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MONOTONE TRANSFORMATIONS ON B(H) WITH RESPECT TO

THE LEFT–STAR AND THE RIGHT–STAR PARTIAL ORDER

GREGOR DOLINAR, ALEXANDER GUTERMAN AND JANKO MAROVT

(Communicated by S. Puntanen)

Abstract. Let H be an infinite dimensional complex Hilbert space, and let B(H) be the set of
all bounded linear operators on H . In the paper equivalent definitions for the left-star and the
right-star partial orders on B(H) are given and bijective additive maps on B(H) which preserve
the left-star or the right-star partial order in both directions are characterized.

1. Introduction

Let Mn be the algebra of all n×n complex matrices and let ImA denote the image
of A ∈ Mn. Drazin defined in [2] a partial order on Mn , named the star partial order, in
the following way:

A �
∗

B if and only if A∗A = A∗B and AA∗ = BA∗. (1)

Here A∗ stands for the conjugate transpose of A. Baksalary and Mitra introduced in [1]
notions of order which are related.

DEFINITION 1. The left-star partial order on Mn is a relation defined by

A∗� B if and only if A∗A = A∗B and ImA ⊆ ImB.

DEFINITION 2. The right-star partial order on Mn is a relation defined by

A�∗B if and only if AA∗ = BA∗ and ImA∗ ⊆ ImB∗.

It was shown in [1, Section 2] that both relations are partial orders and they are
related to the star order in the following way:

A∗� B and A�∗B if and only if A �
∗

B for every A,B ∈ Mn.
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Many other partial orders can be also defined on Mn (see [9]). For example,
Hartwig [7] introduced the rank substractivity order as follows

A � B if and only if rank (B−A) = rank B− rank A.

He also observed that there exists another equivalent definition of the rank substractivity
order, namely

A � B if and only if A−A = A−B and AA− = BA−

where A− is a generalized inner inverse of A. The partial order � is thus usually called
the minus partial order. It was observed in [1, Theorem 2.1] that for every A,B ∈ Mn

each of the relations A∗� B or A�∗B implies A � B.
Let H be an infinite-dimensional complex Hilbert space, and let B(H) be the al-

gebra of all bounded linear operators on H. In [14] Šemrl extended the minus partial
order from Mn to B(H) . Since A ∈ B(H) has a generalized inner inverse if and only
if its image is closed (see for example [11]) , Šemrl found an appropriate equivalent
definition of the minus partial order on Mn without using inner inverses, and then ex-
tended this definition to B(H) . More precisely, he proved that for A,B ∈ Mn we have
A � B if and only if there exist idempotent matrices P,Q ∈ Mn such that ImP = ImA ,
KerA = KerQ , PA = PB and AQ = BQ . Using the same equations, only adding the
closure on ImA since the image of a bounded idempotent operator is closed, he then
extended the concept of the minus partial order from Mn to B(H) . In the same paper
[14] Šemrl also described the structure of corresponding automorphisms for the minus
partial order on B(H) .

Motivated by Šemrl’s results Dolinar and Marovt introduced in [4] a similar equiv-
alent definition of the star partial order �

∗
on B(H) . Namely, they showed that the usual

definition of the star partial order (1) for B(H) is equivalent to the following defini-
tion: for A,B∈ B(H) , A �

∗
B if and only if there exist self-adjoint idempotent operators

P,Q ∈ B(H) such that ImP = ImA , KerA = KerQ , PA = PB and AQ = BQ . In ad-
dition, bijective additive continuous maps which preserve the star partial order in both
directions on a set of all compact operators from B(H) , where H is a separable Hilbert
space, were characterized by Dolinar, Guterman, and Marovt in [3]. The authors re-
stricted themselves in [3] to the set of all compact operators in B(H) in order to use
rank one operators in the proof and it is known that there exists a Hilbert space H and
an operator A∈B(H) such that there is no rank one operator C∈B(H) with C �

∗
A . We

will show (see Lemma 10) that this problem does not occur in the case of the left-star or
the right-star partial order on B(H) and hence the characterization of the corresponding
automorphisms will not be restricted to the set of all compact operators from B(H) .

It is the aim of this paper to continue with the study of partial orders on B(H) .
First we extend the definition of left-star and right-star partial orders from Mn to B(H).
Then we characterize automorphisms on B(H) for the case of left-star and right-star
partial orders and explain the structure of bijective additive converters between left-star
and right-star orders. To indicate some possibilities for a further research we conclude
the paper with an observation about left-star and right-star partial orders on the set of
all Moore-Penrose invertible elements of a unital C∗ -algebra.
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2. The definition of left-star and right-star partial orders on B(H)

Let us introduce two relations on B(H) and then prove that these relations are
partial order relations which generalize left and right-star orders.

DEFINITION 3. For A,B ∈ B(H) we write A∗� B if and only if there exist a
self-adjoint idempotent P ∈ B(H) and an idempotent Q ∈ B(H) , such that

ImP = ImA, (2)

KerA = KerQ, (3)

PA = PB, (4)

AQ = BQ. (5)

We call this order the left-star partial order on B(H) .

DEFINITION 4. For A,B ∈ B(H) we write A�∗B if and only if there exist an
idempotent P ∈ B(H) and a self-adjoint idempotent Q ∈ B(H) , such that

ImP = ImA, KerA = Ker Q, PA = PB, AQ = BQ.

We call this order the right-star partial order on B(H) .

It will be proved that relations ∗� from Definition 3 and �∗ from Definition 4 are
partial orders on B(H) . We will formulate and prove our results only for the left-star
partial order, the right-star partial order can be treated in the same way by the symmetry.

PROPOSITION 1. Let A,B ∈ B(H) . If A∗� B then A � B. If A �
∗

B then A∗� B.

Proof. Both implications follow directly from the definitions of � and �
∗

. �

Next lemma is formulated and proved in a similar way as [14, Theorem 2] and [4,
Lemma 3].

LEMMA 2. Let A,B ∈ B(H) . The following statements are equivalent:

(i) A∗� B.

(ii) There exist closed subspaces H1,H2,H3 ⊆ H , such that

A,B : H1⊕H2 → H3⊕H⊥
3

have matrix representations

A =
[

A1 0
0 0

]
and B =

[
A1 0
0 B1

]
,

where A1 : H1 → H3 and B1 : H2 →H⊥
3 are bounded linear operators and A1 is

injective with ImA1 = H3 .
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(iii) ImA ⊥ Im(B−A) and ImB∗ = ImA∗ ⊕ Im(B∗ −A∗) .

Proof. First we prove that (i) implies (ii). Let P and Q ∈ B(H) be idempotent
operators satisfying

ImP = ImA, P∗ = P, Ker A = KerQ, PA = PB, AQ = BQ.

Let H1 = ImQ , H2 = KerQ , H3 = ImP . Then H⊥
3 = KerP since P = P∗ and H =

H1⊕H2 = H3⊕H⊥
3 . Representing A according to this direct decomposition, we obtain

A =
[

A1 0
0 0

]
, where A1 : H1 →H3 is an injective operator by (3) whose image is dense

in H3 by (2). From (5) we conclude that B =
[

A1 B2

0 B1

]
. It follows by (4) that Im(B−

A) ⊆ KerP , hence B2 = 0 and B has the desired form as well.
Second, (ii) implies (iii). There exist idempotents P,Q ∈ B(H) such that ImQ =

H1 , KerQ = H2 , ImP = H3 , KerP = H⊥
3 , and P = P∗ . Now it is easy to check that

A∗� B . Since ImA ⊆ H3 and Im(B−A) ⊆ H⊥
3 , it follows that Im A ⊥ Im(B−A) ,

hence ImA ⊥ Im(B−A) . By Proposition 1, A � B and therefore by [14, Theorem 2]
the other equality in (iii) is also true.

Third, (iii) implies (i). There exists an idempotent P ∈ B(H) such that ImP =
ImA , KerP = ImA

⊥
, and P = P∗ . Then Im(B−A)⊆ Im(B−A)⊆ ImA

⊥ = KerP . It
follows that P(B−A) = 0 which implies (4). Since ImB∗ = ImA∗ ⊕ Im(B∗ −A∗) we
can define an idempotent R ∈ B(H) such that ImR = ImA∗ and Im(B∗ −A∗) ⊆ KerR .
It follows that R(B∗ − A∗) = 0. Therefore, for Q = R∗ equalities (3) and (5) hold.
Hence, A∗� B . �

The following lemma follows directly from Definition 3 and Definition 4.

LEMMA 3. Let A,B ∈ B(H) . Then A∗� B if and only if A∗�∗B∗ .

THEOREM 4. The relation ∗�, defined in Definition 3, is a partial order on
B(H) .

Proof. 1. A∗� A for all A ∈ B(H) by item (iii) of Lemma 2.
2. If A∗� B and B∗� A for some A,B ∈ B(H) then A � B and B � A by Propo-

sition 1. Hence, A = B by [14, Corollary 3].
3. It remains to check transitivity. So, let A∗� B and B∗� C for some A,B,C ∈

B(H) . We are going to show that the condition (iii) from Lemma 2 is satisfied. First,
note that by Proposition 1, A � B and B � C , which implies by [14, Corollary 3] that
A � C , so the second part of (iii) from Lemma 2 is satisfied. To show that A∗� C it
remains to prove that ImA ⊥ Im(C−A) . By item (ii) of Lemma 2 we have ImA ⊆
ImB ⊆ ImC. Since ImB ⊥ Im(C−B), we may conclude that ImA ⊥ Im(C−B). Also

Im(C−A)⊆ Im(C−B)+ Im(B−A)⊆ Im(C−B)+ Im(B−A).
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Since ImA ⊥ Im(B−A) and ImA ⊥ Im(C−B), it follows that ImA ⊥ Im(C − A).
Using the fact that the inner product is continuous we may conclude that ImA ⊥
Im(C−A) . �

Let us prove the equivalence of two definitions of left-star partial orders.

THEOREM 5. The left-star partial order, given by the usual Definition 1 is equiv-
alent to the left-star partial order, given by Definition 3 on Mn and B(H) .

Proof. First, let us prove that Definition 3 implies Definition 1. Let ∗� be the
order defined with Definition 3 and suppose A∗� B , A,B ∈ B(H) . Observe that then
ImA⊆ ImB . From item (iii) of Lemma 2 we have ImA⊥ Im(B−A). So, 〈(B−A)x,Ax〉=
0 and therefore 〈A∗(B−A)x,x〉 = 0, x ∈ H . It follows that A∗A = A∗B.

To prove the converse implication, let us assume that for A,B ∈ B(H) we have
A∗A = A∗B and ImA ⊆ ImB. There exists a unique partial isometry W such that

A =
√

AA∗W is the polar decomposition of A with ImW = Im
√

AA∗ . Let P̃ ∈ B(H)
be the self-adjoint idempotent such that Im P̃ = Im

√
AA∗. Identically as in the proof

of [4, Theorem 5] we may show that P̃A = P̃B. Since A =
√

AA∗W, it follows that

ImA ⊆ Im
√

AA∗ and hence ImA ⊆ Im
√

AA∗. There exists a self-adjoint idempotent
P ∈ B(H) such that ImP = ImA . So, ImP ⊆ Im P̃ which yields PP̃ = P̃P = P and

hence PA = PB. It follows that Im(B−A) ⊆ KerP = (ImP)⊥ = ImA
⊥

and therefore
ImA ⊥ Im(B−A) . Observe that the left-star partial order implies minus partial order
and then by [14, Theorem 2], ImB∗ = ImA∗⊕ Im(B∗ −A∗) . By Lemma 2 the assertion
follows. �

3. Automorphisms of B(H)

Let us start with some auxiliary results.

LEMMA 6. If P ∈ B(H) is a self-adjoint idempotent and A∗� P, then A is a self-
adjoint idempotent and AP = PA = A.

Proof. Let P ∈ B(H) be a self-adjoint idempotent and A∗� P . By Proposition 1,
A∗�P implies A � P . By [14] we may conclude that A is an idempotent and that AP =
PA = A. It remains to show that A is a self-adjoint operator. By Lemma 2 it follows
that ImA ⊥ Im(P−A). So, 〈(P−A)x,Ax〉= 0 for every x ∈ H and therefore, since H
is a complex Hilbert space, A∗A = A∗P . Note that A∗A is a self-adjoint operator. It
follows that

A∗A = (A∗P)∗ = PA = A.

This yields that A is a self-adjoint idempotent. �

LEMMA 7. Let U ∈ B(H) be a unitary operator and S ∈ B(H) an invertible
operator. Let A,B ∈ B(H). Then



578 G. DOLINAR, A. GUTERMAN AND J. MAROVT

• A∗� B if and only if UAS∗�UBS,

• A�∗B if and only if SAU�∗ SBU.

Proof. Let A∗� B. Then there exist idempotent operators P,Q ∈ B(H) such that
ImP = ImA, KerA = Ker Q, P∗ = P, PA = PB and AQ = BQ. Suppose U ∈ B(H)
is a unitary operator and S ∈ B(H) is an invertible operator. Then UAS∗� UBS for
a self-adjoint idempotent P1 = UPU∗ and an idempotent Q1 = S−1QS. Conversely,
let U ∈ B(H) be a unitary operator and S ∈ B(H) an invertible operator such that
UAS∗�UBS. Then for a unitary operator U∗ and invertible operator S−1 it follows by
the first part that A∗� B.

The second claim can be proved in a similar way. �
We will denote by I(H) the set of all idempotent operators in B(H). Let x,y ∈ H

be nonzero vectors. We denote by x⊗ y∗ a rank one operator in B(H) defined in the
following way: (x⊗ y∗)z = 〈z,y〉x, for every z ∈ H. Note that every rank one operator
in B(H) can be written in this form.

LEMMA 8. Let x,y ∈ H be nonzero vectors and A ∈ B(H). The following two
statements are equivalent:

(i) x⊗ y∗�∗A.

(ii) Ay = 〈y,y〉x and y ∈ ImA∗.

Proof. Suppose first that x⊗ y∗�∗A for some nonzero vectors x,y ∈ H and A ∈
B(H). So, there exist P,Q∈ I(H), Q = Q∗ such that ImP = Imx⊗y∗,KerQ = Kerx⊗
y∗, P(x⊗ y∗) = PA and (x⊗ y∗)Q = AQ. From KerQ = Kerx⊗ y∗ we have ImQ =
Imy⊗ x∗, and hence ImQ =Lin{y} . Since Q is a rank one self-adjoint idempotent,

it has the following form: Q = y
‖y‖ ⊗

(
y

‖y‖
)∗

= y⊗y∗
〈y,y〉 . From (x⊗ y∗)Q = AQ it follows

that (x⊗y∗)Q = 1
〈y,y〉 (Ay⊗y∗). Note that x⊗y∗ = (x⊗y∗)Q. So, 〈z,y〉x = 1

〈y,y〉 〈z,y〉Ay

for every z ∈ H. We may conclude that Ay = 〈y,y〉x.
Since ImP = Imx⊗ y∗ , we have P(x⊗ y∗) = x⊗ y∗ and hence x⊗ y∗ = PA. So,

y⊗ x∗ = A∗P∗ and hence y ∈ ImA∗.
Conversely, let x,y∈H be nonzero vectors and A∈ B(H) such that y∈ ImA∗ and

Ay = 〈y,y〉x. Let Q = y⊗y∗
〈y,y〉 . So, Q is a self-adjoint idempotent operator in B(H) and

KerQ = Kerx⊗ y∗ . Also, (x⊗ y∗)Q = x⊗ y∗ . Let now z ∈ H. Then

AQz =
1

〈y,y〉A(〈z,y〉y) =
1

〈y,y〉 〈z,y〉 〈y,y〉x = (x⊗ y∗)z

and therefore (x⊗ y∗)Q = AQ.
Since y ∈ ImA∗, there exists u ∈ H such that A∗u = y. Let x⊗u∗ = P. Then

〈x,u〉 =
〈

A

(
y

〈y,y〉
)

,u

〉
=
〈

y
〈y,y〉 ,A

∗u
〉

= 1.
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It follows that P = x⊗u∗ is an idempotent. Clearly, ImP = Imx⊗y∗. Let z ∈H. Then

P(x⊗ y∗)z = (x⊗u∗)(x⊗ y∗)z = 〈z,y〉 〈x,u〉x = 〈z,y〉x = (x⊗ y∗)z

and
PAz = (x⊗u∗)Az = 〈Az,u〉x = 〈z,A∗u〉x = 〈z,y〉x = (x⊗ y∗)z.

So, P(x⊗ y∗) = PA and hence x⊗ y∗�∗A. �
The following lemma, which can be proved directly, follows easily from Lemma

3 and Lemma 8.

LEMMA 9. Let x,y ∈ H be nonzero vectors and A ∈ B(H). The following two
statements are equivalent:

(i) x⊗ y∗∗� A.

(ii) A∗x = 〈x,x〉y and x ∈ ImA.

We will now show that for every nonzero operator A ∈ B(H) there exists a rank
one operator C such that C ∗� A.

LEMMA 10. Let A ∈ B(H) be nonzero. For every nonzero x ∈ ImA there exists
nonzero y ∈ H such that x⊗ y∗∗� A.

Proof. By Lemma 9 it remains to prove that there exists a nonzero y ∈ H such

that A∗x = 〈x,x〉y. Suppose that there is no such y. So, A∗
(

x
‖x‖2

)
= 0 and hence

〈A∗x,z〉 = 0 for every z ∈ H. Therefore 〈x,Az〉 = 0 for every z ∈ H which yields
that x is orthogonal to ImA. But x ∈ ImA , hence x = 0, a contradiction. �

With the next lemma we will present a similar observation for the right-star partial
order.

LEMMA 11. Let A ∈ B(H) be nonzero and suppose the image of A is closed. Let
y ∈ ImA∗,y 
= 0. Then there exists a nonzero l ∈ H such that y⊗ l∗�∗A∗.

Proof. Since y ∈ ImA∗ , y 
= 0, there exists u ∈ H, u 
= 0, such that A∗u = y. Let
z = u

‖u‖2 . Then ‖z‖ = 1
‖u‖ , hence A∗z = 〈z,z〉y. Suppose z /∈ ImA . Since ImA = ImA,

it follows that H = KerA∗⊕ ImA. Write z = k+ l1 where k ∈ KerA∗ and l1 ∈ ImA. If
l1 = 0, then A∗z = 0, a contradiction since z 
= 0, y 
= 0 and A∗z = 〈z,z〉y. It follows
that l1 
= 0 and

A∗z = A∗l1 = 〈k+ l1,k+ l1〉y = (〈k,k〉+ 〈l1, l1〉)y.

Let a = 〈k,k〉+〈l1,l1〉
〈l1,l1〉 y . So, a ∈ Lin{y} and y = 〈l1,l1〉

〈k,k〉+〈l1,l1〉a. It follows that

A∗l1 = 〈l1, l1〉a.
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Recall that l1 ∈ ImA. Lemma 8 yields a⊗ l∗1�∗A∗. Since a ∈ Lin{y} , there exists α ∈
C\{0} such that a = αy. So, a⊗ l∗1 = y⊗ (α l1)∗. Let l = αl1 hence y⊗ l∗�∗A∗. �

Let now x⊗ y∗ and u⊗ v∗ be two rank one operators in B(H). Let us define the
following relation between rank one operators in B(H) : we write x⊗ y∗ ∼ u⊗ v∗ if x
and u are linearly dependent or y and v are linearly dependent. So, for two rank one
operators A,B ∈ B(H) we write A ∼ B if A and B have the same image or the same
kernel.

LEMMA 12. Let A,B ∈ B(H), A 
= B, be rank one operators in B(H). The fol-
lowing two statements are equivalent:

(i) A ∼ B;

(ii) There does not exist a rank two operator C∈ B(H) such that A∗�C and B∗�C.

Proof. (i) ⇒ (ii): Let A,B ∈ B(H), A 
= B, be rank one operators in B(H) and
A∼B. Denote A = x⊗y∗,B = u⊗v∗. Let C be any rank two operator in B(H) such that
A∗�C. Suppose first that x and u are linearly dependent and y and v are also linearly

dependent. So, A = λB for some nonzero λ ∈C . Note that then B = x⊗
(

1
λ
y
)∗

. Since

A∗�C, by Lemma 9 we have C∗x = 〈x,x〉y. Suppose that B∗�C. It follows that C∗x =
1
λ
〈x,x〉y. So, 〈x,x〉y = 1

λ
〈x,x〉y hence λ = 1. This yields A = B, a contradiction.

Suppose now that x and u are linearly dependent and that y and v are linearly
independent. Without loss of generality we may write A = x⊗ y∗ and B = x⊗ v∗.
Suppose that there exists a rank two operator C ∈ B(H) such that A,B∗�C. So, C∗x =
〈x,x〉y and C∗x = 〈x,x〉v hence y = v, a contradiction.

Next, suppose that x and u are linearly independent and that y and v are linearly
dependent. We may write A = x⊗ y∗ and B = u⊗ y∗. Again, suppose that there exists
a rank two operator C ∈ B(H) such that A,B∗� C. So, C∗x = 〈x,x〉y , C∗u = 〈u,u〉y,
and x,u ∈ ImC. It follows that

C∗
(

x

‖x‖2

)
= C∗

(
u

‖u‖2

)

hence C∗
(

x
‖x‖2 − u

‖u‖2

)
= 0. So, x

‖x‖2 − u
‖u‖2 ∈ KerC∗ = (ImC)⊥ . Since x,u ∈ ImC ,

it follows that x
‖x‖2 − u

‖u‖2 ∈ ImC. We may conclude that x
‖x‖2 − u

‖u‖2 = 0 which yields

that x and u are linearly dependent, a contradiction.
(ii) ⇒ (i): To prove the converse implication suppose A /∼ B. Again, let A =

x⊗ y∗,B = u⊗ v∗. So, x and u are linearly independent and y and v are linearly
independent. Without loss of generality we may assume that ‖x‖ = ‖u‖ = 1. There
exists z ∈ Lin{x,u} with 〈x,z〉 = 0 and 〈u,z〉 
= 0. Let C ∈ B(H) be defined in the
following way:

C = x⊗ y∗+ z⊗ s∗ where s =
v−〈u,x〉y

〈u,z〉 .
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Since v and y are linearly independent, it follows that s and y are also linearly indepen-
dent. Recall that z and x are linearly independent. We may conclude that C is a rank
two operator and since z ∈ Lin{x,u} it follows that ImC = Lin{x,u}. So, u,x ∈ ImC.
Also,

C∗x = (y⊗ x∗+ s⊗ z∗)x = 〈x,x〉y+ 〈x,z〉 s = 〈x,x〉y
and

C∗u = 〈u,x〉y+ 〈u,z〉s = 〈u,x〉y+ 〈u,z〉 v−〈u,x〉y
〈u,z〉 = v = 〈u,u〉v.

Hence x⊗ y∗∗� C and u⊗ v∗∗� C. We found a rank two operator C such that A,B∗�
C. �

LEMMA 13. Let A,B∈B(H). Suppose that for every rank one operator C∈B(H)
we have

C∗� A if and only if C∗� B.

Then A = B.

Proof. Let A,B ∈ B(H). Assume that for every rank one operator C ∈ B(H) we
have C∗� A if and only if C∗� B. Let x ∈ Im A. By Lemma 10 there exists a nonzero
y ∈ H such that x⊗ y∗∗� A. It follows that x⊗ y∗∗� B therefore by Lemma 9, x ∈
ImB. We proved that ImA ⊆ ImB. In the same way we prove that ImB ⊆ ImA , hence
ImA = ImB.

Note again that for every x ∈ ImA = ImB there exists nonzero y1 ∈ H such that
x⊗ y∗1∗� A . But since for every rank one operator C ∈ B(H) , C∗� A if and only if
C∗� B , we have that x⊗ y∗1∗� B . It follows by Lemma 9 that

A∗
(

x

‖x‖2

)
= B∗

(
x

‖x‖2

)
,

hence A∗x = B∗x for every x ∈ ImA = ImB. By the continuity of A∗ and B∗ we may
conclude that A∗x = B∗x for every x ∈ ImA = ImB.

Note that KerA∗ = KerB∗ and H =KerA∗⊕ImA. Take any x∈H. Then x = u+v
for some u ∈ KerA∗ and v ∈ ImA. It follows that

A∗x = A∗v = B∗v = B∗x.

So, A∗ = B∗ and therefore A = B. �
Let x,y ∈ H be nonzero. Let us define the following sets of operators:

Lx = {x⊗ v∗ : v ∈ H\{0}} and Ry = {z⊗ y∗ : z ∈ H\{0}} .

Note that every operator in Lx and every operator in Ry is of rank one.

LEMMA 14. An operator A is invertible if and only if for every nonzero x ∈ H
and for every nonzero y ∈ H there exist B ∈ Lx and C ∈ Ry such that B,C∗� A.
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Proof. Suppose first that for every nonzero x ∈ H and for every nonzero y ∈ H
there exist B ∈ Lx and C ∈ Ry such that B,C∗� A. Let x ∈ H , x 
= 0. Then there exist
v ∈ H\{0} such that B = x⊗ v∗∗� A. By Lemma 9, x ∈ ImA hence A is surjective.
Similarly, for y∈H, y 
= 0, there exists z∈H\{0} such that C = z⊗y∗∗� A. It follows
that A∗z = 〈z,z〉y hence y ∈ ImA∗. This yields ImA∗ = H and hence KerA = {0} . So,
A is also injective and hence bijective.

Conversely, suppose A∈ B(H) is invertible. Let x ∈H = ImA, x 
= 0. By Lemma
10 there exists y ∈ H\{0} such that x⊗ y∗∗� A. If we denote B = x⊗ y∗, then B ∈ Lx

and B∗� A. Since A is invertible, A∗ is also invertible. Let y ∈ H = ImA∗, y 
= 0. By
Lemma 11 there exists a nonzero u ∈ H such that y⊗ u∗ �∗A∗ , hence by Lemma 3,
u⊗ y∗∗� A . �

Let us now state the main result of this section.

THEOREM 15. Let H be an infinite-dimensional complex Hilbert space. Assume
that φ : B(H)→ B(H) is a bijective, additive map such that for every pair A,B ∈ B(H)
we have

A∗� B if and only if φ(A)∗� φ(B).

Then there exist a unitary operator U ∈ B(H) and an invertible operator S ∈ B(H),
or there exist an antiunitary operator U : H → H and a bounded, bijective, conjugate-
linear map S : H → H such that

φ(A) = UAS

for every A ∈ B(H).

Proof. We split it into the different steps.
1. φ(0) = 0. Since 0∗� φ−1(0), we have φ(0)∗� 0, thus φ(0) = 0.
2. φ preserves rank one. Denote by B1(H) the set of all rank one operators in

B(H). Let A∈ B1(H), B∈ B(H) and suppose B∗� A. By Lemma 2 it follows that then
either B = 0 or B = A. Of course, if B = 0 or B = A, then B∗� A. We may conclude
that φ(B1(H)) = B1(H).

3. φ preserves rank two. Similarly, A ∈ B(H) is of rank two if and only if for
every B∈ B(H) where B∗� A and B 
= A it follows that B∈ {0}∪B1(H). So, φ maps
the set of all rank two operators onto itself.

4. φ preserves the relation ∼ in both directions. Indeed, it follows by Lemma 12
that for every pair A,B ∈ B1(H) we have:

A ∼ B if and only if φ(A) ∼ φ(B),

which is the required condition.
5. Action of φ on the sets Lx , Ry . Let x,y ∈ H, x 
= 0, y 
= 0. Note that for every

pair of operators A,B ∈ Lx we have A ∼ B, and for every pair of operators C,D ∈ Ry

we also have C ∼ D. Let T be a subset of B1(H) such that for every A,B ∈ T we
have A ∼ B. Then there exists a nonzero x ∈ H such that T ⊆ Lx or there exists a
nonzero y ∈ H such that T ⊆ Ry. Since φ is bijective and preserves the relation ∼ in
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both directions, it follows that for every nonzero x ∈ H there exists a nonzero u ∈ H
such that φ(Lx) = Lu , or there exists a nonzero y ∈ H such that φ(Lx) = Ry. Similarly,
for every nonzero y ∈ H there exists a nonzero x ∈ H such that φ(Ry) = Lx , or there
exists a nonzero v ∈ H such that φ(Ry) = Rv . Since φ−1 has the same properties as φ
we may conclude that for every nonzero u ∈ H there exists a nonzero x ∈ H such that
φ(Lx) = Lu or there exists a nonzero y ∈ H such that φ(Ry) = Lu. Similarly, for every
nonzero v ∈ H there exists a nonzero x ∈ H such that φ(Lx) = Rv , or there exists a
nonzero y ∈ H such that φ(Ry) = Rv.

6. φ preserves the invertibility. Let now A ∈ B(H) be an invertible operator and
suppose u ∈ H is nonzero. There exists a nonzero x ∈ H such that φ(Lx) = Lu , or
there exists a nonzero y ∈ H such that φ(Ry) = Lu. Suppose φ(Lx) = Lu. Since A
is invertible, it follows by Lemma 14 that there exists B ∈ Lx such that B∗� A. So,
φ(B)∗� φ(A). Note that φ(B) ∈ Lu. Similarly, if φ(Ry) = Lu there exists C ∈ Ry such
that φ(C)∗� φ(A) and φ(C) ∈ Lu. So, since φ is surjective, we may find for every
nonzero u∈H an operator D∈ Lu such that D∗� φ(A). In the same way we prove that
there exists an operator E ∈ Ru such that E∗� φ(A). By Lemma 14 we may conclude
that φ(A) is an invertible operator. Since φ−1 has the same properties as φ it follows
that A ∈ B(H) is invertible if and only if φ(A) is invertible.

7. Without loss of generality we may assume that φ(I) = I . Indeed, φ(I) , where I
is the identity operator, is also invertible. By Lemma 7 we may replace the map φ with
the map ψ : B(H)→B(H) which is defined in the following way: ψ(A) = φ(A)φ−1(I).
From now on we may and will assume that

φ(I) = I.

8. φ leaves invariant the set P(H) of all self-adjoint idempotent operators in
B(H) . By Definition 3 it is clear that for every P∈P(H) we have P∗� I. So, φ(P)∗�
I hence by Lemma 6 φ(P) is also a self-adjoint idempotent. Since φ preserves the left-
star partial order in both directions, we may conclude that φ(P(H)) = P(H) .

9. Restriction of φ on φ(P(H)) . Let P,Q ∈ P(H). Lemma 6 yields that if
P∗� Q, then PQ = QP = P and hence P � Q where � denotes the usual order (i.e.
P � Q if and only if PQ = QP = P) on P(H) . Also, directly from Definition 3 it
follows that if PQ = QP = P for P,Q ∈ P(H), then P∗� Q. So, on the set P(H)
the minus order � coincides with the left-star partial order ∗� . The restriction of φ
to P(H) is a bijective and additive map from P(H) to P(H) which preserves the
minus order in both directions.

10. Action of φ on the set of closed subspaces in H . We may identify closed
subspaces in H with self-adjoint idempotents in B(H). So, the map φ induces a lattice
automorphism, i.e. a bijective map ω which is defined on the set of all closed subspaces
in H and where M ⊆N if and only if ω(M)⊆ω(N) for every pair of closed subspaces
M,N in H. Recall that H is an infinite dimensional complex Hilbert space. By a result
of Fillmore and Longstaff [5, Theorem 1] there exists a bicontinuous linear or conjugate
linear bijection S : H → H such that ω(M) = SM for every closed subspace M in H.
This means that for our map φ we have

φ(PM) = PS(M)
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for every PM ∈P(H). Here PM denotes the self-adjoint idempotent such that ImPM =
M.

11. We will now show that without loss of generality we may assume that S :
H → H is a unitary or antiunitary operator. Let x ∈ H such that ‖x‖ = 1. It follows
that φ(x⊗ x∗) is a rank one self-adjoint idempotent. Denote φ(x⊗ x∗) = a⊗ a∗. So,
‖a‖ = 1. Let y ∈ H, ‖y‖ = 1, such that 〈x,y〉 = 0. Then there exists b ∈ H , ‖b‖ = 1,
such that φ(y⊗y∗) = b⊗b∗. Suppose that 〈a,b〉 
= 0. The operator φ(x⊗x∗+y⊗y∗) is
a self-adjoint idempotent of rank two. Since φ is additive, we have φ(x⊗x∗+y⊗y∗) =
a⊗ a∗ + b⊗ b∗, and since this is a rank two operator, we may conclude that a and b
are linearly independent. From

(a⊗a∗+b⊗b∗)(a⊗a∗+b⊗b∗) = a⊗a∗+b⊗b∗

it follows that 〈b,a〉(a⊗ b∗)z = −〈a,b〉(b⊗ a∗)z for every z ∈ H. Let z = b. So,
〈b,a〉〈b,b〉a = −〈a,b〉〈b,a〉b. Since 〈b,a〉 
= 0, we have a = −〈a,b〉

〈b,b〉b hence a and b

are linearly dependent, a contradiction. So, 〈a,b〉 = 0.
On one hand Imφ(x⊗ x∗) = Lin{a} and on the other hand, since φ(PM) = PS(M)

for every PM ∈ P(H), we have Imφ(x⊗ x∗) = S(Lin{x}) = Lin{Sx}. So, a and Sx
are linearly dependent hence a = αSx for some α ∈ C\{0}. Similarly, there exists
β ∈ C\{0} such that b = βSy. It follows that

0 = 〈a,b〉= αβ 〈Sx,Sy〉= αβ 〈S∗Sx,y〉 .
We proved that 〈S∗Sx,y〉= 0 for every y ∈H, ‖y‖= 1, which is orthogonal to x. Note
that then for any (fixed) x ∈H we have 〈S∗Sx,y〉= 0 for every y∈H where 〈x,y〉= 0.
So, S∗Sx is a scalar multiple of x hence linear operators S∗S and I are locally linearly
dependent. It is known (see for example [10]) that for linear operators which are of
rank at least two, local linear dependence implies linear dependence. Hence S∗S = μI
for some μ > 0. Let U = 1√μ S. Then U∗U = I, and since SS∗ = μI, we get UU∗ = I.
We may conclude that U : H → H is a unitary or antiunitary operator.

12. Without loss of generality we may assume that φ(P) = P for every self-adjoint
idempotent P ∈ B(H) . By the previous two steps,

φ(PM) = PU(M)

for every PM ∈ P(H). This implies that

φ(P) = UPU∗

for every P ∈ P(H).
Let us now define ψ : B(H) → B(H) in the following way: ψ(A) = U∗φ(A)U.

Then ψ(P) = P. Without loss of generality we may and will assume that

φ(P) = P for every self-adjoint idempotent P ∈ B(H).

13. We are going to show that φ(PB(H)P) = PB(H)P, where PB(H)P = {PAP :
A∈ B(H)} , P∈ B(H) is a finite rank self-adjoint idempotent of rank n � 3. Since φ−1
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has the same properties as φ , it is enough to show that φ(PB(H)P) ⊆ PB(H)P. It is
easy to see that A ∈ PB(H)P if and only if ImA ⊆ ImP and KerP ⊆ KerA.

a). Let us first show that for every rank one operator A ∈ PB(H)P it follows that
φ(A) ∈ PB(H)P. Suppose A = αx⊗ y∗ where ‖x‖ = ‖y‖ = 1 and A ∈ PB(H)P. Since
A ∼ x⊗ x∗ and A ∼ y⊗ y∗ and since x⊗ x∗ and y⊗ y∗ are self-adjoint idempotents, it
follows that φ(A) ∼ φ(x⊗ x∗) = x⊗ x∗ and φ(A) ∼ y⊗ y∗ .

Suppose first that x and y are linearly independent. Denote φ(A) = z⊗w∗, z 
= 0,
w 
= 0. It follows that z and x are linearly dependent or w and x are linearly dependent.
Also, z and y are linearly dependent or w and y are linearly dependent. Since x and
y are linearly independent, we may conclude that there exist α,β ∈ C\{0} such that
z = αx and w = βy, or there exist γ,δ ∈C\{0} such that z = γy and w = δx. It follows
that φ(A) = λx⊗ y∗ or φ(A) = μy⊗ x∗,λ ,μ ∈ C\{0}. In both cases φ(A) ∈ PB(H)P.

Assume now that x and y are linearly dependent, i.e. A = εx⊗ x∗ for some
ε ∈ C\{0,1}. Since φ−1 has the same properties as φ , every operator of the form
λu⊗ v∗ where u and v are linearly independent is the image of the operator αu⊗ v∗
or of the operator βv⊗u∗ for some nonzero α and β . Recall that φ(x⊗ x∗) = x⊗ x∗
for every rank one self-adjoint idempotent x⊗ x∗. Therefore, there exist a ∈ H\{0}
and γ ∈ C\{0,1} such that φ(A) = φ(εx⊗x∗) = γa⊗a∗. Again, since A ∼ x⊗x∗, we
obtain γa⊗ a∗ ∼ x⊗ x∗. It follows that φ(A) = δx⊗ x∗ for some δ ∈ C\{0,1} and
therefore φ(A) ∈ PB(H)P.

We have just proved that A∈ PB(H)P implies φ(A)∈ PB(H)P for every rank one
operator A .

b). Let now D ∈ PB(H)P be any nonzero operator. By Lemma 9 and Lemma
10, ImD = ∪{Im C : C ∈ B1(H) and C∗� D} . For every C = x⊗ y∗ where C∗� D
we have D∗x = 〈x,x〉y and x ∈ ImD. So, ImC ⊆ ImD ⊆ ImP . Also, ImC∗ ⊆ ImD∗
hence KerP⊆ KerD⊆KerC. It follows that C ∈ PB(H)P and hence φ(C) ∈ PB(H)P
by the part a).

The map φ is bijective, preserves the order ∗� in both directions and maps the
set of all rank one operators onto itself therefore

Im φ(D) = ∪{Im φ(C) : C ∈ B1(H) and C∗� D} .

Since Imφ(C) ⊆ ImP for every C ∈ B1(H) where C∗� D, it follows that Imφ(D) ⊆
ImP.

In order to prove that φ(D) ∈ PB(H)P we will show that Imφ(D)∗ ⊆ ImP. Let us
first show that

Im φ(D)∗ = ∪{Im φ(C)∗ : C ∈ B1(H) and φ(C)∗�∗φ(D)∗} .

For y ∈ Imφ(D)∗ there exists by Lemma 11 a nonzero a ∈ Lin{y} and l ∈ H, l 
= 0,
such that a⊗ l∗�∗φ(D)∗. Also, there exists C ∈ B1(H) such that φ(C)∗ = a⊗ l∗. Note
that Lin{a}= Lin{y} and Lin{a}= Imφ(C)∗. We proved that for every y∈ Imφ(D)∗
there exists C ∈ B1(H) such that y ∈ Imφ(C)∗. It follows that

Imφ(D)∗ ⊆ ∪{Im φ(C)∗ : φ(C)∗ ∈ B1(H) and φ(C)∗�∗φ(D)∗} .
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The converse inclusion follows from the fact that φ(C)∗�∗φ(D)∗ implies Imφ(C)∗ ⊆
Imφ(D)∗.

By Lemma 3 and since φ is bijective and maps the set of all rank one operators
onto itself we conclude that

Im φ(D)∗ = ∪{Im φ(C)∗ : C ∈ B1(H) and C∗� D} .

Clearly, if A∈PB(H)P then A∗ ∈PB(H)P. So, since D∈ PB(H)P and hence for every
C ∈ B1(H) where C∗� D we have φ(C) ∈ PB(H)P, it follows that Imφ(C)∗ ⊆ ImP.
This implies that Imφ(D)∗ ⊆ ImP and hence φ(D) ∈ PB(H)P.

We proved that if P is any finite rank self-adjoint idempotent of rank greater than
2, then φ(PB(H)P) = PB(H)P .

14. Reduction to monotone maps on Mn . Suppose P ∈ B(H) is a finite rank self-
adjoint idempotent of rank n � 3. The set PB(H)P can be then identified with the set
Mn. The restriction of φ to PB(H)P may be considered as a bijective, additive map
on Mn which preserves the left-star partial order in both directions. As a corollary of
a result by Guterman [6, Theorem 3.5] we get that if a bijective additive T : Mn → Mn

preserves the left-star partial order in one direction (i.e., A∗� B implies φ(A)∗� φ(B)) ,
then T belongs to one of the following types: X �→UnXSn , X �→UnXSn , X �→UnXtSn ,
X �→UnX∗Sn , where Un ∈ Mn is unitary and Sn ∈ Mn is invertible. Here Xt denotes
the transpose of X , and X is the matrix obtained from X by taking complex conjugate
values of its entries. It is straightforward to check that only the transformation of type
X �→UnXSn preserves the left-star order in both directions. Thus we may conclude that
φ(X) = UnXSn for any X ∈ Mn . Since φ(P) = P for every self-adjoint idempotent
matrix P in Mn, we may conclude that Un = Sn = In and φ(A) = A for every A ∈ Mn.

Since P is any finite rank self-adjoint idempotent of rank at least three, we may
conclude that φ(C) = C for every rank one C ∈ B(H). It follows by Lemma 13 that
then φ(A) = A for every A ∈ B(H).

15. Taking into account the assumptions that were made in Step 7 and in Step 12
about the map φ we may conclude that there exist a unitary operator U ∈ B(H) and an
invertible operator S ∈ B(H), or there exist an antiunitary operator U : H → H and a
bounded, bijective, conjugate-linear map S : H → H such that

φ(A) = UAS

for every A ∈ B(H). �

Symmetrically we can prove a similar result for the right-star partial order on
B(H).

THEOREM 16. Let H be an infinite-dimensional complex Hilbert space. Assume
that φ : B(H)→ B(H) is a bijective, additive map such that for every pair A,B ∈ B(H)
we have

A�∗B if and only if φ(A)�∗φ(B).
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Then there exist a unitary operator U ∈ B(H) and an invertible operator S ∈ B(H),
or there exist an antiunitary operator U : H → H and a bounded, bijective, conjugate-
linear map S : H → H such that

φ(A) = SAU

for every A ∈ B(H).

As a corollary of Theorem 15 we can also characterize the converters between
right-star and left-star partial orders.

COROLLARY 17. Let H be an infinite-dimensional complex Hilbert space. As-
sume that φ : B(H) → B(H) is a bijective, additive map such that for every pair
A,B ∈ B(H) we have

A�∗B if and only if φ(A)∗�φ(B).

Then there exist a unitary operator U ∈ B(H) and an invertible operator S ∈ B(H),
or there exist an antiunitary operator U : H → H and a bounded, bijective, conjugate-
linear map S : H → H such that

φ(A) =UA∗S

for every A ∈ B(H).

Proof. By Lemma 3, A∗� B if and only if A∗�∗B∗ . Thus the transformation
φ1 : B(H)→ B(H) defined by φ1(X) = φ(X∗) for all X ∈ B(H) satisfies the conditions

A∗�B iff A∗�∗B∗ iff φ(A∗)∗�φ(B∗) iff φ1(A)∗�φ1(B)

for all A,B ∈ B(H) . Since φ is bijective and additive, φ1 is also bijective and additive.
So φ1 satisfies the assumptions of Theorem 15 and hence there exist a unitary operator
U ∈ B(H) and an invertible operator S ∈ B(H), or there exist an antiunitary operator
U : H → H and a bounded, bijective, conjugate-linear map S : H → H such that

φ1(A) = UAS

for every A ∈ B(H) . Since φ1(X) = φ(X∗) for every X ∈ B(H) , φ has the required
form. �

To show similar result for a bijective additive map φ converting ∗� to �∗ we
apply the above corollary to the transformation φ−1 .

4. Left-star and right-star partial orders on A†

Since the general C∗ -algebra framework may be a good ground for a further re-
search, let us conclude our paper with an observation about left-star and right-star par-
tial orders on a certain subset of a unital C∗ -algebra. So, let A be a C∗ -algebra with
unit 1 . For a ∈ A let us consider the following equations

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4) (ba)∗ = ba.
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It is known (see, for example, [12]) that the set of all b ∈ A that satisfy equations
(1)− (4) is empty or a singleton and when it is a singleton its unique element is called
the Moore-Penrose inverse of a. We will denote the Moore-Penrose inverse of a by
a†. The subset of A consisting of all Moore-Penrose invertible elements of A will be
denoted by A † . Inspired by a paper of Baksalary and Mitra [1], Liu, Benı́tez and Zhong
generalized in [8] the left-star and the right-star partial order to A † in the following
way.

For a ∈ A † let aπ
l = 1− a†a and aπ

r = 1− aa† . Observe that aπ
l and aπ

r are
self-adjoined idempotents. In [8] authors defined for a,b∈A † the following relations:

a∗� b if and only if a∗a = a∗b and bπ
r a = 0,

and
a�∗b if and only if aa∗ = ba∗ and abπ

l = 0.

They stated that if A and B are complex n× n matrices, then Bπ
r A = 0 if and only if

ImA⊆ ImB, and ABπ
l = 0 if and only if ImA∗ ⊆ ImB∗. It can be easily proved that the

same is also true for Moore-Penrose invertible elements A,B ∈ B(H) . Recall that an
operator A ∈ B(H) has a Moore-Penrose inverse if and only if its image is closed (see,
for example, [13]), so on the set of operators from B(H) with a closed image the above
orders are equivalent respectively to the left-star and the right-star order presented in
this paper.
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