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Abstract. In this paper, we define some new Euler sequence spaces and construct Schauder basis
of these spaces. Moreover, we determine their β−duals and characterize some related matrix
classes. Finally, we give the characterization of some classes of compact operators on these
spaces by using the Hausdorff measure of noncompactness.

1. Introduction

Let ω be the real linear space of all real sequences under the natural algebraic
operations. Any vector subspace of ω is called a sequence space. We write �∞, c and
c0 for the spaces of all bounded, convergent, null sequences, respectively. Also, by cs ,
�1 and �p, we denote the spaces of all sequences associated with convergent, absolutely
and p−absolutely convergent series, respectively; where 1 < p < ∞. Moreover, we
shall write φ for the set of all finite sequences that terminate in zeros, e = (1,1, ...)
and e(n) for the sequence whose only non-zero term is 1 in the n− th place for each
n ∈ N = {0,1,2, ...} .

Let A = (ank)
∞
n,k=0 be an infinite matrix of real numbers. We write An for the

sequence in the n− th row of A, that is An = (ank)
∞
k=0 for every n ∈ N. In addition, if

x = (xk) ∈ ω then we define the A− transform of x as the sequence Ax = (An (x))n∈N,
where

An (x) =
∞

∑
k=0

ankxk (n ∈ N) (1)

provided the series on the right side converges for each n∈N . For any subsets X ,Y ⊂ω
we denote by (X ,Y ) the class of all matrices A such that A : X → Y. Thus A ∈ (X ,Y )
if and only if Ax = (An (x))n∈N ∈ Y for all x ∈ X . The matrix domain of an infinite
matrix A in X is defined by

XA = {x = (xk) ∈ ω : Ax ∈ X} . (2)
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The approach constructing a new sequence space by means of the matrix domain
of a particular limitation method has recently been employed by several authors, see for
instance [1], [10], [15], [17], [29].

Let 0 < r < 1 and let Er =
(
er
nk

)
be the Euler matrix of order r , defined by

er
nk =

{(n
k

)
(1− r)n−k rk, 0 � k � n

0, k > n
.

In the literature, the matrix domain XEr is called the Euler sequence space when-
ever X is a normed or paranormed sequence space. The Euler sequence spaces have
been studied by many authors as can be seen in [2], [3], [9], [11–14], [19], [31], [32].

In the present paper, we introduce some new Euler sequence spaces. The paper is
organized as follows:

In Section 2 we give some notations used in this paper. The sequence spaces eθ
w,0 ,

eθ
w,c and eθ

w,∞ are defined in Section 3. Also, we prove that these spaces are linearly
isomorphic to the spaces c0 , c , �∞ , respectively, and construct the bases of the spaces
eθ
w,0 and eθ

w,c. In Section 4 we determine the β−duals of the sequence spaces eθ
w,0 ,

eθ
w,c , eθ

w,∞ and characterize some related matrix classes. Finally, we examine some
classes of compact operators on the spaces eθ

w,0 and eθ
w,∞ by applying the Hausdorff

measure of noncompactness.

2. Notations and preliminaries

A sequence space X is called a FK space if it is a complete linear metric space
with continuous coordinates pn : X → R (n ∈ N) , where R denotes the real field and
pn (x) = xn for all x = (xk) ∈ X and every n ∈ N. A BK space is a normed FK space,
that is, a BK space is a Banach space with continuous coordinates. The sequence spaces
�∞, c, c0 are BK spaces with ‖x‖�∞ = supk |xk| . Further, the space �p is a BK space

with the usual norm defined by ‖x‖�p
= (∑∞

k=0 |xk|p)1/p , where 1 � p < ∞.

A sequence (b(n))∞
n=0 in a linear metric space X is called Schauder basis if for

every x ∈ X there is a unique sequence (αn) of scalars such that x = ∑∞
k=0 αnb(n).

Let SX denote the unit sphere in a normed linear space X , that is, SX = {x ∈ X :
‖x‖ = 1} . Let X and Y be Banach spaces then B(X ,Y ) of all bounded linear op-
erators from X to Y is a Banach space with the operator norm defined by ‖L‖ =
sup{‖L(x)‖ : ‖x‖ � 1} for all L ∈ B(X ,Y ) .

If (X ,‖.‖) is a normed sequence space, then we write

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞

∑
k=0

akxk

∣∣∣∣∣ , (3)

for a = (ak) ∈ ω provided the expression on the right side exists and is finite which is
the case whenever X is a BK space and a ∈ Xβ , where

Xβ = {a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x = (xk) ∈ X}
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is the β -dual of X .

By MX we denote the collection of all bounded subsets of a metric space (X ,d) .
If Q ∈ MX , then the Hausdorff measure of noncompactness of the set Q, denoted by
χ (Q) , is defined by

χ (Q) := inf

{
ε > 0 : Q ⊂ n∪

i=1
B(xi,ri) , xi ∈ X , ri < ε (i = 1,2, ...,n) , n ∈ N\{0}

}
.

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompactness.
The basic properties of the Hausdorff measure of noncompactness can be found in

[16].
Let X and Y be Banach spaces. Then, a linear operator L : X → Y is said to be

compact if the domain of L is all of X and L(Q) is a totally bounded subset of Y for
every Q ∈ MX . Equivalently, we say that L is compact if its domain is all of X and for
every bounded sequence (xn) in X , the sequence (Lxn) has a convergent subsequence
in Y.

3. The weighted Euler sequence spaces eθ
w,0 , eθ

w,c and eθ
w,∞

Recently, Demiriz and Çakan [9] have introduced the Euler sequence space er(u, p)
as follows:

er(u, p) =

{
x = (xk) ∈ ω :

∞

∑
n=0

∣∣∣∣∣
n

∑
k=0

(
n
k

)
(1− r)n−krkukxk

∣∣∣∣∣
pn

< ∞

}
(0 < r < 1),

where u = (uk) is a arbitrary sequence and p = (pk) is a bounded sequence of strictly
positive real numbers. It is obvious that er(u, p) space is a generalization of the Euler
spaces er(p) and er

p defined by Kara et al. [12] and Altay et al. [3], respectively.
Quite recently, Lashkaripour and Talebi [14] have defined the Euler weighted se-

quence space eθ
w,p as below:

eθ
w,p =

{
x = (xk) ∈ ω :

∞

∑
n=0

wn

∣∣∣∣∣
n

∑
k=0

(
n
k

)
(1−θ )n−kθ kxk

∣∣∣∣∣
p

< ∞

}
,

where 0 < p < 1, 0 < θ � 1 and w = (wn) is a decreasing non-negative sequence of
real numbers.

Now, following Demiriz and Çakan [9] and Lashkaripour and Talebi [14], we in-
troduce the Euler weighted sequence spaces eθ

w,0 , eθ
w,c and eθ

w,∞ as follows:

eθ
w,0 =

{
x = (xk) ∈ ω : lim

n→∞

(
wn

n

∑
k=0

(
n
k

)
(1−θ )n−kθ kxk

)
= 0

}
,

eθ
w,c =

{
x = (xk) ∈ ω : ∃l ∈ R such that x− le ∈ eθ

w,0

}
.
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and

eθ
w,∞ =

{
x = (xk) ∈ ω : sup

n

∣∣∣∣∣wn

n

∑
k=0

(
n
k

)
(1−θ )n−kθ kxk

∣∣∣∣∣< ∞

}
,

where 0 < θ < 1 and wn 	= 0 for all n ∈ N and x− le = (xk − l)k∈N .
With the notation of (2), we can redefine the spaces eθ

w,0 , eθ
w,c and eθ

w,∞ by

eθ
w,0 = (c0)Eθ ,w , eθ

w,c = (c)Eθ ,w and eθ
w,∞ = (�∞)Eθ ,w , (4)

where Eθ ,w = (eθ ,w
nk ) denotes the weighted Euler matrix, i.e,

eθ ,w
nk =

{
wn
(n
k

)
(1−θ )n−kθ k, 0 � k � n

0, k > n

for all k,n ∈ N.
For any sequence x = (xk) , we define the sequence y = (yk) , which will be fre-

quently used, as the Eθ ,w -transform of x , i.e., y = Eθ ,wx (the associated sequence) and
so we have that

yk = wk

k

∑
j=0

(
k
j

)
(1−θ )k− jθ jx j (k ∈ N). (5)

The following theorem is essential in the sequel.

THEOREM 1. Let λ be any of the sequence spaces eθ
w,0 , eθ

w,c or eθ
w,∞ . Then, λ is

a BK-space with the norm ‖x‖λ =
∥∥Eθ ,wx

∥∥
�∞

, that is

‖x‖λ = sup
n

∣∣∣(Eθ ,wx)n

∣∣∣ . (6)

Proof. Since (4) holds and c0 , c and �∞ are BK -spaces with respect to their
natural norms and the matrix Eθ ,w is a triangle, Theorem 4.3.2 of Wilansky [34, p.63]
gives the fact that any λ ∈ {eθ

w,0,e
θ
w,c,e

θ
w,∞} is a BK -space with the given norm (6).

This completes the proof. �

REMARK 1. Let λ be any of the sequence spaces eθ
w,0 , eθ

w,c or eθ
w,∞. Then, one

can easily check that λ is not of absolute type, i.e. we have ‖x‖λ 	= ‖|x|‖λ with |x| =
(|xk|) for at least one sequence x = (xk) ∈ λ .

THEOREM 2. The sequence spaces eθ
w,0 , eθ

w,c and eθ
w,∞ of non-absolute type are

linearly isomorphic to the spaces c0 , c and �∞ , respectively, that is eθ
w,0

∼= c0, eθ
w,c

∼= c

and eθ
w,∞

∼= �∞.

Proof. We give the proof only for the space eθ
w,0 since the proofs for other spaces

are similar. It is clear, from the definition of Eθ ,w , that the map x→ y = Eθ ,wx is linear
and injective.
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Furthermore, let y = (yk) ∈ c0 and define the sequence x = (xk) by

xk =
k

∑
j=0

(
k
j

)
1
wj

(θ −1)k− jθ−ky j (k ∈ N). (7)

Then we have that

(Eθ ,wx)n = wn

n

∑
k=0

(
n
k

)
(1−θ )n−kθ k

(
k

∑
j=0

(
k
j

)
1
wj

(θ −1)k− jθ−ky j

)
= yn

This shows that Eθ ,wx = y ∈ c0. Thus, we deduce that x ∈ eθ
w,0 and that Eθ ,w is surjec-

tive.
Moreover, we have for every x ∈ eθ

w,0 that

‖y‖�∞ =
∥∥∥Eθ ,wx

∥∥∥
�∞

= ‖x‖eθ
w,0

which means that Eθ ,w is norm preserving. Consequently, Eθ ,w is a linear bijection
which shows that the spaces eθ

w,0 and c0 are linearly isomorphic and this concludes the
proof. �

THEOREM 3. The inclusions c0 ⊂ eθ
w,0 , c ⊂ eθ

w,c and �∞ ⊂ eθ
w,∞ strictly hold.

Proof. This theorem can be proved similarly as the appropriate theorems for spaces
eθ
0 ,eθ

c and eθ
∞ in [2] or [3]. �

THEOREM 4. Define the sequences b(k) = (b(k)
n )n∈N and b(−1) = (b(−1)

n ) by

b(k)
n =

{
0, 0 � n < k(n

k

)
1
wk

(θ −1)n−kθ−n, n � k

and

b(−1)
n =

n

∑
j=0

(
n
j

)
1
wj

(θ −1)n− jθ−n (n ∈ N).

Then:
(a) The sequence (b(k))∞

k=0 is a basis for the space eθ
w,0 and every x ∈ eθ

w,0 has a
unique representation of the form

x = ∑
k

(Eθ ,wx)kb
(k).

(b) (b(k))∞
k=−1 is a Schauder basis for eθ

w,c and every x ∈ eθ
w,c has a unique repre-

sentation of the form
x = lb(−1) +∑

k

[(Eθ ,wxk − l]b(k),

where l = limk→∞(Eθ ,wx)k .

Proof. This is an immediate consequence of [10, Lemma 2.3]. �
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4. Certain matrix transformations on the spaces eθ
w,0 , eθ

w,c and eθ
w,∞

In this section we determine the β -dual of the spaces eθ
w,0 , eθ

w,c and eθ
w,∞ and

characterize various matrix mappings on these spaces.
The following lemma is essential for our results.

LEMMA 1. [33] A = (ank) ∈ (c0,c) if and only if there exists

lim
n→∞

ank = αk (k ∈ N) (8)

and

sup
n∈N

∞

∑
k=0

|ank| < ∞. (9)

THEOREM 5. Consider the sets d1, d2 , d3 and d4 defined as follows

d1 =

{
a = (ak) ∈ ω : sup

m∈N

m

∑
k=0

∣∣∣∣∣ 1
wk

m

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j

∣∣∣∣∣< ∞

}
,

d2 =

{
a = (ak) ∈ ω :

1
wk

∞

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j exists for each k ∈ N

}
,

d3 =

{
a = (ak) ∈ ω : lim

m→∞

m

∑
k=0

(
1
wk

m

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j

)
exists

}

and

d4 =

{
a = (ak) ∈ ω : lim

m→∞

m

∑
k=0

∣∣∣∣∣ 1
wk

m

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j

∣∣∣∣∣
=

∞

∑
k=0

∣∣∣∣∣ 1
wk

∞

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j

∣∣∣∣∣
}

.

Then
{

eθ
w,0

}β
= d1∩d2 ,

{
eθ
w,c

}β = d1∩d2∩d3 and
{
eθ
w,∞
}β = d2∩d4 .

Proof. We only give a proof for the space eθ
w,0 . Let a = (ak) ∈ ω . Recalling the

identity (7) we have

m

∑
k=0

akxk =
m

∑
k=0

ak

[
k

∑
j=0

(
k
j

)
1
wj

(θ −1)k− jθ−ky j

]

=
m

∑
k=0

[
1
wk

m

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j

]
yk =

m

∑
k=0

ãk (m)yk, (10)
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where

ãk (m) =
1
wk

m

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j.

Then one can define a new matrix A = (amk) by

amk =
{

ãk (m) , 0 � k � m
0, k > m

(k,m ∈ N)

so that
m

∑
k=0

akxk =
m

∑
k=0

ãk (m)yk =
m

∑
k=0

amkyk = (Ay)m.

From the last identity we see that (akxk) ∈ cs for x = (xk) ∈ eθ
w,o if and only if Ay ∈ c

for y ∈ c0. Therefore, using the relations (8) and (9) from Lemma 1, we conclude that

1
wk

∞

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j exists for each k ∈ N

and

sup
m∈N

m

∑
k=0

∣∣∣∣∣ 1
wk

m

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j

∣∣∣∣∣< ∞,

which shows that
{

eθ
w,0

}β
= d1∩d2 . �

For an infinite matrix, A = (ank) , we shall write for brevity that

ãnk (m) =
1
wk

m

∑
j=k

(
j
k

)
(θ −1) j−kθ− jan j

and

ãnk =
1
wk

∞

∑
j=k

(
j
k

)
(θ −1) j−kθ− jan j (11)

for all n , k∈N and all m � k provided that the series on the right hand to be convergent.
Then, A = (ãnk) is the so-called associated matrix. Further, let x,y ∈ ω be connected
by the relation (5) and (7). Then we have by (10) that

m

∑
k=0

ankxk =
m

∑
k=0

ãnk (m)yk (n, m ∈ N) . (12)

In particular, let x ∈ eθ
w,c and An = (ank)

∞
k=0 ∈

{
eθ
w,c

}β
for all n ∈ N. Then, we obtain,

by passing to limit in (12) as m → ∞ and using Theorem 5, that

∞

∑
k=0

ankxk =
∞

∑
k=0

ãnkyk (n ∈ N) ,
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which gives the equality

∞

∑
k=0

ankxk =
∞

∑
k=0

ãnk (yk − l)+ l
∞

∑
k=0

ãnk (n ∈ N) , (13)

where l = limk→∞ yk.
Now let F be the family of all finite subsets in N and consider the following

conditions;

sup
n

(
∞

∑
k=0

|ãnk|
)

< ∞, (14)

lim
m→∞

∞

∑
k=0

|ãnk (m)| =
∞

∑
k=0

|ãnk| (n ∈ N), (15)

ãnk exists for all k,n ∈ N, (16)

sup
m∈N

m

∑
k=0

|ãnk (m)| < ∞ (n ∈ N), (17)

lim
n→∞

ãnk = ãk (k ∈ N), (18)

lim
n→∞

∞

∑
k=0

|ãnk − ãk| = 0, (19)

lim
n→∞

∞

∑
k=0

ãnk = α, (20)

∞

∑
k=0

ãnk converges for all n ∈ N, (21)

lim
n→∞

∞

∑
k=0

|ãnk| = 0, (22)

lim
n→∞

ãnk = 0 for all k ∈ N, (23)

sup
K∈F

(
∞

∑
n=0

∣∣∣∣∣∑k∈K

ãnk

∣∣∣∣∣
p)

< ∞ (1 � p < ∞), (24)

lim
n→∞

∞

∑
k=0

ãnk = 0. (25)

Then, by using (13) and by combining Theorem 5 with the results of Stieglitz and
Tietz [33], we immediately derive the following results:

THEOREM 6. For an infinite matrix A we have:

(a) A ∈ (eθ
w,∞, �∞

)
if and only if (14), (15) and (16) hold.

(b) A ∈ (eθ
w,c, �∞

)
if and only if (14), (16) and (17) hold.

(c) A ∈
(
eθ
w,0, �∞

)
if and only if (14), (16) and (17) hold.
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THEOREM 7. For an infinite matrix A we have:

(a) A ∈ (eθ
w,∞,c

)
if and only if (15), (16), (18) and (19) hold.

(b) A ∈ (eθ
w,c,c

)
if and only if (14), (16), (17), (18) and (20) hold.

(c) A ∈
(
eθ
w,0,c

)
if and only if (14), (16), (17) and (18) hold.

THEOREM 8. For an infinite matrix A we have:

(a) A ∈ (eθ
w,∞,c0

)
if and only if (15), (16) and (22) hold.

(b) A ∈ (eθ
w,c,c0

)
if and only if (14), (16), (17), (23) and (25) hold.

(c) A ∈
(
eθ
w,0,c0

)
if and only if (14), (16), (17) and (23) hold.

THEOREM 9. Let 1 � p < ∞. Then, for an infinite matrix A we have:

(a) A ∈ (eθ
w,∞, �p

)
if and only if (15), (16) and (24) hold.

(b) A ∈ (eθ
w,c, �p

)
if and only if (16), (17), (21) and (24) hold.

(c) A ∈
(
eθ
w,0, �p

)
if and only if (16), (17) and (24) hold.

5. Compact operators on the weighted Euler sequence spaces eθ
w,0 , eθ

w,∞

In this section, we derive some identities for the Hausdorff measure of noncom-
pactness of certain matrix operators on the spaces of generalized means and apply our
results to obtain the necessary and sufficient (or only sufficient) conditions for such
operators to be compact.

Recent developments on this particular topic can be found in [5–8], [10], [11],
[15], [18], [20–28], [30]. Our consideration will go along the same lines.

We shall need the following known results for our investigation.

LEMMA 2. ([20], Lemma 3.1) Let X denotes any of the spaces c0 and �∞. If
A ∈ (X ,c) , then we have

αk = lim
n→∞

ank exists for every k ∈ N,

α = (αk) ∈ �1,

sup
n

(
∞

∑
k=0

|ank −αk|
)

< ∞,

lim
n→∞

(Ax)n =
∞

∑
k=0

αkxk exists for all x = (xk) ∈ X .

LEMMA 3. ([20], Lemma 1.1) Let X denotes any of the spaces c0, c or �∞ . Then,
we have Xβ = �1 and ‖a‖∗X = ‖a‖�1

for all a ∈ �1.
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LEMMA 4. ([34], Theorem 4.2.8) Let X and Y be BK -spaces. Then we have
(X ,Y ) ⊂ B(X ,Y ) , that is, every A ∈ (X ,Y ) defines a linear operator LA ∈ B(X ,Y ),
where LA(x) = Ax for all x ∈ X .

LEMMA 5. ([10], Lemma 5.2) Let X ⊃ φ be BK -space and Y be any of the spaces
c0, c or �∞ . If A ∈ (X ,Y ) , then

‖LA‖ = ‖A‖(X ,�∞) = sup
n
‖An‖∗X < ∞.

LEMMA 6. ([20], Lemma 1.5) Let Q ∈ Mc0 and Pr : c0 → c0 (r ∈ N) be the op-
erator defined by Pr(x) = (x0,x1, ...,xr,0,0, ...) for all x = (xk) ∈ c0. Then, we have

χ(Q) = lim
r→∞

(
sup
x∈Q

‖(I−Pr)(x)‖�∞

)
,

where I is the identity operator on c0.

Further, we know by [16, Theorem 1.10] that every z = (zn) ∈ c has a unique
representation z = ze+ ∑∞

n=0(zn − z)e(n) , where z = limn→∞ zn. Thus, we define the
projectors Pr : c → c (r ∈ N) by

Pr(z) = ze+
r

∑
n=0

(zn − z)e(n); (r ∈ N) (26)

for all z = (zn) ∈ c with z = limn→∞ zn. In this situation, the following result gives an
estimate for the Hausdorff measure of noncompactness in the BK space c.

LEMMA 7. ([20], Lemma 1.6) Let Q ∈Mc and Pr : c→ c (r ∈ N) be the projec-

tor onto the linear span of
{

e,e(0),e(1), ...,e(r)
}

. Then, we have

1
2
. lim
r→∞

(
sup
x∈Q

‖(I−Pr)(x)‖�∞

)
� χ(Q) � lim

r→∞

(
sup
x∈Q

‖(I−Pr)(x)‖�∞

)
,

where I is the identity operator on c.

The next lemma is related to the Hausdorff measure of noncompactness of a
bounded linear operator.

LEMMA 8. ([16], Theorem 2.25, Corollary 2.26) Let X and Y be Banach spaces
and L ∈ B(X ,Y ) . Then we have

‖L‖χ = χ(L(SX)) (27)

and
L ∈ K(X ,Y ) if and only if ‖L‖χ = 0. (28)
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The following results will be needed in establishing our results.

LEMMA 9. Let X denotes any of the spaces eθ
w,0 or eθ

w,∞. If a = (ak) ∈ Xβ then
ã = (ãk) ∈ �1 and the equality

∞

∑
k=0

akxk =
∞

∑
k=0

ãkyk (29)

holds for every x = (xk) ∈ X , where y = (yk) is the associated sequence defined by (5)
and

ãk =
1
wk

∞

∑
j=k

(
j
k

)
(θ −1) j−kθ− ja j (k ∈ N).

Proof. This follows directly from the definition of the associate sequence (10) and
[33]. �

LEMMA 10. Let X denotes any of the spaces eθ
w,0 or eθ

w,∞. Then, we have

‖a‖∗X = ‖ã‖�1
=

∞

∑
k=0

|ãk| < ∞

for all a = (ak) ∈ Xβ , where ã = (ãk) is as in Lemma 9.

Proof. Let Y be the respective one of the spaces c0 or �∞ and take any a = (ak) ∈
Xβ . Then, we have by Lemma 9 that ã = (ãk) ∈ �1 and the equality (29) holds for
all sequences x = (xk) ∈ X and y = (yk) ∈ Y which are connected by the relation (5).
Further, it follows by (6) that x ∈ SX if and only if y ∈ SY . Therefore, we derive from
(3) and (29) that

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞

∑
k=0

akxk

∣∣∣∣∣= sup
y∈SY

∣∣∣∣∣
∞

∑
k=0

ãkyk

∣∣∣∣∣= ‖ã‖∗Y

and since ã ∈ �1 , we obtain from Lemma 3 that

‖a‖∗X = ‖ã‖∗Y = ‖ã‖�1
< ∞

which concludes the proof. �

LEMMA 11. Let X be any of the spaces eθ
w,0 or eθ

w,∞, Y the respective one of
the spaces c0 or �∞, Z a sequence space and A = (ank) an infinite matrix. If A ∈
(X ,Z) , then Ã ∈ (Y,Z) such that Ax = Ãy for all sequences x ∈ X and y ∈ Y which
are connected by the relation (5), where Ã = (ãnk) is the associated matrix defined as
in (11).
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Proof. This is immediate by [20, Lemma 2.3]. �

Now, let A = (ank) be an infinite matrix and Ã = (ãnk) the associated matrix
defined by (11). Then, we have the following result.

THEOREM 10. Let X denotes any of the spaces eθ
w,0 or eθ

w,∞. Then, we have
(a) If A ∈ (X ,c0) , then

‖LA‖χ = limsup
n→∞

∞

∑
k=0

|ãnk| . (30)

(b) If A ∈ (X ,c), then

1
2
.limsup

n→∞

∞

∑
k=0

|ãnk − ãk| � ‖LA‖χ � limsup
n→∞

∞

∑
k=0

|ãnk − ãk| , (31)

where ãk is defined as in (18) for all k ∈ N.
(c) If A ∈ (X , �∞), then

0 � ‖LA‖χ � limsup
n→∞

∞

∑
k=0

|ãnk| . (32)

Proof. Let us remark that the limes superiors in (30) and (32) are finite by The-
orems 8 and 6. Also, by combining Lemmas 2 and 11, we deduce the same for limes
superiors in (31).

We write S = SX for short. Then, we obtain by (27) and Lemma 4 that

‖LA‖χ = χ(AS). (33)

For (a) we have AS ∈ Mc0 . Thus, it follows by applying Lemma 6 that

χ(AS) = lim
r→∞

(
sup
x∈S

‖(I−Pr)(Ax)‖�∞

)
, (34)

where Pr : c0 → c0 (r ∈ N) is the operator defined by Pr(x) = (x0,x1, ...,xr,0,0, ...) for
all x = (xk) ∈ c0. This yields that ‖(I−Pr)(Ax)‖�∞

= supn>r |(Ax)n| for all x ∈ X and
every r ∈ N. Therefore, by using (14) and Lemma 10, we have for every r ∈ N that

sup
x∈S

‖(I−Pr)(Ax)‖�∞
= sup

n>r
‖An‖∗X = sup

n>r

∥∥Ãn
∥∥

�1
.

This and (34) imply that

χ(AS) = lim
r→∞

(
sup
n>r

∥∥Ãn
∥∥

�1

)
= limsup

n→∞

∥∥Ãn
∥∥

�1
.

Hence, we obtain (30).
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To prove (b), we have AS ∈ Mc . Thus, we are going to apply Lemma 7 to get an
estimate for the value of χ(AS) in (33). For this, let Pr : c→ c (r ∈N) be the projectors
defined by (26). Then, we have for every r ∈ N that (I−Pr)(z) = ∑∞

n=r+1(zn − z)e(n)

and hence,
‖(I−Pr)(z)‖�∞

= sup
n>r

|zn− z | (35)

for all z = (zn) ∈ c and every r ∈ N, where z = limn→∞ zn and I is identity operator
on c .

Now, by using (33) and applying Lemma 7 we obtain

1
2
. lim
r→∞

(
sup
x∈S

‖(I−Pr)(Ax)‖�∞

)
� ‖LA‖χ � lim

r→∞

(
sup
x∈S

‖(I−Pr)(Ax)‖�∞

)
. (36)

On the other hand, for X equal to eθ
w,0 or eθ

w,∞ let Y be c0 or �∞ , respectively. Also,
for every given x ∈ X , let y ∈ Y be the associated sequence defined by (5). Since,
A ∈ (X ,c) , we have by Lemma 11 that Ã ∈ (Y,c) and Ax = Ãy . Further, it follows
from Lemma 2 that the limits α̃k = limn→∞ ãnk exists for all k , (ãk) ∈ �1 = Y β and
limn→∞(Ãy)n = ∑∞

k=0 α̃kyk. Consequently, we derive from (35) that

‖(I−Pr)(Ax)‖�∞
=
∥∥(I−Pr)(Ãy)

∥∥
�∞

= sup
n>r

∣∣∣∣∣(Ãy)n−
∞

∑
k=0

α̃kyk

∣∣∣∣∣
= sup

n>r

∣∣∣∣∣
∞

∑
k=0

(ãnk − α̃k)yk

∣∣∣∣∣
for all r ∈ N. Moreover, since x ∈ S = SX if and only if y ∈ SY we obtain by (3) and
Lemma 3 that

‖(I−Pr)(Ax)‖�∞
= sup

n>r

(
sup
y∈SY

∣∣∣∣∣
∞

∑
k=0

(ãnk − α̃k)yk

∣∣∣∣∣
)

= sup
n>r

∥∥Ãn− α̃
∥∥∗

Y

= sup
n>r

∥∥Ãn− α̃
∥∥

�1

for all r ∈ N. Thus, we get (31) from (36).
Finally, to prove (c) we define the projectors Pr : �∞ → �∞ (r ∈ N) as in the proof

of part (a) for all x = (xk) ∈ �∞ . Then, we have

AS ⊂ Pr(AS)+ (I−Pr)(AS); (r ∈ N).

Thus, it follows by the elementary properties of the function χ that

0 � χ(AS) � χ(Pr(AS))+ χ((I−Pr)(AS))
= χ((I−Pr)(AS)) � sup

x∈S
‖(I−Pr)(Ax)‖�∞

= sup
n>r

∥∥Ãn
∥∥

�1
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for all r ∈ N and hence,

0 � χ(AS) � lim
r→∞

(
sup
n>r

∥∥Ãn
∥∥

�1

)
= limsup

r→∞

∥∥Ãn
∥∥

�1
.

This and (33) together imply (32) and complete the proof. �

COROLLARY 1. Let X denotes any of the spaces eθ
w,0 or eθ

w,∞. Then, we have
(a) If A ∈ (X ,c0) , then

LA is compact if and only if lim
n→∞

∞

∑
k=0

|ãnk| = 0.

(b) If A ∈ (X ,c), then

LA is compact if and only if lim
n→∞

∞

∑
k=0

|ãnk − α̃k| = 0.

(c) If A ∈ (X , �∞), then

LA is compact if lim
n→∞

∞

∑
k=0

|ãnk| = 0.

Proof. This result follows from Theorem 10 by using (28). �
Finally, we have the following observation.

COROLLARY 2. For every matrix A∈ (eθ
w,∞,c0) or A∈ (eθ

w,∞,c) , the operator LA

is compact.

Proof. Let A∈ (eθ
w,∞,c0) . Then we have by Theorem8 (a) that limn→∞ (∑∞

k=0 |ãnk|)
= 0. This leads us with Corollary 1(a) to the consequence that LA is compact. Similarly,
if A ∈ (eθ

w,∞,c) then, from Theorem 7(a), we have that limn→∞ (∑∞
k=0 |ãnk − α̃k|) = 0,

where α̃k = limn→∞ ãnk for all k . Hence, we deduce from Corollary 1(b) that LA is
compact. �
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