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MORREY SPACES ARE CLOSELY EMBEDDED

BETWEEN VANISHING STUMMEL SPACES

STEFAN SAMKO

(Communicated by L. Maligranda)

Abstract. We prove a new property of Morrey function spaces by showing that the generalized
local Morrey spaces are embedded between weighted Lebesgue spaces with weights differing
only by a logarithmic factor. This leads to the statement that the generalized global Morrey
spaces are embedded between two generalized Stummel classes whose characteristics similarly
differ by a logarithmic factor. We give examples proving that these embeddings are strict. For
the generalized Stummel spaces we also give an equivalent norm.

1. Introduction

The classical Morrey spaces L p,λ (Ω) , over an open set Ω ⊆ Rn, defined by the
norm

‖ f‖p,λ := sup
x∈Ω,r>0

⎛⎜⎝ 1

rλ

∫
B̃(x,r)

| f (y)|p dy

⎞⎟⎠
1
p

, 1 � p < ∞, 0 � λ � n, (1.1)

where B̃(x,r) = Ω∩B(x,r) , are well known, in particular, because of their usage in
the study of regularity properties of solutions to PDE, see for instance the books [7],
[11], [19] and references therein. There are also known various generalizations of the
classical Morrey spaces L p,λ , we refer for instance to the surveying paper [16]. One
of the direct generalizations is obtained by replacing rλ in (1.1) by a function ϕ(r) ,
mainly satisfying some monotonicity type conditions. We also denote it as L p,ϕ(Ω)
without danger of confusion. Such spaces appeared in [20], and were widely studied
by various authors, see for instance [2], [3], [8], [9], [15] and references therein. The
spaces L p,ϕ

loc;{x0}(Ω), defined by the norm

‖ f‖p,ϕ;loc := sup
r>0

⎛⎜⎝ 1
ϕ(r)

∫
B̃(x0,r)

| f (y)|p dy

⎞⎟⎠
1
p

, (1.2)
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where x0 ∈ Ω , are known as generalized local Morrey spaces. Spaces of type (1.1) are
often called global Morrey spaces, in comparison with the local ones.

Strange enough, in spite of enormous literature on Morrey type spaces, it seems
that it became unobserved that the local “Morrey type behaviour” of a function f de-
termined by the finiteness of the norm (1.2), is very close to the p -integrability of f
with the weight

ρx0(x) =
1

ϕ(|x− x0|) . (1.3)

Namely, the local space L
p,ϕ

loc;{x0}(Ω) contains such a weighted Lebesgue spaces, but is
embedded into a close Lebesgue space with and the same weight multiplied by a power
of logarithm. More precisely, with the notation

Lp(Ω,ρ) : =

⎧⎨⎩ f :
∫
Ω

ρ(x)| f (x)|p dx < ∞

⎫⎬⎭ ,

in this note we prove the continuous embeddings

Lp (Ω,ρx0

)
↪→ L

p,ϕ
{x0}(Ω) ↪→

⋂
ε>0

Lp

(
Ω,

ρx0(x)
ln1+ε A

|x−x0|

)
, (1.4)

where ρx0(x) is the weight function (1.3), Ω is a bounded open set and A > diam Ω
(a modification for unbounded sets is obvious). The space in the upper embedding is
assumed tto be equipeed with the natural topology. The lower embedding in (1.4) is
known, the novelty is in the upper embedding.

By means of these localized embeddings, we prove that the following embeddings

VSp,ϕ(Ω) ↪→ L p,ϕ(Ω) ↪→
⋂
ε>0

VSp,ϕ ln1+ε
(Ω)

hold between the global Morrey spaces L p,ϕ(Ω) and the so called Stummel classes
VSp,ϕ(Ω) , with the “logarithmic gap” between the lower and upper embeddings (we
prefer to call these Stummel classes vanishing Stummel spaces).

We also provide examples of functions showing that the above embeddings are
strict under the corresponding assumptions on the function ϕ .

There are also known generalizations of Morrey spaces where supr>0 is replaced
by the ‖ · ‖Lθ -norm (mainly for Ω = Rn ):

‖ f‖L p,θ ,ϕ(Ω) := sup
x∈Ω

(∫ �

0

(
1

ϕ(r)

∫
B(x,r)

| f (y)|pdy

) θ
p dr

r

) 1
θ

, � = diam Ω. (1.5)

Such spaces first appeared (in the case ϕ(r) = rλ ) in [1], p. 44, but their wide study
was made in [8], [9], [4], see also references therein.



MORREY SPACES ARE CLOSELY EMBEDDED BETWEEN VANISHING STUMMEL SPACES 629

The embeddings 1.4 are proved in Section 2. In Section 2 we study the generalized
Stummel spaces and construct nontrivial examples of functions in Stummel spaces not
belonging to vanishing Stummel spaces (Subsection 3.2) and for generalized Stummel
spaces we provide an equivalent norm (Subsection 3.3). Embeddings corresponding to
the generalized global Morrey spaces are proved in Section 4.

2. Embeddings of local Morrey spaces

The function ϕ(r) defining Morrey spaces is assumed to be, as usual, a bounded
non-negative continuous function on [0, �] , 0 < � � ∞ (in fact it suffice to assume that
it is continuous only in a neigbourhood of the origin), strictly positive for r > 0 and
non-decreasing.

Note that Morrey spaces are often considered with almost increasing function ϕ .
Since an almost increasing function is equivalent to a non-decreasing function and Mor-
rey space remains the same under replacement of ϕ by an equivalent function, we
assume that ϕ is non-decreasing.

We also suppose that ϕ is absolutely continuous and its derivative satisfies the
condition

P := sup
0<t<�

tϕ ′(t)
ϕ(t)

< ∞. (2.1)

For some goals we will also impose the Zygmund condition

r∫
0

ϕ(t)
t

dt � Cϕ(r), 0 < r � �. (2.2)

on the function ϕ .

THEOREM 2.1. Let Ω be a bounded open set, 1 � p < ∞ and ϕ be non-decreasing
and satisfy the condition (2.1). Then the embeddings (1.4) hold:

cε‖ f‖
Lp

(
Ω,

ρx0 (x)

ln1+ε A
|x−x0|

) � ‖ f‖p
L

p,ϕ
loc;{x0}(Ω)

� ‖ f‖Lp(Ω,ρx0)
(2.3)

where cε =
(

2+ 1+P ln A
�

ε

)−1

ln−1−ε A
� . The upper embedding is strict, i.e.

Lp

(
Ω,

ρx0(x)
ln1+ε A

|x−x0|

)
�= L

p,ϕ
{x0}(Ω).

The lower embedding in (1.4) is strict, if we additionally suppose that ϕ satisfies the
condition (2.2) (in particular, if ϕ(r) = rλ , λ > 0 ).

Proof. We take x0 = 0 for simplicity, supposing that 0 ∈ Ω .
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1◦. The lower embedding is trivial: since ϕ is non-decreasing, we have(∫
Ω

| f (y)|p
ϕ(|y|) dy

) 1
p

�
(∫

B̃(0,r)

| f (y)|p
ϕ(|y|) dy

) 1
p

�
(

1
ϕ(r)

∫
B̃(0,r)

| f (y)|p dy

) 1
p

(2.4)

so that ‖ f‖
Lp
(

Ω, 1
ϕ

) � ‖ f‖L
p,ϕ
loc;{0}(Ω).

2◦. The upper embedding. With the notation

ψε(|x|) : =
1

ϕ(|x|) ln1+ε A
|x|

we have∫
B̃(0,r)

| f (y)|pψε(|y|)dy = Cε

∫
B̃(0,r)

| f (y)|p dy−
∫
B̃(0,r)

| f (y)|p
(∫ �

|y|
d
dt

ψε (t)dt

)
dy,

(2.5)
where Cε = ψε (�). Therefore,∫

B̃(0,r)
| f (y)|pψε(|y|)dy

� Cε

∫
B̃(0,r)

| f (y)|p dy+
∫ �

0
|ψ ′

ε(t)|
(∫

{y∈Ω:|y|<min{r,t}}
| f (y)|pdy

)
dt

� Cε‖ f‖p
Lp(B̃(0,r))

+
∫ �

0
|ψ ′

ε(t)| · ‖ f‖p
Lp(B̃(0,t))

dt

�
[
C(ε)ϕ(�)+

∫ �

0
|ψ ′

ε(t)|ϕ(t)dt

]
‖ f‖p

L
p,ϕ
loc;{0}(Ω)

(2.6)

where the last integral converges for every ε > 0, since

ψ ′
ε(t) =

1+ε
ln A

t
− tϕ ′(t)

ϕ(t)

tϕ(t) ln1+ε A
t

,

and then

|ψ ′
ε(t)|ϕ(t) � Dε

t
(
ln A

t

)1+ε , Dε =
1+ ε
ln A

�

+P. (2.7)

3◦. The strictness of the lower embedding. The function f0(x) = ϕ
1
p (|x|)
|x| n

p
is the

corresponding example:

f0 ∈ L p,ϕ
{0} (Ω), but f0 /∈ Lp

(
Ω,

1
ϕ(|x|)

)
.

Indeed, passing to polar coordinates, we have

1
ϕ(r)

∫
B(0,r)

| f0(y)|p dy � |Sn−1| 1
ϕ(r)

r∫
0

ϕ(t)
t

dt, 0 < r < �.
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where the right-hand side is bounded, by the assumption on ϕ .
4◦. The strictness of the upper embedding. The corresponding counterexample

for

g0 ∈
⋂
ε>0

Lp

(
Ω,

ln1+ε A
|x−x0|

ϕ(|x− x0|)

)
, but g0 /∈ L

p,ϕ
{x0}(Ω).

is g0(x) = ϕ
1
p (|x|)
|x|

n
p

ln
(
ln B

|x|
)

, B > �ee . Indeed,

‖g0‖p
Lp(Ω,ψε ) =

∫
Ω

lnp
(
ln B

|x|
)

|x|n
(
ln A

|x|
)1+ε dx � |Sn−1|

�∫
0

lnp
(
ln B

t

)
t
(
ln A

t

)1+ε dt < ∞

for every ε > 0. However, for r ∈ (0,δ ) , where δ = dist(0,∂Ω) , we obtain

1
ϕ(r)

∫
B(0,r)

gp
0(|x|)dx =

1
ϕ(r)

∫
B(0,r)

ϕ(|x|) lnp
(
ln B

|x|
)

dx

|x|n

=
|Sn−1|
ϕ(r)

r∫
0

ϕ(t) lnp
(
ln B

t

)
dt

t
� |Sn−1|

ϕ(r)

r∫
r
2

ϕ(t) lnp
(
ln B

t

)
dt

t
.

Taking into account that ϕ(t) is non-decreasing and satisfies the doubling condi-
tion (the latter follows from the fact that (2.1) implies that t−Pϕ(t) is non-increasing),
we get

1
ϕ(r)

∫
B(0,r)

gp
0(|x|)dx � C lnp

(
ln

B
r

) r∫
r
2

dt
t

= C ln2 lnp
(

ln
B
r

)
→ ∞ as r → 0,

which completes the proof of the theorem. �

REMARK 2.1. Note that local inequalities of the type (2.3) for the so called com-
plementary Morrey spaces were proved in [10] in the case of a power function ϕ and
in [14] in the general case.

3. Stummel spaces

Since the constants of embeddings in (2.3) do not depend on the local point x0 ∈Ω,
the inequalities in (2.3) allow to immediately pass to the global Morrey spaces. Taking
supremum with respect to x0 ∈ Ω we observe that the lower and upper spaces in the
embeddings in (2.3) turn to be spaces related with the so called Stummel classes. Before
to proceed to the corresponding formulation, in the next subsection we recall the notion
of Stummel spaces and Stummel classes.
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3.1. Stummel type classes

Recall that related in a sense to the notion of Morrey-type regularity of functions,
the Stummel type class consists of locally p -integrable functions such that

lim
r→0

ηp,λ ( f ,r) = 0, (3.1)

where

ηp,λ ( f ,r) := sup
x∈Ω

∫
B̃(x,r)

| f (y)|p dy

|x− y|λ , 1 � p < ∞, 0 < λ < n.

Such type of conditions on a function f appeared in [18] in the case p = 2; in the case
p = 1 this class was studied in [17] and [5]. In the case p = 1 and λ = n−2 it is also
called Stummel-Kato class.

By Sp,λ (Ω) we denote the space defined by the norm

‖ f‖Sp,λ := sup
x∈Ω

⎛⎝∫
Ω

| f (y)|p dy

|x− y|λ

⎞⎠
1
p

. (3.2)

We will call it Stummel space. Such a space was used in particular in [12] and [13] in
applications to PDE.

Note that a more general hybrid Mp,λ
β (X ,μ) of Morrey and Stummel type spaces

was introduced in [6] in a general setting of a quasimetric measure space (X ,ρ ,μ) ,
with the norm

‖ f‖
Mp,λ

β
:= sup

x∈X
r>0

(
1

rλ

∫
ρ(x,y)<r

| f (y)|pρβ (x,y)dμ(y)
) 1

p

.

As regards the Stummel class defined by the condition (3.1), we find it natural
to call it vanishing Stummel space following the tradition known for vanishing Mor-
rey spaces and spaces of vanishing mean oscillation (VMO). We will denote it by
VSp,λ (Ω). With respect to the norm (3.2), the space VSp,λ (Ω) is a closed subspace of
Sp,λ (Ω). A generalization of such Stummel spaces, similar to that of Morrey spaces,
may be defined in a natural way via the norm

‖ f‖Sp,ϕ := sup
x∈Ω

⎛⎝∫
Ω

| f (y)|p dy
ϕ(|x− y|)

⎞⎠
1
p

. (3.3)

Obviously ‖ f‖L p,ϕ � ‖ f‖Sp,ϕ for non-decreasing functions ϕ , so that in this case

Sp,ϕ(Ω) ↪→ L p,ϕ(Ω).

We denote the corresponding Stummel classes (the vanishing generalized Stummel
spaces) by VSp,ϕ . Such generalized Stummel classes in the case p = 1 were con-
sidered in [17] and [5].
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3.2. VSp,λ is a proper subspace of Sp,λ

By standard arguments it is easily shown that VSp,ϕ is a closed space with respect
to the norm (3.3), i.e.

∥∥∫
Ω | f (y)|pϕ−1(|y− x|)dy

∥∥
L∞ . With this norm, the space Sp,ϕ

itself is expected to be non-separable. We do not dwell on proving this in the general
case, but in Lemma 3.2 provide a family of examples of functions in Sp,λ which are
not in VSp,λ , from which the non-separability of Sp,λ follows. We pay a special
attention to such examples to better understand the nature of Stummel classes (in spite
of a number of papers devoted to Stummel type spaces, such examples were never
given, up to author’s knowledge). Functions with singularities, for instance, of the type

|x|−γ , γ < n−λ
p or |x|− n−λ

p ln−a 1
|x| , a > 1

p , belong to both the spaces Sp,λ and VSp,λ

under the same conditions and in general it is obvious that examples with a singularity
at a fixed point only, or at a finite number of points, are helpless.

For simplicity, we consider the one-dimensional case and Ω = (0,1) ; the con-
structions below can be similarly adapted for the multidimensional case with intervals
Ik of decreasing size replaced by balls of decreasing radius.

Let Ω = (0,1) and let {xk}∞
k=1 be any sequence of numbers xk ∈ (0,1) mono-

tonously tending to zero. Let Ik := (xk(1− hk) , xk(1 + hk)) , where 0 < hk < 1, be
symmetrical intervals of the points xk. We choose hk so that the intervals Ik adjoin
each other:

xk(1+hk) = xk−1(1−hk−1) ⇐⇒ hk =
xk−1− xk

xk + xk−1
. (3.4)

We construct a family of counterexamples of the form

Φ(x) =
∞

∑
k=1

ak
χIk (x)

|x− xk|1−λ−αk
, ak > 0, αk > 0 (3.5)

with three “discrete parameters” xk , ak , αk . Clearly, the counterexample may be ex-
pected when αk → 0 as k → ∞.

LEMMA 3.1. Let the function Φ be given by (3.5) with a decreasing sequence of
numbers xk ∈ (0,1) , limk→∞ xk = 0, subject to the relation (3.4). The conditions

∞

∑
k=1

ak < ∞ (3.6)

and
sup
m∈N

am

αm
(hmxm)αm < ∞ (3.7)

are sufficient for the function f := Φ
1
p to belong to the Stummel space Sp,λ (0,1) ,

1 � p < ∞ , 0 < λ < 1 . The condition (3.7) is also necessary.

Proof. We have

1∫
0

f p(y)dy

|x− y|λ =
∞

∑
k=1

ak

∫
Ik

dy

|x− y|λ |y− xk|1−λ−αk
. (3.8)
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The change y = xk + t|x− xk| yields

1∫
0

f p(y)dy

|x− y|λ =
∞

∑
k=1

ak|x− xk|αk

ρk(x)∫
−ρk(x)

dt

|t|1−λ−αk|t− sign(x− xk)|λ
,

where ρk(x) := hkxk
|x−xk| . Note that for x∈ Im we have ρk(x) � 1 if k �= m , but ρm(x) � 1.

With x ∈ Im we have

1∫
0

f p(y)dy

|x− y|λ =
m−1

∑
k=1

ak(xk − x)αk

ρk(x)∫
−ρk(x)

dt

|t|1−λ−αk(t +1)λ

+am|x− xm|αm

ρm(x)∫
−ρm(x)

dt

|t|1−λ−αm|t− sign(x− xm)|λ

+
∞

∑
k=m+1

ak(x− xk)αk

ρk(x)∫
−ρk(x)

dt

|t|1−λ−αk(1− t)λ

=: Am +Bm +Cm.

Here

Am =
m−1

∑
k=1

ak(xk − x)αk

ρk(x)∫
0

1

t1−λ−αk

[
1

(1+ t)λ +
1

(1− t)λ

]
dt

so that

Am � cλ

m−1

∑
k=1

ak(xk − xm(1−hm))αk � cλ

m−1

∑
k=1

ak,

where cλ =
1∫
0

1
t1−λ

[
1

(1+t)λ + 1
(1−t)λ

]
dt. Similarly

Cm � cλ

∞

∑
k=m+1

ak((1+hm)xm − xk)αk � cλ

∞

∑
k=m+1

ak.

For Bm we obtain

Bm = am|x− xm|αm

ρm(x)∫
0

1

t1−λ−αk

[
1

(t +1)λ +
1

|t−1|λ
]
dt.

It is easily checked that

c1
ραm

m (x)
αm

�
ρm(x)∫
0

1

t1−λ−αm

[
1

(t +1)λ +
1

|t−1|λ
]
dt � c2

ραm
m (x)
αm
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where the constants c1 and c2 do not depend on m and x . Consequently,

c1
am

αm
(hmxm)αm � Bm � c2

am

αm
(hmxm)αm . (3.9)

Hence

sup
x∈(0,1)

1∫
0

f p(y)dy

|x− y|λ = sup
m∈N

sup
x∈Im

1∫
0

f (y)dy

|x− y|λ � cλ

∞

∑
k=1

ak + c2 sup
m∈N

am

αm
(hmxm)αm ,

which proves the lemma. The necessity of the condition (3.7) is seen from (3.9). �

LEMMA 3.2. Let the function Φ be given by (3.5) with xk the same as in Lemma
3.1, and coefficients ak satisfying the condition (3.6). Let the exponents αk be defined
by the condition

am

αm
(hmxm)αm = C, (3.10)

where C > 0 does not depend on m. Then f = Φ
1
p ∈ Sp,λ (0,1), but f /∈VSp,λ (0,1).

Proof. First note that, given am and hmxm, the condition (3.10) always determines
(unique) value of αm, since the equation of form abt = t with a > 0 and 0 < b � 1 has
a positive solution t (it may be written via the Lambert function W : t = 1

ln 1
b
W
(
a ln 1

b

)
).

By Lemma 3.1, we have only to show that f /∈VSp,λ (0,1). For

g(x,r) :=
∫

y∈[0,1]:|y−x|<r

| f p(y)|dy

|x− y|λ ,

as in (3.8), we have

g(x,r) =
∞

∑
k=1

ak

∫
y∈Ik :|y−x|<r

dy

|x−y|λ |y−xk|1−λ−αk
� am

∫
y∈Im :|y−x|<r

dy

|x−y|λ |y−xm|1−λ−αm
,

where we can choose m = m(r) sufficiently large so that {y ∈ Im : |y− x| < r} = Im,
when x ∈ Im. Since |y− x| � |y|+ |x| � 2xm(1+ hm) � 4xm in this case, such a value
m may be chosen by the condition xm < r

4 . Then for x ∈ Im

g(x,r) � am

∫
y∈Im

dy

|x− y|λ |y− xm|1−λ−αm
= Bm � c1

am

αm
(hmxm)αm = const

by (3.9) and the assumption (3.10). Hence

lim
r→0

sup
x∈(0,1)

∫
y∈[0,1]:|y−x|<r

| f p(y)|dy

|x− y|λ > 0,

and consequently, f /∈VSp,λ (0,1). �
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3.3. Another norm for the generalized Stummel space

LEMMA 3.3. Let � = diam Ω � ∞ and ϕ be a non-decreasing absolutely con-
tinuous function on [0, �] such that infδ<r<� ϕ(r) > 0 for every δ ∈ (0, �) . Let also a
function f (x) defined on Ω be extended as zero beyond Ω to Rn . Then for all r ∈ (0, �]
the following identity holds

∫
B(x,r)

| f (y)|p dy
ϕ(|y− x|) +

1
ϕ(r)

∫
B(x,r)

| f (y)|p dy =
r∫

0

ϕ ′(t)
ϕ2(t)

dt
∫

B(x,t)

| f (y)|p dy. (3.11)

Proof. It is obvious that 1
ϕ(t) =

r∫
t

ϕ ′(s)
ϕ2(s)ds− 1

ϕ(r) for all 0 < t < r. Therefore,

∫
B(x,r)

| f (y)|p dy
ϕ(|y− x|) =

∫
B(x,r)

| f (y)|p
⎡⎢⎣ r∫
|x−y|

ϕ ′(s)
ϕ2(s)

ds− 1
ϕ(r)

⎤⎥⎦ dy

from which (3.11) follows. �
Relation (3.11) (with r = � ) in the case ϕ(t) = tλ was proved in [12] by another

way.
The identity (3.11) shows that the norm in Sp,ϕ(Ω) may be equivalently replaced

by the norm generated by the right-hand side of (3.11). More precisely, the following
statement is valid.

COROLLARY 3.4. Under the assumptions of Lemma 3.3, the Stummel space
Sp,ϕ(Ω) coincides with the generalized Morrey space L p,p,φ (Ω):

Sp,ϕ(Ω) = L p,p,φ (Ω), where φ(r) =
rϕ ′(r)
ϕ2(r)

,

up to the equivalence of norms: ‖ f‖Sp,ϕ(Ω) � ‖ f‖L p,p,φ (Ω) � 2
1
p ‖ f‖Sp,ϕ(Ω) .

Proof. From (3.11) with r = � we have

‖ f‖L p,p,φ (Ω) = sup
x∈Ω

⎛⎜⎝∫
Ω

| f (y)|p dy
ϕ(|y− x|) +

1
ϕ(�)

∫
B(x,�)

| f (y)|p dy

⎞⎟⎠
1
p

� ‖ f‖Sp,ϕ(Ω).

On the other hand, since the function ϕ is non-decreasing, we have

‖ f‖L p,p,φ (Ω) � sup
x∈Ω

⎛⎝∫
Ω

| f (y)|p dy
ϕ(|y− x|) +

∫
Ω

| f (y)|p
ϕ(|x− y|) dy

⎞⎠
1
p

� 2
1
p ‖ f‖Sp,ϕ(Ω). �
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4. Embeddings for global Morrey spaces

With the above notation for the Stummel spaces, from the embeddings (2.3) we
arrive at the next statement.

THEOREM 4.1. Let Ω, p and ϕ be the same as in Theorem 2.1. Then:

Sp,ϕ(Ω) ↪→ L p,ϕ(Ω) ↪→
⋂
ε>0

Sp,ϕ ln1+ε
(Ω), (4.1)

where ϕ ln1+ε stands for ϕ(r) ln1+ε A
r ; the embeddings are strict under the same as-

sumptions on ϕ as in Theorem 2.1.

Proof. The embeddings (4.1) are obtained from (2.3) by taking sup with respect
to x0 ∈ Ω , which is possible since the embedding constants do not depend on x0. The
strictness of the embeddings is justified by the same examples as in Theorem 2.1. �

Apart from the above immediate consequence of the local embeddings of Theorem
2.1, we are interested also in a similar comparison of the Morrey spaces L p,ϕ(Ω) with
the vanishing Stummel spaces VSp,ϕ , since the latter spaces are of wider application
to PDE, see [17]. Comparison of such a kind was made in the case p = 1, i.e. between
L 1,μ(Ω) and VS1,λ (Ω) with μ > λ , in [17], which was extended in [5] to the case of
function ϕ(r) instead of rλ . The estimates obtained above, allow us to obtain a finer
result for an arbitrary p and only with the “logarithmical scale of the gap” between the
spaces. More precisely, the following theorem is valid.

THEOREM 4.2. Let Ω , p and ϕ be the same as in Theorem 2.1 and additionally
let ϕ(0) = 0 . Then

VSp,ϕ(Ω) ↪→ Sp,ϕ(Ω) ↪→ L p,ϕ(Ω) ↪→
⋂
ε>0

VSp,ϕ ln1+ε
(Ω). (4.2)

Proof. The embeddings VSp,ϕ(Ω) ↪→ Sp,ϕ(Ω) ↪→L p,ϕ(Ω) are obvious in view
of Theorem 4.1. The proof of the remaining embedding is prepared by estimates in the
proof of Theorem 2.1. Let

Sp,ϕ( f ;x,r) :=
∫

B̃(x,r)

| f (y)|p dy
ϕ(|x− y|) .

We have to show that

f ∈ L p,ϕ(Ω) =⇒ lim
r→0

sup
x∈Ω

Sp,ϕ ln1+ε ( f ;x,r) = 0 (4.3)
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for every ε > 0. Following the arguments in part 2◦ of the proof of Theorem 2.1 (see
the estimates in (2.5) and (2.6)), we have

Sp,ϕ ln1+ε ( f ;x,r) =
∫

B̃(x,r)

| f (y)|p dy

ϕ(|x− y|) ln1+ε A
|x−y|

� Cε

∫
B̃(x,r)

| f (y)|pdy+
∫ �

0
|ψ ′

ε(t)|
∫

B̃(x,tr)

| f (y)|pdydt

where ψε(t) is the same as in (2.5) and tr = min{t,r}. Hence

Sp,ϕ ln1+ε ( f ;x,r) �
[
Cε ϕ(r)+

∫ �

0
|ψ ′

ε(t)|ϕ (tr) dt

]
‖ f‖L p,ϕ (Ω).

Therefore, to prove (4.3), it remains to show that lim
r→0

∫ �
0 |ψ ′

ε(t)|ϕ (tr) dt = 0. Since

ϕ(tr) � ϕ(t) and ϕ(0) = 0, this follows from the Lebesgue dominated convergence
theorem in view of (2.7). �
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