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CEVA’S TRIANGLE INEQUALITIES

ÁRPÁD BÉNYI AND BRANKO ĆURGUS

(Communicated by M. A. Hernandez Cifre)

Abstract. We characterize triples of cevians which form a triangle independent of the triangle
where they are constructed. This problem is equivalent to solving a three-parameter family of
inequalities which we call Ceva’s triangle inequalities. Our main result provides the parametriza-
tion of the solution set.

1. Introduction

In this article we investigate a class of inequalities of the form∣∣ f (a,b,c,ρ)− f (b,c,a,σ)
∣∣< f (c,a,b,τ) < f (a,b,c,ρ)+ f (b,c,a,σ) (1)

where (a,b,c) belongs to

T =
{
(a,b,c) ∈ R

3 : |a−b |< c < a+b
}
.

and f : T ×R → R+ is some function with positive values. We will refer to (1) as
Ceva’s triangle inequalities. Clearly, (1) expresses the fact that for some parameters ρ ,
σ , τ ∈ R the lengths

f (a,b,c,ρ), f (b,c,a,σ), f (c,a,b,τ)

form a triangle whenever the lengths a , b , c form a triangle. This problem, albeit
much more general, is in the spirit of Bottema, Djordjević, Janić, Mitrinović and Vasić
[1, Chapter 13], in particular the statement 13.3 which is attributed to Brown [2].

For example, consider the function

h(a,b,c,ρ) =
ρ
a

√
2(a2b2 +b2c2 + c2a2)− (a4 +b4 + c4).

Recall that h(a,b,c,2) is the length of the altitude orthogonal to the side of length a
in a triangle with sides a , b , c . It is easy to see that, with a = 3, b = 8, c = 9,
the altitudes do not form a triangle. Thus, (1) fails to hold for all (a,b,c) ∈ T with
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c© � � , Zagreb
Paper MIA-17-44

591

http://dx.doi.org/10.7153/mia-17-44
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ρ = σ = τ for the function h . However, if we replace f with 1/h , then it turns out
that (1) does hold for all ρ = σ = τ ∈ R\ {0} and all (a,b,c) ∈ T . For a connection
between the reciprocals of the altitudes and a Heron-type area formula, see Mitchell’s
note [6].

In this article we will study (1) with

f (a,b,c,ρ) =
√

ρ(ρ −1)a2 + ρb2 +(1−ρ)c2. (2)

By Stewart’s theorem, f (a,b,c,ρ) gives the length of the cevian AAρ in a triangle ABC
with sides BC = a , CA = b , AB = c and where the point Aρ lies on the line BC with−→
BAρ = ρ

−→
BC . Similarly, f (b,c,a,σ) = BBσ and f (c,a,b,τ) = CCτ where Bσ and Cτ

lie on the lines CA and AB respectively, with
−→
CBσ = σ

−→
CA and

−→
ACτ = τ

−→
AB . Indeed,

it is this connection with cevians that inspired the name of the inequalities (1). Now,
it is well known that the medians of a triangle form a triangle as well. This implies
that (1) is satisfied for all (a,b,c) ∈ T when ρ = σ = τ = 1/2. In fact, (1) is true
for all (a,b,c) ∈ T whenever ρ = σ = τ ∈ R . That is, for any triangle ABC and for
all ξ ∈ R , the cevians AAξ , BBξ , and CCξ always form a triangle. This statement is
proved in the book by Mitrinović, Pečarić and Volenec [7, Chapter I.3.14] where it is
attributed to Klamkin [5]; see also the articles of Hajja [3, 4] for a geometric proof.

Interestingly, for an arbitrary triangle ABC , the triple (ρ ,σ ,τ) = (2,−2,0) pro-
duces the sides AA2,BB−2 , and CC0 which also form a triangle. In other words, for
the given f : T ×R → R+ , (1) also holds for all (a,b,c) ∈ T and some non-diagonal
triple (ρ ,σ ,τ) �∈ {(r,s,t) ∈ R

3 : r = s = t
}
. This can be proved by using the methods

followed in Figure 1.

A = Cτ

B

C

Bσ

Aρ

A′
ρ

Figure 1: Cevians always form a triangle

The property does not hold for all triples of real numbers. Consider, for example,
(ρ ,σ ,τ) = (1/4,1/2,5/6) . In the right triangle ABC with AB = 1, BC =

√
8, CA = 3,

we easily find AAρ =
√

3/2 ≈ 1.225, BBσ = 3/2 = 1.5, and CCτ = 17/6 ≈ 2.833.
Thus, AAρ +BBσ < CCτ , which means that the three cevians do not form a triangle in
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this case. However, for the same triple but the right triangle ABC with AB = 1, BC = 1,
CA =

√
2, we find AAρ =

√
17/4≈ 1.031, BBσ =

√
2/2≈ 0.707, and CCτ =

√
37/6≈

1.014, which are now clearly seen to form a triangle.
The cautionary examples above lead us to the following problem.

PROBLEM. Characterize the set A ⊂R
3 of all triples (ρ ,σ ,τ) ∈R

3 such that, for
the function f given by (2), Ceva’s triangle inequalities (1) hold for all (a,b,c)∈T . In
other words, characterize the set of all triples (ρ ,σ ,τ) such that for all non-degenerate
triangles ABC the cevians AAρ , BBσ and CCτ form a non-degenerate triangle as well.

The main result of this paper is the complete parametrization of the set A .

THEOREM 1. Let φ = (1+
√

5)/2 denote the golden ratio. The set A is the union
of the following three sets {

(ξ ,ξ ,ξ ) : ξ ∈ R

}
, (3){

(−ξ ,2− ξ ,ξ ), (ξ ,−ξ ,2− ξ ), (2− ξ ,ξ ,−ξ ) : ξ ∈ R\ {−φ−1,φ}
}

(4)

and {( 1
1−ξ ,1− 1

ξ ,ξ
)
,
(
ξ , 1

1−ξ ,1− 1
ξ
)
,
(
1− 1

ξ ,ξ , 1
1−ξ

)
: ξ ∈ (φ ,φ2)}. (5)
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Figure 2: The set A

A picture of the solution set A is given in Figure 2. Notice that the following six
points are excluded in the second set:(

φ−1,φ2,−φ−1
)
,

(−φ−1,φ−1,φ2
)
,

(
φ2,−φ−1,φ−1

)
,(−φ ,φ−2,φ

)
,

(
φ ,−φ ,φ−2

)
,

(
φ−2,φ ,−φ

)
.

(6)
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These points are the only common accumulation points of both the second and the third
set in the parametrization of A . This claim follows from the identities

(−φ ,2−φ ,φ) =
(

1
1−φ ,1− 1

φ ,φ
)

,(−(−φ−1),2− (−φ−1),−φ−1)=
(
1− 1

φ2 ,φ2, 1
1−φ2

)
,

which are consequences of φ2 − φ − 1 = 0. As we will see in Subsection 3.3, these
six points are exceptional since for an arbitrary triangle they correspond to degenerate
triangles formed by the three cevians.

The remainder of the paper is devoted to the proof of the Theorem. First, in Sub-
section 2.1, we introduce a one-parameter family of inequalities whose solution set B

is guaranteed to contain A . In Section 2 we use a combination of arguments from ana-
lytic and synthetic geometry to prove that B is a subset of the union of the sets defined
in (3), (4), (5) and (6). In Section 3, we use linear algebra to prove that the union of the
sets in (3), (4), (5) is in fact contained in A and that the points in (6) are not in A . This
provides the parametrization given in the Theorem.

It is worthwhile noting that the discussion about the set A reduces to the obser-
vation that an uncountable family M of 3×3 matrices has a common invariant cone;
that is, for a particular cone Q we have MQ ⊂ Q for all M ∈ M . The question about
when does a finite family of matrices share an invariant cone is of current interest and
already non-trivial. For example, in the “simplest” case of a finite family that is simulta-
neously diagonalizable one has a characterization for the existence of such an invariant
cone, but this criteria does not seem to be easily applicable; see Rodman, Seyalioglu,
and Spitkovsky [9, Theorem 12] and also Protasov [8].

2. The set B

Recall that, for a given (a,b,c) ∈ T and a triple (ρ ,σ ,τ) ∈ R
3 , we have the

following expressions for the lengths of the cevians:

AAρ = f (a,b,c,ρ), BBσ = f (b,c,a,σ), CCτ = f (c,a,b,τ).

Specifically,

AAρ =
√

ρ(ρ −1)a2 + ρb2 +(1−ρ)c2,

BBσ =
√

(1−σ)a2 + σ(σ −1)b2 + σc2,

CCτ =
√

τa2 +(1− τ)b2 + τ(τ −1)c2.

Clearly, a triple (ρ ,σ ,τ) belongs to A if and only if the following three-parameter
family of inequalities is satisfied:

|AAρ −BBσ | < CCτ < AAρ +BBσ for all (a,b,c) ∈ T . (7)
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2.1. The limiting inequalities

We now introduce the one-parameter family of inequalities emerging from (7) by
letting (a,b,c) belong to the faces of the closure of the infinite tetrahedron T .

Let a = b+ c , b , c > 0. Then

AAρ =
√

ρ(ρ −1)a2 + ρ(a− c)2 +(1−ρ)c2 =
√

(ρa− c)2 = |ρa− c|.

Similarly,

BBσ = |σb−a|, CCτ = |τc+b|.

Thus, for all b , c > 0, we have

∣∣|ρ(b+ c)− c|− |σb−b− c|∣∣� |τc+b|� |ρ(b+ c)− c|+ |σb−b− c|.

Equivalently, by letting b/c = t , we have

∣∣|ρ(t +1)−1|− |σ t− t−1|∣∣� |τ + t|� |ρ(t +1)−1|+ |σ t− t−1|, (8)

for all t > 0.
Analogously, by considering the other two faces of T , we obtain the following

two inequalities

∣∣|ρ + t|− |σ(t +1)−1|∣∣� |τt − t−1|� |ρ + t|+ |σ(t +1)−1|, (9)

∣∣|ρt− t−1|− |σ + t|∣∣� |τ(t +1)−1|� |ρt− t−1|+ |σ + t|, (10)

for all t > 0.

2.2. The definition and a partition of the set B

By B we denote the set of all (ρ ,σ ,τ) ∈ R
3 which satisfy all three limiting in-

equalities (8), (9), and (10) for all t > 0. By Bτ we denote the horizontal section of B

at the level τ , that is, the subset of B with a fixed τ . Then B =
⋃

τ∈R
Bτ .

In the previous subsection we have shown that A ⊆ B . In the remainder of this
section we study the sets Bτ .

The following four points play the central role in the characterization:

P11(τ) := (τ,τ,τ), P12(τ) := (−τ,2− τ,τ),
P21(τ) := (2− τ,−2+ τ,τ), P22(τ) := (2+ τ,−τ,τ).

Note that the points P11(τ),τ ∈ R , appear in (3) and most of the points P12(τ) , P21(τ) ,
P22(τ) , τ ∈ R , appear in (4).
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2.3. Bτ is a subset of the union of two lines

Let τ ∈ R be fixed. Let � j(τ) , j ∈ {1,2} , be the lines determined by the points
Pj1(τ) and Pj2(τ) .

We first show that if (ρ ,σ ,τ) ∈ Bτ , then

|ρ(−τ +1)−1|= |−στ + τ −1|. (11)

We break our discussion into three cases, depending on the range of the parameter τ .
If τ � 0, and we let t → (−τ)+ in (8), then the leftmost inequality gives (11). If

τ ∈ (0,1] , then we let t →
(1− τ

τ

)−
in the first part of (10) to get

∣∣∣ρ 1− τ
τ

− 1− τ
τ

−1
∣∣∣= ∣∣∣σ +

1− τ
τ

∣∣∣,
which implies (11). Finally, if τ > 1, let t =

1
τ −1

in the first inequality of (9) to obtain

∣∣∣ρ +
1

τ −1

∣∣∣= ∣∣∣σ( 1
τ −1

+1
)
−1
∣∣∣,

which implies (11).
Elementary considerations yield that the graph of (11) is the union �1(τ)∪ �2(τ) .

Thus

Bτ ⊆ �1(τ)∪ �2(τ).

2.4. The sets B0 and B1

We show now that B0 =
{
Pi j(0) | i, j ∈ {1,2}} . Recall that the points (ρ ,σ ,τ)

must satisfy (11). Substituting τ = 0 in this equation gives |ρ −1|= 1, thus ρ = 0 or
ρ = 2. If ρ = 0, then (9) is

∣∣|t|− |σ(t +1)−1|∣∣� t +1 � t + |σ(t +1)−1|, t > 0.

If we let t → 0+ , we get |σ − 1| � 1 � |σ − 1| , thus |σ − 1| = 1, that is σ = 0 or
σ = 2. So our points are (0,0,0) and (0,2,0) . If ρ = 2, then (10) is

∣∣|t−1|− |σ + t|∣∣� 1 � |t−1|+ |σ + t|, t > 0.

Substituting t = 1 gives |σ + 1| � 1 � |σ + 1| , that is σ = 0 or σ = −2. This gives
the points (2,0,0) and (2,−2,0) . All in all, the four points found are exactly Pi j(0) ,
i , j ∈ {1,2} .

Similarly, it can be shown that B1 =
{
Pi j(1) | i, j ∈ {1,2}} .
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2.5. A family of crosses associated with the limiting inequalities

In the rest of this section we assume that τ ∈ R \ {0,1} . In this subsection we
establish some preliminary facts which are then needed in the last subsection to prove
that

Bτ =
{
Pi j(τ) | i, j ∈ {1,2}} or Bτ =

{
Pi j(τ) | i, j ∈ {1,2}}∪ (�1(τ)∩ �2(τ)

)
.

Let t > 0 be fixed. Notice that inequalities (8), (9) and (10) can be written in the
form ∣∣|a(t)ρ −b(t)|− |c(t)σ −d(t)|∣∣� |g(t)| � |a(t)ρ −b(t)|+ |c(t)σ −d(t)|,
where a , b , c , d , g are all affine functions of t ; one of the coefficients of g depends on
the fixed value τ . Since g(t) = 0 yields (11), we will only consider the case g(t) �= 0.

Renaming ρ = x , σ = y , we are interested in fully understanding the geometric
representation in the xy-plane of inequalities in the generic form∣∣|ax−b|− |cy−d|∣∣� |g| � |ax−b|+ |cy−d|, (12)

where a , b , c , d , g ∈ R\ {0} . Note that (12) is equivalent to∣∣∣∣∣∣∣ag
∣∣∣∣∣∣x− b

a

∣∣∣− ∣∣∣ c
g

∣∣∣∣∣∣y− d
c

∣∣∣∣∣∣∣� 1 �
∣∣∣a
g

∣∣∣∣∣∣x− b
a

∣∣∣+ ∣∣∣ c
g

∣∣∣∣∣∣y− d
c

∣∣∣. (13)

The canonical form of such inequalities is∣∣|x|− |y|∣∣� 1 � |x|+ |y|. (14)

Elementary considerations show that the solution set of (14) is the set represented in
Figure 3. We will refer to it as the canonical cross. It is centered at the origin and its
marking points are, in counterclockwise direction, (1,0) , (0,1) , (−1,0), and (0,−1) .
Note also that there are two pairs of parallel lines that define the boundary of the canon-
ical cross, and the slopes of the lines that are not parallel have values 1 and −1.

Figure 3: The canonical cross Figure 4: Shifted and skewed
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The change of coordinates

x �→ ∣∣ a
g

∣∣(x− b
a

)
, y �→ ∣∣ c

g

∣∣(y− d
c

)
,

transforms (14) into (13) and the canonical cross is transformed into a shifted and
skewed version of it, illustrated in Figure 4. Hence, a shifted and skewed cross is
the solution set of (12). Its center is at

(
b
a , d

c

)
, and its marking points are

(
b
a +

∣∣ g
a

∣∣, d
c

)
,(

b
a , d

c +
∣∣ g
c

∣∣), ( b
a −
∣∣ g
a

∣∣, d
c

)
and

(
b
a , d

c −
∣∣ g
c

∣∣). The interior of the parallelogram with ver-
tices at the marking points will be referred to as the nucleus of the cross. The equations
of two pairs of parallel boundary lines of this cross are

y = a
c

(
x− b

a

)
+ d

c ± g
c and y = − a

c

(
x− b

a

)
+ d

c ± g
c .

For a given t > 0, the limiting inequality (8) has the form (12). Hence its solution
set is a cross in the ρσ -plane at the fixed level τ . We denote this cross by Cross8(t,τ) .
The equations of the two pairs of the parallel boundary lines of this cross are

y = t+1
t

(
x− 1

t+1

)
+ t+1

t ± τ+t
t and y = − t+1

t

(
x− 1

t+1

)
+ t+1

t ± τ+t
t . (15)

Similarly, Cross9(t,τ) and Cross10(t,τ) refer to the solution sets of (9) and (10). The
equations of the two pairs of the corresponding parallel boundary lines of these cross,
respectively, are

y = 1
t+1

(
x+ t

1

)
+ 1

t+1 ± τt−t−1
t+1 and y = − 1

t+1

(
x+ t

1

)
+ 1

t+1 ± τt−t−1
t+1 , (16)

y = t
1

(
x− t+1

t

)
+ −t

1 ± τ(t+1)−1
1 and y = − t

1

(
x− t+1

t

)
+ −t

1 ± τ(t+1)−1
1 . (17)

By C (τ) we denote the family of all these crosses:

C (τ) =
{
Cross8(t,τ) : t > 0

}∪{Cross9(t,τ), t > 0
}∪{Cross10(t,τ), t > 0

}
.

In the next subsection we will need the following two facts about C (τ) :
Fact 1. The points Pi1(τ) , Pi2(τ) , i ∈ {1,2} , lie on the distinct parallel boundary

lines of each of the crosses in C (τ) .
Fact 2. For each slope m ∈ R\ {0,1} there is a cross in C (τ) with the boundary

lines going through P11(τ) and P12(τ) having slope m and, consequently, with the
boundary lines through P21(τ) and P22(τ) having slope −m .

Fact 1 is verified by substitution of the ρσ -coordinates of Pi j(τ) , i , j ∈ {1,2} ,
in the equations of the boundary lines of the crosses in C (τ) . For example, the ρσ -
coordinates of P11(τ) satisfy the left equation in (15) with − sign. The table below
gives the complete account:

P11(τ) P12(τ) P21(τ) P22(τ)
(15) left eq. with − left eq. with + right eq. with − right eq. with +
(16) left eq. with + left eq. with − right eq. with + right eq. with −
(17) right eq. with + right eq. with − left eq. with + left eq. with −
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To prove Fact 2 we distinguish three cases. If m > 1, then, by (15) and the table
above, Cross8

(
1/(m−1),τ

)
has the desired property. If 0 < m < 1, then, by (16) and

the table, Cross9
(−1+ 1/m,τ

)
proves Fact 2. If m < 0, then, by (17) and the table,

Cross10
(−m,τ

)
is the one whose existence is claimed in Fact 2.

Notice that when the slope m is that of the line �1 , the cross as in Fact 2 is degen-
erate, that is, it is the union of the lines �1 and �2 .

2.6. Intersection of crosses determined by four points

By Fact 1 we know that the four points Pi j(τ) , i , j ∈ {1,2} , belong to all the
crosses in C (τ) . Moreover, there is possibly only one extra point having the property
that it lies on all the crosses. That point is

P0(τ) :=
( 1

1− τ
,1− 1

τ
,τ
)
,

which is the intersection of the lines �1(τ) and �2(τ) defined in Subsection 2.3. Note
that some of the points P0(τ) , τ ∈ R\ {0,1} , appear in (5).

Now, for which τ -s could one expect P0(τ) to belong to all the crosses in C (τ)?
Letting t → 0+ in (8) and (10), we get∣∣|ρ −1|−1

∣∣� |τ| � |ρ −1|+1 and
∣∣|σ |−1

∣∣� |τ −1|� 1+ |σ |.
If we substitute ρ = 1/(1− τ) and σ = (τ −1)/τ, we obtain that τ must satisfy∣∣|τ|− |τ −1|∣∣� |τ2− τ| � |τ|+ |τ −1|.
Straightforward calculations show that the solution of the above inequalities is the fol-
lowing union of disjoint intervals:[

−1−√
5

2 , 1−√
5

2

]
∪
[

3−√
5

2 , −1+
√

5
2

]
∪
[

1+
√

5
2 , 3+

√
5

2

]
,

or in terms of the golden ratio φ :[−φ ,−φ−1]∪ [φ−2,φ−1]∪ [φ ,φ2].
In Subsection 3.3 we will indeed show that, for τ in the interior of this set, the

point P0(τ) belongs to all the crosses in the family C (τ) .
Since τ ∈ R \ {0,1} is fixed, henceforth in this proof we will not emphasize the

dependence on τ . We denote by S j the open line segment determined by Pj1 and Pj2 ,
j ∈ {1,2} .

We will break our discussion into three separate cases that take into account the
relative positions of the five points P0 , P11 , P12 , P21 , P22 . We will repeatedly use
Fact 2 without explicitly citing it.

Case 1. If {P0} = S1∩S2 , then Bτ =
{
P11,P12,P21,P22

}
.

Case 2. If P0 �∈ S1 ∪S2 , then Bτ =
{
P11,P12,P21,P22

}
.

Case 3. If P0 ∈
(
S1 \S2

)∪ (S2 \S1
)
, then Bτ =

{
P11,P12,P21,P22,P0

}
.



600 Á. BÉNYI AND B. ĆURGUS

Notice that the line �1 containing P11 and P12 has slope m = 1−1/τ ∈ R\{0,1}
and that the line �2 containing P21 and P22 has slope −m . Note also that when τ = 1/2
we have m = −1. In this case P0 is the midpoint of S2 and it is outside of S1 . That
is, m = −1 can occur only in Case 3.

Case 1. Any point X that lies in S1∪S2 can be eliminated by a cross that has the
boundary lines through P11 and P12 of slope −m , and boundary lines through points
P21 and P22 of slope m ; see Figure 5. To eliminate a point X outside of the segments
S1 and S2 , consider the cross having boundary lines that pass through P11 and P12

of slope m− ε , and boundary lines passing through P21 , P22 of slope −m + ε , with
ε ∈ (0,m) sufficiently small; see Figure 6.

P11

P12

P21

P22

P0

X

Figure 5:

P11

P12

P21

P22

P0
�
���

X

Figure 6:

Case 2. Points X that lie in (�1 \S1)∪(�2 \S2) are eliminated by a cross that has
boundary lines through P11 and P12 of slope −m , and boundary lines through points
P21 and P22 of slope m ; this is similar to the method used in Figure 5.

Thus, it remains to eliminate the points inside either of the segments S1 or S2 .
Consider X ∈S1 . Select a point Q∈ �1 and between X and P11 so that the line through
Q and P22 has a slope m0 ∈ R \ {−1,0} . The cross with boundary lines through P11

and P12 of slope −m0 , and boundary lines through points P21 and P22 of slope m0

contains X in its nucleus, thus eliminating it; see Figure 7. A similar argument works
for X ∈ S2 .

Case 3. We will show that no other point on �1 and �2 , besides P0 , P11 , P12 , P21 ,
P22 , belongs to all crosses in C .

Let us assume that P0 ∈ S1 \S2 . Clearly, the cross that has the boundary lines
through P11 and P12 parallel to �2 , and the boundary lines through points P21 and P22

parallel to �1 eliminates any point X in �1 \S1 , as well as the points in the interior of
S2 .

Let now X ∈ S1 . Moreover, assume that X is between P11 and P0 . Select a point
Q on �1 and between X and P0 such that the slope of the line through Q and P22 has a
slope m0 in R\ {−1,0} . The cross with boundary lines through P11 and P12 of slope
−m0 , and boundary lines through points P21 and P22 of slope m0 contains X in its
nucleus, thus eliminating it. This way, we eliminate all the points inside the segment
S1 with the exception of P0 ; see Figure 8.
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P11
P12

P21
P22

P0 X

Q

Figure 7:

P11

P12

P21

P22

P0

X Q

Figure 8:

Next let X ∈ �2 \S2 . First assume that X and P0 are on the same side of S2 . If
P0 is between X and S2 , let Q be a point on �2 between X and P0 such that the slope
of the line through P12 and Q is in R\{0,1} . Denote this slope by m0 . The cross with
boundary lines through P11 and P12 of slope m0 , and boundary lines through points
P21 and P22 of slope −m0 eliminates X ; see Figure 9. If X is between P0 and S2 a
similar argument eliminates it.

P11

P12

P21

P22

P0

X
Q

Figure 9:

P11

P12

P21

P22

P0

X

Q

Figure 10:

If X and P0 are on the opposite sides of S2 , then pick Q on �2 between X and
S2 such that the slope m0 of the line through P11 and Q is in R \ {0,1} . The cross
with boundary lines through P11 and P12 of slope m0 , and boundary lines through
points P21 and P22 of slope −m0 eliminates X ; see Figure 10.

Finally, the case P0 ∈S2 \S1 is handled similarly. The only exception is the case
when P0 is the midpoint of S2 . In this case τ = 1/2 and m = −1 and the points in
S1∪ (�2 \S2) are eliminated by crosses that have the boundary lines through P11 and
P12 with slopes 1± ε , and the boundary lines through points P21 and P22 with slopes
−1∓ ε for sufficiently small ε > 0.



602 Á. BÉNYI AND B. ĆURGUS

3. The set A

In Section 2 we proved that A ⊆ B and that the set B is a subset of the union of
the sets defined in (3), (4), (5) and (6). In this section, in Subsection 3.2 we prove that
the set in (3) is a subset of A , in Subsection 3.3 we prove that the set in (5) is a subset
of A and that the points in (6) are not in A , and in Subsection 3.4 we prove that the set
in (4) is a subset of A . All together these inclusions imply that A equals the union of
the sets in (3), (4) and (5).

3.1. From the tetrahedron to the cone

In this subsection, we show that a triple (a,b,c) ∈ T if and only if
(
a2,b2,c2

) ∈
Q , where Q is the interior in the first octant of the cone

x2 + y2 + z2−2(xy+ yz+ zx) = 0.

That is,

Q =

⎧⎨
⎩
⎡
⎣xy
z

⎤
⎦ : x,y,z > 0, x2 + y2 + z2 < 2(xy+ yz+ zx)

⎫⎬
⎭.

By definition, (a,b,c) ∈ T if and only if

|a−b|< c < a+b.

The last two inequalities are equivalent to

a2 +b2−2ab < c2 < a2 +b2 +2ab,

and these two inequalities are, in turn, equivalent to∣∣a2 +b2− c2
∣∣< 2ab.

Squaring both sides, followed by simple algebraic transformations, yields the following
equivalent inequalities:

(
a2 +b2− c2)2 < 4a2b2,

a4 +b4 + c4 +2a2b2−2a2c2−2b2c2 < 4a2b2,

2
(
a4 +b4 + c4)< a4 +b4 + c4 +2a2b2 +2a2c2 +2b2c2,

2
(
a4 +b4 + c4)<

(
a2 +b2 + c2)2.

Now, taking the square root of both sides, we adjust the last inequality to look like an
inequality for a dot product of two unit vectors:

a2 ·1+b2 ·1+ c2 ·1√
a4 +b4 + c4

√
3

>

√
2
3
.
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This means that the cosine of the angle between the vectors 〈a2,b2,c2〉 and 〈1,1,1〉 is
bigger than

√
2/3. In other words, (a,b,c) are lengths of sides of a triangle if and only

if the point
(
a2,b2,c2

)
is inside the cone centered around the diagonal x = y = z and

with the angle arccos
√

2/3. The algebraic equation of this cone is

x2 + y2 + z2−2(xy+ yz+ zx) = 0.

The relevance of the above observation is that now we can characterize A in terms
of a “cone preserving property” of a class of 3× 3 matrices. More precisely, this ob-
servation, in combination with Subsection 2.1, yields the following sequence of equiv-
alences:

(ρ ,σ ,τ) ∈ A ⇔ (
AAρ ,BBσ ,CCτ

) ∈ T for all (a,b,c) ∈ T

⇔ (
(AAρ)2,(BBσ )2,(CCτ )2) ∈ Q for all (a2,b2,c2) ∈ Q

⇔ M(ρ ,σ ,τ)Q ⊆ Q,

where

M(ρ ,σ ,τ) =

⎡
⎣ρ(ρ −1) ρ 1−ρ

1−σ σ(σ −1) σ
τ 1− τ τ(τ −1)

⎤
⎦ .

3.2. Rotation

Consider the matrix

M(τ,τ,τ) =

⎡
⎣ (τ −1)τ τ 1− τ

1− τ (τ −1)τ τ
τ 1− τ (τ −1)τ

⎤
⎦ .

For simplicity, we write M instead of M(τ,τ,τ) . A long but straightforward calculation
shows that MT M , that is,⎡

⎣ (τ −1)τ 1− τ τ
τ (τ −1)τ 1− τ

1− τ τ (τ −1)τ

⎤
⎦
⎡
⎣ (τ −1)τ τ 1− τ

1− τ (τ −1)τ τ
τ 1− τ (τ −1)τ

⎤
⎦

evaluates to
(
τ(τ −1)+1

)2
I and

detM =
(
τ(τ −1)+1

)3
.

Therefore the matrix (
τ(τ −1)+1

)−1
M

is orthogonal and its determinant is 1 . Thus,
(
τ(τ −1)+1

)−1
M is a rotation. Clearly,

the eigenvector corresponding to the real eigenvalue is the vector 〈1,1,1〉 . Therefore
the transformation of R

3 induced by M leaves the cone Q invariant. Consequently,
the set in (3) is a subset of A .
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3.3. Degenerate case

Let τ ∈ R\ {0,1} and consider the matrix

M = M
( 1

1− τ
,1− 1

τ
,τ
)

=

⎡
⎢⎢⎢⎢⎣

τ
(τ −1)2

1
1− τ

τ
τ −1

1
τ

1− τ
τ2 1− 1

τ
τ 1− τ (τ −1)τ

⎤
⎥⎥⎥⎥⎦ .

A simple verification yields that the linearly independent vectors 〈1− τ,0,1〉 and 〈τ −
1,τ,0〉 are eigenvectors corresponding to the eigenvalue 0. Since M has rank 1, the
third eigenvector is 〈

τ
τ −1

,1− 1
τ
,τ(τ −1)

〉
and it corresponds to the eigenvalue

τ6−3τ5 +3τ4− τ3 +3τ2−3τ +1
(τ −1)2τ2 .

The matrix M maps Q into Q if and only if the last eigenvector or its opposite is in Q
and the corresponding eigenvalue is positive. To explore for which τ this is the case,
we introduce the change of variables τ �→ (1+ x)/2. Then, the eigenvector becomes〈

x+1
x−1

,
x−1
x+1

,
x2−1

4

〉

and the corresponding eigenvalue is

x6 −3x4 +51x2 +15

4(x2−1)2
.

The polynomial in the numerator is even and, since its second derivative 30x4−36x2 +
102 is strictly positive, it is concave up. Thus, its minimum is 15. Therefore the third
eigenvalue is always positive. Next, we use the dot product to calculate the absolute
value of the cosine of the angle between〈

x+1
x−1

,
x−1
x+1

,
x2−1

4

〉
and

〈
1,1,1

〉
.

After simplifying, the absolute value of the cosine is√
(x2 +3)3

3
(
x6−7x4 +59x2 +11

) . (18)

This simplification is based on the following two identities:

4(x+1)2 +4(x−1)2 +(x2−1)2 = (3+ x2)2,

42(x+1)4 +42(x−1)4 +(x2−1)4 = (3+ x2)
(
x6 −7x4 +59x2 +11

)
.
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Next, we need to find those values of x for which (18) is greater than
√

2/3. This
is equivalent to (

x2 +3
)3

x6−7x4 +59x2 +11
> 2,

and, after further simplification, to

− x6 +23x4−91x2 +5 > 0. (19)

As 5 is a root of the polynomial −y3 +23y2−91y+5, factoring the polynomial in (19)
yields

−x6 +23x4−91x2 +5 =
(
5− x2)(1−18x2 + x4)

=
(
5− x2)(x2 − (9+4

√
5
))(

x2 − 1

9+4
√

5

)
.

Since √
9+4

√
5 = 2+

√
5 and

1√
9+4

√
5

= −2+
√

5,

the roots of the polynomial in (19) in the increasing order are

−2−
√

5, −
√

5, 2−
√

5, −2+
√

5,
√

5, 2+
√

5.

Thus, the solutions of (19) are the open intervals(
−2−

√
5, −

√
5
)

,
(
2−

√
5, −2+

√
5
)

,
(√

5, 2+
√

5
)

.

The corresponding intervals for τ are(−φ , −φ−1) , (
φ−2, φ−1) , (

φ , φ2) ,
with the approximate values being

(−1.618,−0.618), (0.382,0.618), (1.618,2.618).

Hence, the matrix M maps Q into Q if and only if

τ ∈ (−φ , −φ−1)∪ (φ−2, φ−1)∪ (φ , φ2) .
This, in particular implies that the set in (5) is a subset of A .

Moreover, for τ ∈ {−φ ,−φ−1,φ−2,φ−1,φ ,φ2
}

, the eigenvector of M lies on the
boundary of the cone Q . This boundary corresponds to the squares of the sides of
degenerate triangles. Thus, for an arbitrary triangle ABC , for the six triples listed in (6)
the corresponding cevians form a degenerate triangle. In other words, the points in (6)
are not in A .
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3.4. Real eigenvalues

Consider the matrix

M = M(ξ ,−ξ ,2− ξ ) =

⎡
⎣ (ξ −1)ξ ξ 1− ξ

ξ +1 (ξ +1)ξ −ξ
2− ξ ξ −1 (1− ξ )(2− ξ )

⎤
⎦ .

The eigenvectors of this matrix are⎡
⎣−1

1
1

⎤
⎦ ,

⎡
⎣ 1

φ−2

φ2

⎤
⎦ ,

⎡
⎣ 1

φ2

φ−2

⎤
⎦ , where φ =

1+
√

5
2

.

The corresponding eigenvalues are

−1− ξ + ξ 2,
(
φ2 −1− ξ

)2
,

(
φ−2 −1− ξ

)2
.

This can be verified by direct calculations. In the verification of these claims and in the
calculations below, the following identities involving φ2 are used:

(φ2 −1)2 = φ2, φ2 + φ−2 = 3,
(
φ2−φ−2)2 = 5.

The matrix M is singular if and only if −1− ξ + ξ 2 = 0. That is, for

ξ = −φ−1 = φ−2 −1 or ξ = φ = φ2 −1.

But for ξ = −φ−1 the matrix M of this section coincides with the matrix M in Sec-
tion 3.3 with τ = φ2 there. For ξ = φ the matrix M of this section coincides with the
matrix M in Section 3.3 with τ = φ−2 there. Therefore in the rest of this section we
can assume that M is invertible, that is, we assume

ξ �= −φ−1 and ξ �= φ . (20)

The matrix

B =

⎡
⎣−1 1 1

1 φ−2 φ2

1 φ2 φ−2

⎤
⎦

diagonalizes M since

B−1MB = D =

⎡
⎢⎣
−1− ξ + ξ 2 0 0

0
(
φ2 −1− ξ

)2
0

0 0
(
φ−2 −1− ξ

)2
⎤
⎥⎦ .

Notice that only the top left diagonal entry in D might be non-positive. Also, the square
of the top left diagonal entry in D is the product of the remaining two diagonal entries:

(
φ2 −1− ξ

)2(φ−2 −1− ξ
)2 =

(−1− ξ + ξ 2)2 . (21)
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Next, we define another cone,

Q0 =

⎧⎨
⎩
⎡
⎣u

v
w

⎤
⎦ : v,w > 0, u2 < 4vw

⎫⎬
⎭ ,

and prove that DQ0 = Q0 and BQ0 = Q .
First notice that the definition of Q0 , (21) and (20) yield the following equiva-

lences:⎡
⎣u

v
w

⎤
⎦ ∈ Q0 ⇔ v,w > 0 and u2 < 4vw

⇔ (
φ2 −1− ξ

)2
v > 0,

(
φ−2 −1− ξ

)2
w > 0

and(−1− ξ + ξ 2)2u2 < 4
((

φ2 −1− ξ
)2

v
)((

φ−2 −1− ξ
)2

w
)

⇔

⎡
⎢⎣
(−1− ξ + ξ 2

)
u(

φ2−1− ξ
)2

v(
φ−2 −1− ξ

)2
w

⎤
⎥⎦ ∈ Q0 ⇔ D

⎡
⎣u

v
w

⎤
⎦ ∈ Q0,

which, in turn, prove DQ0 = Q0 .
Second, we verify that the matrix B maps Q0 onto Q . Set⎡

⎣x
y
z

⎤
⎦= B

⎡
⎣u

v
w

⎤
⎦=

⎡
⎣ −u+ v+w
u+ φ−2v+ φ2w
u+ φ2v+ φ−2w

⎤
⎦ ,

and calculate

x2 + y2+z2 −2(xy+ yz+ zx)

=
(
x2−2xy−2zx

)
+
(
y2 + z2−2yz

)
= x
(
x−2(y+ z)

)
+
(
y− z

)2
= (−u+ v+w)

(
−5u+

(
1−2(φ2 + φ−2)

)
(v+w)

)
+
(
φ2 −φ−2)2(v−w)2

= (−5)
(−u+ v+w

)(
u+ v+w

)
+5(v−w)2

= 5
(
u2− (v+w)2 +(v−w)2)= 5

(
u2−4vw

)
.

Since x2 +y2+z2−2(xy+yz+zx)< 0 represents the interior (or the disconnected
part) of the circular cone with the axis x = y = z and with a generatrix x = y , z = 0, all
three coordinates x , y , z satisfying the last inequality must have the same sign. Clearly,
if u2 < 4vw , then v , w are nonzero and have the same sign.
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Assume

x2 + y2 + z2−2(xy+ yz+ zx) = 5
(
u2−4vw

)
< 0.

Then, if both v,w < 0, we have

x = −u+ v+w < 2
√
|v|
√
|w|− |v|− |w|= −(√|v|−

√
|w|)2 � 0.

The contrapositive of this implication is that, if x > 0, then at least one, and hence both,
v , w > 0.

Conversely, if v , w > 0, then

x = −u+ v+w> −2
√

v
√

w+ v+w =
(√

v−√
w
)2 � 0.

That is: v , w > 0 implies x > 0. Hence, the following equivalences hold:

⎡
⎣xy
z

⎤
⎦ ∈ Q ⇔ x > 0 and x2 + y2 + z2−2(xy+ yz+ zx) < 0

⇔ v,w > 0 and u2 < 4vw

⇔
⎡
⎣u

v
w

⎤
⎦ ∈ Q0.

This proves that BQ0 = Q . Since B−1MB = D and DQ0 = Q0 , we have

MQ = MBQ0 = BDQ0 = BQ0 = Q.

This proves that M
(
P21(2−ξ )

)
,ξ ∈R\{−φ−1,φ} , leaves the cone Q invariant. Thus,

the second points listed in (4) belong to A . The other families of points in (4) are treated
similarly, proving that the set in (4) is a subset of A . This completes our proof of the
Theorem.

4. Closing comments

We wish to end with a remark concerning an arbitrary fixed triangle ABC with the
sides a , b , c . For such a triangle, denote by A(a,b,c) the set of all triples (ρ ,σ ,τ) ∈
R

3 for which the cevians AAρ , BBσ , and CCτ form a triangle. Clearly, A⊂A(a,b,c) .
In fact, A =

⋂
(a,b,c)∈T A(a,b,c). The set A(a,b,c) is a subset of R

3 bounded by the
surface which is the union of the solutions to AAρ +BBσ =CCτ or BBσ +CCτ = AAρ
or CCτ +AAρ = BBσ . The general equation of this surface is quite cumbersome. To
get an idea how this surface looks like, we plot it in Figure 11 for an equilateral triangle.
Figure 11 also illustrates the last sentence in Subsection 3.3: For an arbitrary triangle
ABC , the six special points listed in (6) belong to the surface bounding A(a,b,c) .
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Figure 11: The set A and the surface bounding A(1,1,1)
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