(x) � FY (x) if x < x0 and FX(x) � FY (x) if x > x0,

then X �cx Y .
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From Lemma 2.1, a simple proof of (1.2) follows.

Proof of Proposition 1.1. Let f and g satisfy the assumptions of Proposition
1.1. Let X , Y , Z be three random variables such that μX = δ(a+b)/2 , μY (dx) =
(
∫ b
a g(x)dx)−1g(x)dx , μZ = 1

2 (δa + δb) . Then, by Lemma 2.1, we obtain that X �cx Y
and Y �cx Z , which implies (1.2). �

As Fink noted in [15], one wonders what the symmetry has to do with the inequal-
ity (1.2) and if such an inequality holds for other functions (cf. [13, p. 53]).

As an immediate consequence of Lemma 2.1, we obtain the following lemma.

LEMMA 2.2. Let 0 < p < 1 . Let f : I → R be a convex function, a,b ∈ I with
a < b. Let μ be a finite measure on B ([a,b]) such that (i) μ([a, pa+ qb]) � pP0 ,
(ii) μ((pa + qb,b]) � qP0 , (iii)

∫
[a,b] xμ(dx) = (pa + qb)P0 , where q = 1− p, P0 =

μ([a,b]) . Then

f (pa+qb)P0 �
∫

[a,b]
f (x)μ(dx) � [p f (a)+q f (b)]P0. (2.1)

REMARK 2.1. If we choose μ(dx) = g(x)dx in Lemma 2.2, then the conditions
(i), (ii) and the inequality (2.1) reduce to (i’) μ([a, pa+qb])= pP0 , (ii’) μ((pa+qb])=
qP0 and

f (pa+qb)P0 �
∫ b

a
f (x)g(x)dx � [p f (a)+q f (b)]P0, (2.2)

respectively, where P0 =
∫ b
a g(x)dx .

For convenience, we will take the measure μ to be the probability measure on
B ([a,b]) . We now apply Lemma 2.2 to obtain the following result.

THEOREM 2.1. Let 0 < p < 1 . Let f : I → R be a convex function, a,b∈ I with
a < b. If we choose w : [a,b] → R such that w is nonnegative,

∫ b
a w(x)dx = 1 and

w(pa+(1− p)b+ z)=
(1− p)2

p2 w
(

pa+(1− p)b− 1− p
p

z
)

(2.3)

for all 0 � z � p(b−a) , then

f (pa+(1− p)b) �
∫ b

a
f (x)w(x)dx � p f (a)+ (1− p) f (b). (2.4)
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Proof. Put A = pa+(1− p)b . Then we have

∫ b

a
w(x)dx =

∫ A

a
w(x)dx+

∫ b

A
w(x)dx

=
∫ (1−p)(b−a)

0
w(A− z)dz+

∫ p(b−a)

0
w(A+ z)dz

=
∫ (1−p)(b−a)

0
w(A− z)dz+

(1− p)2

p2

∫ p(b−a)

0
w
(
A− 1− p

p
z
)
dz

=
∫ (1−p)(b−a)

0
w(A− z)dz+

(1− p)
p

∫ (1−p)(b−a)

0
w(A− y)dy

=
1
p

∫ (1−p)(b−a)

0
w(A− y)dy.

Since
∫ b
a w(x)dx = 1, we obtain

∫ (1−p)(b−a)

0
w(A− y)dy = p. (2.5)

Taking into account that
∫ A
a w(x)dx =

∫ (1−p)(b−a)
0 w(A− y)dy , we get

∫ A

a
w(x)dx = p,

which implies that ∫ b

A
w(x)dx = 1− p,

consequently for the measure μ(dx) = w(x)dx , the conditions (i) and (ii) in Lemma 2.2
are satisfied.

Similarly, we obtain that

∫ b

a
zw(z)dz =

∫ (1−p)(b−a)

0
(A−y)w(A−y)dy+

∫ p(b−a)

0
(A+z)

(1−p)2

p2 w
(
A−1−p

p
z
)
dz

=
∫ (1−p)(b−a)

0
(A−y)w(A−y)dy+

1−p
p

∫ (1−p)(b−a)

0

(
A+

p
1−p

y
)
w(A−y)dy

= A
1
p

∫ (1−p)(b−a)

0
w(A− y)dy+

∫ (1−p)(b−a)

0
(−y)w(A− y)dy

+
∫ (1−p)(b−a)

0
yw(A− y)dy

= A
1
p

∫ (1−p)(b−a)

0
w(A− y)dy.

By (2.5), we get
∫ b
a zw(z)dz = A , consequently (iii) in Lemma 2.2 is satisfied. Thus, by

Lemma 2.2, we obtain (2.4). �
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REMARK 2.2. If we choose p = 1
2 in Theorem 2.1, then the equality (2.3) means

that w is symmetric with respect to a+b
2 , and the inequalities (2.4) reduce to the Fèjer

inequalities (1.3).

Since the set of probability measures μ satisfying the inequalities (2.1) (with P0 =
1) is closed under weak convergence, from Theorem 2.1, we obtain immediately the
following result.

THEOREM 2.2. Let 0 < p < 1 . Let f : I → R be a convex function, a,b∈ I , with
a < b. Let μ be a probability measure in B ([a,b]) such that

μ(pa+(1− p)b+B)=
1− p

p
μ
(

pa+(1− p)b− 1− p
p

B
)
, (2.6)

for any B ∈ B ([0, p(b−a)]) . Then

f (pa+(1− p)b) �
∫

[a,b]
f (x)μ(dx) � p f (a)+ (1− p) f (b). (2.7)

3. Some results related to the Brenner-Alzer inequality

In 1991, Brenner and Alzer [9] obtained the following result generalizing Fejér’s
result as well as the result of Vasić and Lacković (1976) [29] and Lupas (1976) [19]
(see also [22]).

PROPOSITION 3.1. Let p,q be given positive numbers and a1 � a< b � b1 . Then
the inequalities

f

(
pa+qb
p+q

)
� 1

2y

∫ A+y

A−y
f (t)dt � p f (a)+q f (b)

p+q
(3.1)

hold for A = pa+qb
p+q , y > 0 , and all continuous convex functions f : [a1,b1] → R iff

y � b−a
p+q

min{p,q}.

REMARK 3.1. It is known [22, p. 144] that under the same conditions Hermite-
Hadamard’s inequality holds, the following refinement of (3.1):

f

(
pa+qb
p+q

)
� 1

2y

∫ A+y

A−y
f (t)dt � 1

2
{ f (A− y)+ f (A+ y)}� p f (a)+q f (b)

p+q
(3.2)

holds.

In the following theorem we give some generalization of the Brenner and Alzer
inequalities (3.2), which we prove by using the Ohlin lemma.
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THEOREM 3.1. Let p,q be given positive numbers, a1 � a < b � b1 , 0 < y �
b−a
p+q min{p,q} and let f : [a1,b1] → R be a convex function. Then

f

(
pa+qb
p+q

)
� α

2
{ f (A− (1−α)y)+ f (A+(1−α)y)}+

1
2y

∫ A+(1−α)y

A−(1−α)y
f (t)dt

� α
2n

n

∑
k=1

{
f
(
A−y+k

αy
n

)
+ f

(
A+y−k

αy
n

)}
+

1
2y

∫ A+(1−α)y

A−(1−α)y
f (t)dt

� 1
2y

∫ A+y

A−y
f (t)dt, (3.3)

where 0 � α � 1 , n = 1,2, . . . ,

1
2y

∫ A+y

A−y
f (t)dt � β

2
{ f (A− y)+ f (A+ y)}+(1−β)

1
2y

∫ A+y

A−y
f (t)dt

� 1
2
{ f (A− y)+ f (A+ y)}, (3.4)

where 0 � β � 1 ,

1
2
{ f (A−y)+ f (A+ y)} �

(1
2
−γ

)
{ f (A−y−c)+ f (A+y+c)}+γ{ f (A−y)+ f (A+y)}

� p f (a)+q f (b)
p+q

, (3.5)

where c = min{b− (A+ y),(A− y)−a} , γ =
∣∣ 1
2 − p

∣∣ .
Proof. Let X , Y , W , Z , ξn , η and λ be random variables such that:

μX = δ pa+qb
p+q

,

μY (dx) =
1
2y

χ[A−y,A+y](x)dx,

μZ =
p

p+q
δa +

q
p+q

δb,

μW =
1
2

δA−y +
1
2

δA+y,

μξn(dx) =
α
2n

n

∑
k=1

{δA−y+k αy
n

+ δA+y−k αy
n
}+

1
2y

χ[A−(1−α)y,A+(1−α)y](x)dx,

μη(dx) =
β
2
{δA−y + δA+y}+

1−β
2y

χ[A−y,A+y](x)dx,

μλ = (
1
2
− γ){δA−y−c + δA+y+c}+ γ{δA−y + δA+y}.

Then, using the Ohlin lemma, we obtain:

(a) X �cx Y , Y �cx W and W �cx Z , which implies the inequalities (3.2),
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(b) X �cx ξ1 , ξ1 �cx ξn and ξn �cx Y , which implies (3.3),

(c) Y �cx η and η �cx W , which implies (3.4),

(d) W �cx λ and λ �cx Z , which implies (3.5). �

THEOREM 3.2. Let p, q be given positive numbers, 0 < α < 1 , a1 � a < b �
b1 , 0 < y � b−a

p+q min{p,q} and 0 � α
1−α y � b−a

p+q min{p,q} . Let f : [a1,b1] → R be
a convex function. Then

f (A) � α
y

∫ A

A−y
f (t)dt +

(1−α)2

αy

∫ A+ α
1−α y

A
f (t)dt

� α f (A− y)+ (1−α) f
(
A+

α
1−α

y
)

� p
p+q

f (a)+
q

p+q
f (b), (3.6)

where A = pa+qb
p+q .

Proof. Let X , Y , Z and W be random variables such that:

μX = δA,

μY (dx) =
α
y

χ[A−y,A](x)dx+
(1−α)2

αy
χ[A,A+ α

1−α y](x)dx,

μW = αδA−y +(1−α)δA+ α
1−α y,

μZ =
p

p+q
δa +

q
p+q

δb.

Then using the Ohlin lemma we obtain X �cx Y , Y �cx W , W �cx Z , which implies
the inequalities (3.6). �

REMARK 3.2. If we choose α = 1
2 in Theorem 3.2, then the inequalities (3.6)

reduce to the inequalities (3.4).

REMARK 3.3. If we choose α = p
p+q and y = (1− p)z in Theorem 3.2, then we

have

f (A) � p
qz

∫ A

A− q
p+q z

f (t)dt +
q
pz

∫ A+ p
p+q z

A
f (t)dt

� p
p+q

f (A− q
p+q

z)+
q

p+q
f
(
A+

p
p+q

z
)

� p
p+q

f (a)+
q

p+q
f (b),

where A = pa+qb
p+q , 0 < z � b−a .
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4. The n -th order case

Convex functions of higher order are very well known and investigated (see e.g.
[18], [28], [8], [23], [16], [26]). But up to now there is non common terminology, which
sometimes may be confusing.

The notion of n th order convexity (or n -convexity)was defined in terms of divided
differences by Popoviciu [24], however, we will not state it have. Instead we list some
definitions of n th order convexity which are equivalent to Popoviciu’s definition (see
[18]).

PROPOSITION 4.1. A function f : (a,b) → R is n-convex on (a,b) (n � 1) if
and only if its derivative f (n−1) exists and is convex on (a,b) (with the convention
f (0)(x) = f (x)).

PROPOSITION 4.2. Assume that f : [a,b] → R is (n+1)-times differentiable on
(a,b) and continuous on [a,b] (n � 1 ). Then f is n-convex if and only if f (n+1)(x) � 0 ,
x ∈ (a,b) .

The Kuczma’s monograph [18] devoted to functional equations and inequalities in
several variables as well as the classical Roberts and Varberg’s book on convex func-
tions [28] use the same terminology (according to which an ordinary convex function
is 1-convex).

Some authors (c.f. e.g. [8], [23], [12]) call a function f to be n -convex (n � 2) if
f (n−2) is convex (then a convex function is 2-convex).

In this paper we understand the higher order convexity in the sense of Proposition
4.1. Many results on higher-order generalizations of Hermite-Hadamard’s inequality
one can found, among others, in [2], [30], [13, p. 56].

In the sequel we will to make use of the theory of s-convex stochastic ordering
(see Denuit et al. (1998) [12]). Let us review some notations.

For real valued random variables X ,Y and any integer s � 2 we say that X is
dominated by Y in s-convex ordering sense if E f (X) � E f (Y ) for all (s−1)-convex
functions f : R → R , for which the expectations exist. In that case we write X �s−cx

Y , or μX �s−cx μY . Then the order �2−cx is just the usual convex order �cx .
A very useful criterion for the verification of the s-convex order is given by Denuit,

Lefèvre and Shaked in 1998 [12]. For the statement of this criterion, we need introduce
first the following notation. Define the number of sign changes of a function ϕ : R →
R by

S−(ϕ) = sup{S−[ϕ(x1),ϕ(x2), . . . ,ϕ(xn)] : x1 < x2 < .. .xn ∈ R ,n ∈ N},
where S−[y1,y2, . . . ,yn] denotes the number of sign changes in the sequence y1,y2, . . . ,yn

(zero terms are being discarded). Two real functions ϕ1,ϕ2 are said to have k crossing
points (or cross each other k -times) if S−(ϕ1 −ϕ2) = k .

PROPOSITION 4.3. ([12]) Let X and Y be two random variables such that E(X j−
Y j) = 0 , j = 1,2, . . . ,s−1 (s � 2 ). If S−(FX −FY ) = s−1 and the last sign of FX −FY

is a+ , then X �s−cx Y .
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We now apply Proposition 4.3 to obtain the following results.

THEOREM 4.1. Let n � 1 , a1 � a < b � b1 .
Let a(n) =

[
n
2

]
+1 , b(n) =

[
n+1
2

]
+1 .

Let α1, . . . ,αa(n) , x1, . . . ,xa(n) , β1, . . . ,βb(n) , y1, . . . ,yb(n) be real numbers such
that

a) if n is even then

0 < β1 < α1 < β1 + β2 < α1 + α2 < .. . < α1 + . . .+ αa(n)

= β1 + . . .+ βb(n) = 1,

a � y1 < x1 < y2 < x2 < .. . < xa(n) < yb(n) � b, (4.1)

b) if n is odd then

0 < β1 < α1 < β1 + β2 < α1 + α2 < .. . < β1 + . . .+ βb(n)

< α1 + . . .+ αa(n) = 1

a � y1 < x1 < y2 < x2 < .. . < yb(n) < xa(n) � b; (4.2)

and
a(n)

∑
k=1

xk
i αi =

b(n)

∑
j=1

yk
jβ j,

for any k = 1,2, . . . ,n.
Let f : [a1,b1] → R be an n-convex function. Then we have the following in-

equalities:

i) if n is even then
a(n)

∑
i=1

αi f (xi) �
b(n)

∑
j=1

β j f (y j), (4.3)

ii) if n is odd then
b(n)

∑
j=1

β j f (y j) �
a(n)

∑
i=1

αi f (xi). (4.4)

Proof. Let X ,Y be random variables such that

μX =
a(n)

∑
i=1

αiδxi , μY =
b(n)

∑
j=1

β jδy j .

Then using Proposition 4.3 we obtain:

a) if n is even then X �(n+1)−cx Y , which implies (4.3),

b) if n is odd then Y �(n+1)−cx X , which implies (4.4). �
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EXAMPLE 4.1. Let n = 1, a = y1 < x1 = a+b
2 < y2 = b , β1 = β2 = 1

2 , α1 = 1.

From Theorem 4.1, we obtain the Jensen inequality f ( a+b
2 ) � f (a)+ f (b)

2 , for any convex
function f .

REMARK 4.1. The following example shows, that the sharp inequalities in (4.1)
and (4.2) are not necessary. Let n = 1, a = y1 < x1 = y2 = a+b

2 < y3 = b , β1 = β2 =
β3 = 1

3 , α1 = 1. Then using the Ohlin lemma with μX = δ a+b
2

, μY = 1
3 δa + 1

3 δ a+b
2

+
1
3δb , we obtain the following inequality:

f

(
a+b

2

)
� 1

3
( f (a)+ f (b))+

1
3

f

(
a+b

2

)
,

where f is a convex function.

The next theorem is immediate from Proposition 4.3.

THEOREM 4.2. Let n � 1 , a1 � a < b � b1 . Let a(n),b(n)∈ N . Let α1, . . . ,αa(n) ,
β1, . . . ,βb(n) be positive real numbers such that α1 + . . .+αa(n) = β1 + . . .+βb(n) = 1 .
Let x1, . . . ,xa(n) , y1, . . . ,yb(n) be real numbers such that

a) a � x1 � x2 � . . . � xa(n) � b and a � y1 � y2 � . . . � yb(n) � b,

b) ∑a(n)
k=1 xk

i αi = ∑b(n)
j=1 yk

jβ j, for any k = 1,2, . . . ,n.

Let α0 = β0 = 0 , x0 = y0 =−∞ . Let F1,F2 : R → R be two functions given by the fol-
lowing formulas: F1(x) = α0 + α1 + . . . + αk if xk < x � xk+1 (k = 0,1, . . . ,a(n)−
1) and F1(x) = 1 if x > xa(n) ; F2(x) = β0 + β1 + . . . + βk if yk < x � yk+1 (k =
0,1, . . . ,b(n)− 1) and F2(x) = 1 if x > yb(n) . If the functions F1,F2 have n crossing
points and the last sign of F1−F2 is a+, then for any n-convex function f : [a1,b1]→ R

we have the following inequality

a(n)

∑
i=1

αi f (xi) �
b(n)

∑
j=1

β j f (y j). (4.5)

THEOREM 4.3. Let n � 1 , a1 � a < b � b1 . Let a(n) =
[

n
2

]
+1 , b(n) =

[
n+1
2

]
+

1 . Let x1, . . . ,xa(n),y1, . . . ,yb(n) be real numbers, and α1, . . . ,αa(n) , β1, . . . ,βb(n) be
positive numbers, such that α1 + . . .+ αa(n) = 1 , β1 + . . .+ βb(n) = 1 ,

1
b−a

∫ b

a
xkdx =

b(n)

∑
j=1

yk
jβ j =

a(n)

∑
i=1

xk
i αi (k = 1,2, . . . ,n),

a � x1 < x2 < .. . < xa(n) � b, a � y1 < y2 < .. . < yb(n) < b,

x1−a
b−a < α1 < x2−a

b−a ,

x2−a
b−a < α1 + α2 < x3−a

b−a ,

. . .
xa(n)−1−a

b−a < α1 + . . .+ αa(n)−1 <
xa(n)−a

b−a ,
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y1−a
b−a < β1 < y2−a

b−a ,
y2−a
b−a < β1 + β2 < y2−a

b−a ,

. . .
yb(n)−1−a

b−a < β1 + . . .+ βb(n)−1 <
yb(n)−a

b−a ;

if n is even then y1 = a, yb(n) = b, x1 > a, xa(n) < b;
if n is odd then y1 = a, yb(n) < b, x1 > a, xa(n) = b.

Let f : [a1,b1] → R be an n-convex function. Then we have the following in-
equalities:

i) if n is even then

a(n)

∑
i=1

αi f (xi) � 1
b−a

∫ b

a
f (x)dx �

b(n)

∑
j=1

β j f (y j), (4.6)

ii) if n is odd then

b(n)

∑
j=1

β j f (y j) � 1
b−a

∫ b

a
f (x)dx �

a(n)

∑
i=1

αi f (xi). (4.7)

Proof. Let X ,Y,Z be random variables such that

μX =
a(n)

∑
i=1

αiδxi , μY =
b(n)

∑
j=1

β jδy j , μZ(dx) =
1

b−a
χ[a,b](x)dx.

We now apply Proposition 4.3 to obtain the following (n+1)-convex orderings of the
random variables X ,Y,Z .

If n is even then X �(n+1)−cx Z , Z �(n+1)−cx Y , which implies (4.6).
If n is odd then Y �(n+1)−cx Z , Z �(n+1)−cx X , which implies (4.7). �

5. Inequalities between quadrature operators

In the numerical analysis the inequalities the below type, which are connected
with quadrature operators, are called extremalities. Many extremalities are known in
the numerical analysis (cf. [1], [7], [6] and the references therein).

The numerical analysts prove them using the suitable differentiability assump-
tions. As proved Wa̧sowicz in the papers [31], [32], [34], for convex functions of higher
order some extremalities can be obtained without assumptions of this kind, using only
the higher order convexity itself. The support-type properties play here the crucial role.
As we will show in this paper, some extremalities can be obtained using a probabilistic
characterization. The obtained extremalities are also known, however our method using
the convex stochastic ordering seems to be quite easy.
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For a function f : [−1,1] → R we consider six operators approximating the inte-
gral mean value

I ( f ) := 1
2

1∫
−1

f (x)dx.

They are

C( f ) := 1
3

(
f
(−√

2
2

)
+ f (0)+ f

(√
2

2

))
,

G2( f ) := 1
2

(
f
(−√

3
3

)
+ f

(√
3

3

))
,

G3( f ) := 4
9 f (0)+ 5

18

(
f
(−√

15
5

)
+ f

(√
15
5

))
,

L4( f ) := 1
12

(
f (−1)+ f (1)

)
+ 5

12

(
f
(−√

5
5

)
+ f

(√
5

5

))
,

L5( f ) := 16
45 f (0)+ 1

20

(
f (−1)+ f (1)

)
+ 49

180

(
f
(−√

21
7

)
+ f

(√
21
7

))
,

S( f ) := 1
6

(
f (−1)+ f (1)

)
+ 2

3 f (0).

The operators G2 and G3 are connected with Gauss-Legendre rules. The operators
L4 and L5 are connected with Lobatto quadratures. The operators S and C concern
Simpson and Chebyshev quadrature rules, respectively. The operator I stands for the
integral mean value (see e.g. [27], [35], [36], [37], [38]).

We will establish all possible inequalities between these operators in the class of
higher order convex functions.

REMARK 5.1. Let X2 , X3 , Y4 , Y5 , U , V and Z be random variables such that

μX2 =
1
2

(
δ−

√
3

3
+ δ√

3
3

)
,

μX3 =
4
9

δ0 +
5
18

(
δ−

√
15
5

+ δ√
15
5

)
,

μY4 =
1
12

(δ−1 + δ1)+
5
12

(
δ−

√
5

5
+ δ√

5
5

)
,

μY5 =
16
45

δ0 +
1
20

(δ−1 + δ1)+
49
180

(
δ−

√
21
7

+ δ√
21
7

)
,

μU =
2
3

δ0 +
1
6
(δ−1 + δ1),

μV =
1
3

(
δ−

√
2

2
+ δ0 + δ√

2
2

)
,

μZ(dx) =
1
2

χ[−1,1](x)dx.

Then we have
G2( f ) = E[ f (X2)], G3( f ) = E[ f (X3)],
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L4( f ) = E[ f (Y4)], L5( f ) = E[ f (Y5)],

S( f ) = E[ f (U)], C( f ) = E[ f (V )], I ( f ) = E[ f (Z)].

THEOREM 5.1. Let f : [−1,1]→ R be 3-convex. Then

G2( f ) � I ( f ) � S( f ), (5.1)

G2( f ) � C( f ) � T ( f ) � S( f ), (5.2)

where T ∈ {G3,L5} .

Proof. From Theorem 4.3 we obtain G3( f ) � I ( f ) and I ( f ) � S( f ) , which
implies (5.1). From Theorem 4.1 we obtain G2( f ) � C( f ) . By Theorem 4.2 we get
C( f ) � G3( f ) , C( f ) � L5( f ) , G3( f ) � S( f ) , L5( f ) � S( f ) . This completes the
proof. �

REMARK 5.2. The inequalities (5.2) can be found in [31]. Wa̧sowicz in [31]
proved that the quadratures L4 , L5 and G3 are not comparable in the class of 3-convex
functions. Moreover, Wa̧sowicz [31], [33] proved, that

C( f ) � L4( f ), (5.3)

if f is 3-convex. The proof given in [31] is rather complicated. This was done using
computer software. In [33] can be found a new easy proof of (5.3), without the use
of any computer software, based on the spline approximation of convex functions of
higher order. It is worth noting that, Proposition 4.3 does not apply to proving (5.3).

THEOREM 5.2. Let f : [−1,1]→ R be 5-convex. Then

G3( f ) � I ( f ) � L4( f ), (5.4)

G3( f ) � L5( f ) � L4( f ). (5.5)

Proof. The inequalities (5.4) and (5.5) we derive from Theorems 4.3 and 4.2. �

REMARK 5.3. The inequalities (5.5) can be found in [32], [34]. Wa̧sowicz [32]
proved, that in the class of 5-convex functions the operators G2,C,S are not comparable
both with each other and with G3,L4,L5 .
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[33] SZ. WA̧SOWICZ, A new proof of some inequality connected with quadratures , J. Inequal. Pure Appl.
Math. 9, 1 (2008), Article 7, 3 pp.

[34] SZ. WA̧SOWICZ, On some extremalities in the approximate integration, Math. Inequal. Appl. 13
(2010), 165–174.

[35] E. W. WEISSTEIN,Chebyshev Quadrature, From MathWorld – A Wolfram Web Resource,
(online: http://mathworld.wolfram.com/ChebyshevQuadrature.html.

[36] E. W. WEISSTEIN,Legendre-Gauss Quadrature, From MathWorld – A Wolfram Web Resource,
(online: http://mathworld.wolfram.com/Legendre-GaussQuadrature.html.

[37] E. W. WEISSTEIN,Lobatto Quadrature, From MathWorld – A Wolfram Web Resource,
(online: http://mathworld.wolfram.com/LobattoQuadrature.html.

[38] E. W. WEISSTEIN, Simpson’s Rule, From MathWorld – A Wolfram Web Resource,
(online: http://mathworld.wolfram.com/SimpsonsRule.html.

(Received May 17, 2012) Teresa Rajba
Department of Mathematics and Computer Science

University of Bielsko-Biała
ul. Willowa 2

43–309 Bielsko-Biała
Poland

e-mail: trajba@ath.bielsko.pl

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


