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ON (k,h;m)–CONVEX MAPPINGS AND APPLICATIONS

MAREK NIEZGODA

(Communicated by J. Pečarić)

Abstract. In this paper, for given positive integer m and real functions k and h , we prove

(k,h;m) -convexity of the mapping p→ φ(p) f
(

Φ(p)
φ (p)

)
with a convex (increasing) function f and

a (k,h;m) -convex mapping Φ and a positive (k,h;m) -concave mapping φ . As application, we
establish a subadditivity result for completely monotone and Bernstein functions. We also show

monotonity of the mappings p → Φ(p)
φ (p) and p → f

(
Φ(p)
φ (p)

)
with respect to a group majorization

combined with other preorders.

1. Introduction

A nonempty subset A of a real linear space V is called additive if x,y ∈ A
implies x+y∈ A .

A mapping F : A → R defined on an additive set A ⊂ V is said to be

(i) additive if
F(p+q) = F(p)+F(q) for p,q ∈ A ,

(ii) subadditive if
F(p+q) � F(p)+F(q) for p,q ∈ A ,

(iii) superadditive if

F(p+q) � F(p)+F(q) for p,q ∈ A .

For a function f : I → R , where I ⊂ R is an interval, x = (x1,x2, . . . ,xn) ∈ In and
p ∈ P0

n , where

P0
n = {p = (p1, p2, . . . , pn) : pi � 0, Pn > 0} with Pn =

n

∑
i=1

pi,
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the Jensen functional is defined by

J( f ,x,p) =
n

∑
i=1

pi f (xi)−Pn f

(
1
Pn

n

∑
i=1

pixi

)
(1)

(see [6]).
With the help of the standard inner product 〈·, ·〉 of R

n , equation (1) can be rewrit-
ten in the form

J( f ,x,p) = 〈p, f (x)〉− 〈p,e〉 f
( 〈p,x〉
〈p,e〉

)
, (2)

where f (x) = ( f (x1), f (x2), . . . , f (xn)) and e = (1,1, . . . ,1) ∈ R
n .

By Jensen’s inequality,

J( f ,x,p) � 0 for a convex function f .

THEOREM A. [6] If f : I → R is a convex function then the mapping p →
J( f ,x,p) is superadditive for any x ∈ In , i.e.,

J( f ,x,p+q) � J( f ,x,p)+ J( f ,x,q) for p,q ∈ P0
n . (3)

In consequence, the mapping p → J( f ,x,p) is monotone for any x ∈ In , i.e.,

J( f ,x,p+q) � J( f ,x,p) for p,q ∈ P0
n .

A result related to Theorem A is proved in [9, Theorem 1] which shows superaddi-
tivity and monotonicity properties of the so-called Jessen functional regarding positive
isotonic functionals.

It is not hard to check that property (3) is equivalent to the subadditivity of the
mapping

p → 〈p,e〉 f
( 〈p,x〉
〈p,e〉

)
, p ∈ P0

n .

That is, the convexity of f implies that

〈p+q,e〉 f
( 〈p+q,x〉
〈p+q,e〉

)
� 〈p,e〉 f

( 〈p,x〉
〈p,e〉

)
+ 〈q,e〉 f

( 〈q,x〉
〈q,e〉

)
for p,q ∈ P0

n . (4)

Let f : [a,b]→ R be a function and x = (x1,x2, . . . ,xn) ∈ [a,b]n , where [a,b]⊂ R

is an interval. Assume p = (p1, p2, . . . , pn) ∈ P0
n . The Jensen-Mercer functional is

defined by

M( f ,x,p) = Pn[ f (a)+ f (b)]−
n

∑
i=1

pi f (xi)−Pn f

(
a+b− 1

Pn

n

∑
i=1

pixi

)

(see [8]). Equivalently,

M( f ,x,p) = [ f (a)+ f (b)]〈p,e〉− 〈p, f (x)〉− 〈p,e〉 f
(

(a+b)〈p,e〉− 〈p,x〉
〈p,e〉

)
, (5)
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where f (x) = ( f (x1), f (x2), . . . , f (xn)) and e = (1,1, . . . ,1) ∈ R
n .

By Mercer’s inequality,

M( f ,x,p) � 0 for a convex function f .

THEOREM B. [8] If f : I → R is a convex function then the mapping p →
M( f ,x,p) is superadditive for any x ∈ In , i.e.,

M( f ,x,p+q) � M( f ,x,p)+M( f ,x,q) for p,q ∈ P0
n . (6)

In consequence, the mapping p → M( f ,x,p) is monotone for any x ∈ In , i.e.,

M( f ,x,p+q) � M( f ,x,p) for p,q ∈ P0
n .

Notice that property (6) is equivalent to the subadditivity of the mapping

p → 〈p,e〉 f
( 〈p,y〉
〈p,e〉

)
, p ∈ P0

n ,

where y = (a+b)e−x .
That is, the convexity of f implies that

〈p+q,e〉 f
( 〈p+q,y〉
〈p+q,e〉

)
� 〈p,e〉 f

( 〈p,y〉
〈p,e〉

)
+ 〈q,e〉 f

( 〈q,y〉
〈q,e〉

)
for p,q ∈ P0

n .

(7)
Remind that a nonempty set D in a real linear space V is said to be a convex cone

if (i) x,y ∈ D implies x+y∈ D , and (ii) x ∈ D and t � 0 imply t x ∈ D .
A relation ≺ on a real linear space V is said to be a cone preorder if there exists

a convex cone D ⊂ V such that for x,y ∈ V , x ≺ y if and only if y−x∈ D .
In what follows, for a function φ : D → [0,∞) we denote

D0
φ = {d ∈ D : φ(d) > 0}.

A general result related to (4) and (7) is as follows.

THEOREM C. [3, Theorem 5] Let D be a convex cone in a linear space V and
φ : D → [0,∞) be an additive functional on D and Φ : D → [0,∞) be a subadditive
functional on D .

If f : [0,∞) → R is an increasing convex function, then the mapping

p → φ(p) f

(
Φ(p)
φ(p)

)

is subadditive on D0
φ , i.e.,

φ(p+q) f

(
Φ(p+q)
φ(p+q)

)
� φ(p) f

(
Φ(p)
φ(p)

)
+ φ(q) f

(
Φ(q)
φ(q)

)
for p,q ∈ D0

φ .

Recently, sub- and superadditive functions are a research field of growing interest
[3, 4, 5, 10, 11]. In [14], the author have extended Theorem C to sub-/superadditive
vector-valued mappings Φ and φ , respectively. The aim of the present paper is give
a further generalization of Theorem C for (k,h;m)-convex mapping Φ and positive
(k,h;m)-concave mapping φ . As applications, we interpret the obtained results for
completely monotone and Bernstein functions and utilize them in majorization theory.
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2. (k,h;m)-convex/concave mappings

We begin with some relevant notation and terminology.
Throughout the paper, V and W are real linear spaces.
A relation ≺ on a set S is called a preorder if (i) x≺ x for x∈S , and (ii) x≺ y

and y ≺ z imply x ≺ z for x,y,z ∈ S .
Given two preorders ≺1 and ≺2 on A , and vectors x,y ∈ A , we write

x ≺1,2 y if and only if x ≺1 z ≺2 y for some z ∈ A . (8)

If (A ,≺1) and (B,≺) are preordered sets, then a mapping F : A → B is said
to be (≺1,≺)-increasing on A , if for x,y ∈ A ,

x ≺1 y implies F(x) ≺ F(y).

When (B,≺) = (R,�) we write ≺1 -increasing instead of (≺1,�)-increasing for
brevity.

It is clear that if (A ,≺1) , (A ,≺2) and (B,≺) are preordered sets, and a map-
ping F : A → B is both (≺1,≺)-increasing and (≺2,≺)-increasing, then for x,y ∈
A ,

x ≺1,2 y implies F(x) ≺ F(y).

For x,y ∈ W , we write

x ≺K y if and only if αx = y for some α ∈ [1,∞) . (9)

(see [7, p. 121]). So, for x,y ∈ W ,

x ≺K,1 y if and only if x ≺K z ≺1 y for some z ∈ W (10)

(see e.g. (15)).
A preorder ≺1 on W is said to be preserved under multiplying by positive scalars

if for x,y ∈ W ,
x ≺1 y implies λx ≺1 λy for λ ∈ (0,∞) .

DEFINITION 1. (Cf. [13, Def. 2.1]) Let k : (0,1) → R be a given function and
m � 2 be a given positive integer. Then a set D ⊂ V is said to be (k;m)-convex if
k(t1)p1 + . . .+k(tm)pm ∈D for all p1, . . . ,pm ∈D and t1, . . . ,tm ∈ (0,1) with t1 + . . .+
tm = 1.

DEFINITION 2. (Cf. [13, Def. 2.4], [2, p. 254]) Let k,h : (0,1)→R be two given
functions and m � 2 be a given positive integer. A function F : D → R defined on a
(k;m)-convex set D ⊂ V is said to be (k,h;m)-convex (resp. (k,h;m)-concave) if for
all p1, . . . ,pm ∈ D and t1, . . . ,tm ∈ (0,1) with t1 + . . .+ tm = 1,

F(k(t1)p1 + . . .+ k(tm)pm) � (�) h(t1)F(p1)+ . . .+h(tm)F(pm). (11)

If equality holds in (11) then F is called (k,h;m)-affine.
In particular, in (11), if k(t) = t and h(t) = ts , t ∈ (0,1) and s ∈ R , then F is said

to be s-convex (resp. s-concave).
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See [13] for an interesting discussion on some important classes of functions in-
cluded in the class of (k,h;m)-convex functions for m = 2.

It is not difficult to prove by induction on m that if k and h are positive and
multiplicative than (k,h;m)-convexity with m = 2 is equivalent to (k,h;m)-convexity
for all positive integers m � 2.

DEFINITION 3. (Cf. [13, Def. 2.4]) Let k,h : (0,1) → R be two given functions
and m � 2 be a given positive integer. Let the linear space W be equipp with a pre-
order ≺1 . A function F : D → W defined on a (k;m)-convex set D ⊂ V is said
to be (k,h;m,≺1)-convex (resp. (k,h;m,≺1)-concave) if for all p1, . . . ,pm ∈ D and
t1, . . . ,tm ∈ (0,1) with t1 + . . .+ tm = 1,

F(k(t1)p1 + . . .+ k(tm)pm) ≺1 (�1) h(t1)F(p1)+ . . .+h(tm)F(pm). (12)

If equality holds in (12) then F is called (k,h;m)-affine.
In particular, in (12), if k(t) = t and h(t) = ts , t ∈ (0,1) and s ∈ R , then F is said

to be (s,≺1)-convex (resp. (s,≺1)-concave).

When m = 2, we adopt simpler prefix symbols by dropping m off, e.g., (k,h;≺1)
instead of (k,h;m,≺1) .

Note that if D ⊂ V is a (k;m)-convex set and a functional φ : D → [0,∞) is
(k,h;m)-concave on D with h(·) > 0 on (0,1) , then the set

D0
φ = {d ∈ D : φ(d) > 0}

is (k;m)-convex.
Proofs of the next results will be simplified if we first prove a technical lemma.

LEMMA 2.1. Let k : (0,1)→R and h : (0,1)→ (0,∞) be two given functions and
m � 2 be a given positive integer. Let Φ : D → W and φ : D → [0,∞) with a (k;m)-
convex set D ⊂ V . Assume that ≺1 is a preorder on W preserved under multiplying
by positive scalars.

Let p1,p2, . . . ,pm ∈ D0
φ and t1,t2, . . . ,tm > 0 with t1 + t2 + . . .+ tm = 1 . Denote

αi =
h(ti)φ(pi)

h(t1)φ(p1)+ . . .+h(tm)φ(pm)
for i = 1,2, . . . ,m .

Then the following three statements hold.

(i) If Φ is (k,h;m)-affine and φ is (k,h;m)-affine then

Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

= α1
Φ(p1)
φ(p1)

+ . . .+ αm
Φ(pm)
φ(pm)

. (13)

(ii) If Φ is (k,h;m,≺1)-convex and φ is (k,h;m)-affine then

Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

≺1 α1
Φ(p1)
φ(p1)

+ . . .+ αm
Φ(pm)
φ(pm)

. (14)
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(iii) If Φ is (k,h;m,≺1)-convex and φ is (k,h;m)-concave, then

Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

≺K β
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

≺1 α1
Φ(p1)
φ(p1)

+ . . .+ αm
Φ(pm)
φ(pm)

, (15)

where

β =
φ(k(t1)p1 + . . .+ k(tm)pm)

h(t1)φ(p1)+ . . .+h(tm)φ(pm)
. (16)

Proof. (i). Since Φ and φ are (k,h;m)-affine, we have

Φ(k(t1)p1 + . . .+ k(tm)pm) = h(t1)Φ(p1)+ . . .+h(tm)Φ(pm),

φ(k(t1)p1 + . . .+ k(tm)pm) = h(t1)φ(p1)+ . . .+h(tm)φ(pm).

Now, it is routine to verify that identity (13) holds.
(ii). In this case, we have

Φ(k(t1)p1 + . . .+ k(tm)pm) ≺1 h(t1)Φ(p1)+ . . .+h(tm)Φ(pm),

φ(k(t1)p1 + . . .+ k(tm)pm) = h(t1)φ(p1)+ . . .+h(tm)φ(pm).

Since φ takes positive values on D0
φ and ≺1 is preserved under multiplying by positive

scalars, we obtain

Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

≺1
h(t1)Φ(p1)+ . . .+h(tm)Φ(pm)
h(t1)φ(p1)+ . . .+h(tm)φ(pm)

= α1
Φ(p1)
φ(p1)

+ . . .+ αm
Φ(pm)
φ(pm)

,

which ends the proof of inequality (14).
(iii). From the (k,h;m,≺1)-convexity of Φ and (k,h;m)-concavity of φ , we have

Φ(k(t1)p1 + . . .+ k(tm)pm) ≺1 h(t1)Φ(p1)+ . . .+h(tm)Φ(pm),

φ(k(t1)p1 + . . .+ k(tm)pm) � h(t1)φ(p1)+ . . .+h(tm)φ(pm).

Therefore, by taking β defined by (16), we get β � 1.
For this reason, by (9), we conclude that

Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

≺K β
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

=
Φ(k(t1)p1 + . . .+ k(tm)pm)

h(t1)φ(p1)+ . . .+h(tm)φ(pm)

≺1
h(t1)Φ(p1)+ . . .+h(tm)Φ(pm)
h(t1)φ(p1)+ . . .+h(tm)φ(pm)

= α1
Φ(p1)
φ(p1)

+ . . .+ αm
Φ(pm)
φ(pm)

.
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Summarizing all of this, we see that (15) holds. �

In the forthcoming theorem we aim to extend Theorem C (see Section 1) and [14,
Theorem 2.3] from sub-/superadditive functions to (k,h;m)-convex/(k,h;m)-concave
mappings, respectively.

THEOREM 2.2. Let k : (0,1) → R and h : (0,1) → (0,∞) be two given functions
and m � 2 be a given positive integer. Let Φ : D → W and φ : D → [0,∞) with
a (k;m)-convex set D ⊂ V . Assume that ≺1 is a preorder on W preserved under
multiplying by positive scalars. Let f : W → R be a convex function.

Then the following three statements hold.

(i) If Φ is (k,h;m)-affine and φ is (k,h;m)-affine then the mapping

p → φ(p) f

(
Φ(p)
φ(p)

)
, p ∈ D0

φ ,

is (k,h;m)-convex, i.e., for p1,p2, . . . ,pm ∈ D0
φ and t1,t2, . . . ,tm > 0 with t1 +

t2 + . . .+ tm = 1 ,

φ(k(t1)p1 + . . .+ k(tm)pm) f

(
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

)

� h(t1)φ(p1) f

(
Φ(p1)
φ(p1)

)
+ . . .+h(tm)φ(pm) f

(
Φ(pm)
φ(pm)

)
. (17)

(ii) If Φ is (k,h;m,≺1)-convex and φ is (k,h;m)-affine and f is ≺1 -increasing,
then (17) holds.

(iii) If Φ is (k,h;m,≺1)-convex and φ is (k,h;m)-concave and f is ≺1 -increasing
with f (0) � 0 , then (17) holds.

Proof. (i). Using the convexity of f and eq. (13) in Lemma 2.1, it is easy to obtain
the following inequality:

f

(
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

)

� h(t1)φ(p1)
h(t1)φ(p1)+ . . .+h(tm)φ(pm)

f

(
Φ(p1)
φ(p1)

)
+ . . . (18)

+
h(tm)φ(pm)

h(t1)φ(p1)+ . . .+h(tm)φ(pm)
f

(
Φ(pm)
φ(pm)

)
.

Multiplying both the sides of (18) by

φ(k(t1)p1 + . . .+ k(tm)pm) = h(t1)φ(p1)+ . . .+h(tm)φ(pm) > 0

yields (17).
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(ii). Similarly as in the proof of (i), we employ eq. (14) in Lemma 2.1 and use the
≺1 -increasity and convexity of f , which gives (18) and (17).

(iii). From Lemma 2.1, eq. (15), we have

β
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

≺1 α1
Φ(p1)
φ(p1)

+ . . .+ αm
Φ(pm)
φ(pm)

,

where β is defined by (16). Hence, by the ≺1 -increasity and convexity of f , we derive

f

(
β

Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

)
� α1 f

(
Φ(p1)
φ(p1)

)
+ . . .+ αm f

(
Φ(pm)
φ(pm)

)
. (19)

Since φ is (k,h;m)-concave, we have β � 1 (see (16)). Simultaneously, f (0) � 0, so
we infer that

β f

(
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

)
� f

(
β

Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

)
. (20)

Combining (20) and (19) yields

β f

(
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

)
� α1 f

(
Φ(p1)
φ(p1)

)
+ . . .+ αm f

(
Φ(pm)
φ(pm)

)
.

Now, in order to get (17), it suffices to multiply the above inequality by h(t1)φ(p1)+
. . .+h(tm)φ(pm) > 0. This completes the proof. �

REMARK 2.3. In the case

(W ,≺1) = (R,�) and k(t) = 1, h(t) = 1, t ∈ (0,1) ,

Theorem 2.2 reduces to Theorem C (see Section 1).

REMARK 2.4. In Theorem 2.2, part (iii), if the condition f (0) � 0 is replaced by
” f is ≺K -increasing”, then (17) becomes

(h(t1)φ(p1)+ . . .+h(tm)φ(pm)) f

(
Φ(k(t1)p1 + . . .+ k(tm)pm)
φ(k(t1)p1 + . . .+ k(tm)pm)

)

� h(t1)φ(p1) f

(
Φ(p1)
φ(p1)

)
+ . . .+h(tm)φ(pm) f

(
Φ(pm)
φ(pm)

)
.

COROLLARY 2.5. Under assumptions of Theorem 2.2, if in addition p → L(p) ∈
R , p ∈ D , is a (k,h;m)-affine mapping on D , then the mapping

p → L(p)−φ(p) f

(
Φ(p)
φ(p)

)
, p ∈ D0

φ , (21)

is (k,h;m)-concave.
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REMARK 2.6. In Corollary 2.5, the (k,h;m)-concavity of the mapping (21) cor-
responds to the superadditivity of the Jensen functional (2) (see Theorem A) and of the
Jensen-Mercer functional (5) (see Theorem B).

We now give a specification of Theorem 2.2, part (iii), for

(W ,≺1) = (R,�) and k(t) = t, h(t) = ts, s ∈ R, t ∈ (0,1) .

COROLLARY 2.7. Let Φ : D → R and φ : D → [0,∞) with a convex set D ⊂ V .
If Φ is s-convex and φ is s-concave and f : R → R is an increasing convex

function with f (0) � 0 , then the mapping

p → φ(p) f

(
Φ(p)
φ(p)

)
, p ∈ D0

φ ,

is s-convex, i.e., for p1,p2, . . . ,pm ∈D0
φ and t1,t2, . . . ,tm > 0 with t1 +t2 + . . .+tm = 1 ,

φ(t1p1 + . . .+ tmpm) f

(
Φ(t1p1 + . . .+ tmpm)
φ(t1p1 + . . .+ tmpm)

)

� ts1φ(p1) f

(
Φ(p1)
φ(p1)

)
+ . . .+ tsmφ(pm) f

(
Φ(pm)
φ(pm)

)
.

3. Completely monotone and Bernstein functions

In this section we give an interpretation of Theorem 2.2 for completely monotone
and Bernstein functions.

The definitions and lemma below are quoted from [1].

DEFINITION 4. (See [1, Def. 1]) A function ϕ : (0,∞) → R is completely mono-
tone if it is infinitely differentiable, non-negative, and (−1)nϕ(n)(x) � 0 for n = 1,2, . . .
and x > 0.

If in addition lim
x→∞

ϕ(x) = 0 then ϕ is said to be a bare completely monotone

function. The set of all bare completely monotone functions is denoted by CM0.

DEFINITION 5. (See [1, Def. 2]) A function ϕ : (0,∞) → R is a Bernstein func-
tion if it is infinitely differentiable, non-negative, and (−1)nϕ(n)(x) � 0 for n = 1,2, . . .
and x > 0.

If in addition lim
x→∞

ϕ(x)
x = 0 and ϕ(0+) = 0. then ϕ is said to be a bare Bernstein

function. The set of all bare Bernstein functions is denoted by BF0.

DEFINITION 6. (See [1, p. 604]) For positive integers l , a function ϕ : (0,∞) →
R belongs to the class BFl if

ϕ(x) =
x∫

0

ψ(t)dt, x ∈ (0,∞),

for some ψ ∈ BF(l−1) .
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LEMMA 3.1. (See [1, Lemma 4]) Let ϕ : (0,∞) → R . If ϕ ∈CM0∪BF0 then ϕ
is subadditive on (0,∞) . If ϕ ∈CMl , l > 1 , then ϕ is superadditive on (0,∞) .

By using Theorem 2.2 for k ≡ 1, h ≡ 1, and V = W = R and D = [0,∞) , one
obtains the following.

COROLLARY 3.2. Let Φ : [0,∞) → R and φ : [0,∞) → [0,∞) . Let f : R → R be
an increasing convex function with f (0) � 0 .

If Φ ∈CM0∪BF0 and φ ∈CMl , l > 1 , then the mapping

p → φ(p) f

(
Φ(p)
φ(p)

)
for p ∈ [0,∞) such that φ(p) > 0 ,

is subadditive, i.e., for p1,p2, . . . ,pm ∈ [0,∞) such that φ(pi) > 0 ,

φ(p1+ . . .+pm) f

(
Φ(p1 + . . .+pm)
φ(p1 + . . .+pm)

)
� φ(p1) f

(
Φ(p1)
φ(p1)

)
+ . . .+φ(pm) f

(
Φ(pm)
φ(pm)

)
.

4. Applications for group majorization

A vector q = (q1,q2, . . . ,qn) ∈ R
n is said to be majorized by a vector p = (p1, p2,

. . . , pn) ∈ R
n , written as q ≺m p , if

k

∑
j=1

q[ j] �
k

∑
j=1

p[ j] for all k = 1,2, . . . ,n

with equality for k = n (see [12, p. 8]). Here the symbols q[ j] and p[ j] stand for the
j th largest entry of q and p , respectively.

It is well-known (see [12, pp. 10, 34]) that for p,q ∈ R
n ,

q ≺m p if and only if q ∈ convpPn, (22)

where Pn denotes the group of n×n permutation matrices, and convpPn denotes the
convex hull of the set pPn = {pg : g ∈ Pn} .

Remind that throughout V and W are real linear spaces.
Let G ⊂ GL(V ) be a subgroup of the group GL(V ) of all invertible linear opera-

tors acting on V . By the group majorization induced by G we mean the preorder ≺G

on V defined by: for p,q ∈ V ,

q ≺G p if and only if q ∈ convGp,

where convGp denotes the convex hull of the set Gp = {gp : g ∈ G} (see [7, p. 112],
cf. (22)).

For a given group G ⊂ GL(V ) , a set D ⊂ V is said to be G-invariant if gp ∈ D
for all g ∈ G and p ∈ D . A mapping F defined on a G-invariant set D ⊂ V is said to
be G-invariant if

F(gp) = F(p) for p ∈ D and g ∈ G . (23)

Here we apply Lemma 2.1 for the identity function k(t) = t for t ∈ (0,1) .
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THEOREM 4.1. Let G ⊂ GL(V ) be a group inducing group majorization ≺G on
V . Let D be a G-invariant convex set in V and ≺1 be a cone preorder on W .

Let h : (0,1)→ (0,∞) be a given multiplicative function. Suppose that Φ : D →W
and φ : D → [0,∞) are G-invariant mappings.

Then for p,q ∈ D0
φ the following three statements hold.

(i) If Φ is (id,h)-affine and φ is (id,h)-affine then

q ≺G p implies
Φ(q)
φ(q)

=
Φ(p)
φ(p)

. (24)

(ii) If Φ is (id,h;≺1)-convex and φ is (id,h)-affine then

q ≺G p implies
Φ(q)
φ(q)

≺1
Φ(p)
φ(p)

. (25)

(iii) If Φ is (id,h;≺1)-convex and φ is (id,h)-concave then

q ≺G p implies
Φ(q)
φ(q)

≺K,1
Φ(p)
φ(p)

, (26)

where ≺K,1 is defined by (10).

Proof. Let p,q ∈D0
φ such that q≺G p be taken arbitrarily. According to (22), we

can write that
q = t1g1p+ . . .+ tmgmp (27)

for some positive integer m , linear operators g1, . . . ,gm ∈G and numbers t1, . . . ,tm > 0

such that
m
∑
i=1

ti = 1. If m = 1 then q = g1p and the theorem follows directly by the

G-invariance of Φ and φ .
So, assume m � 2. Then by (27) we find that

Φ(q)
φ(q)

=
Φ(t1g1p+ . . .+ tmgmp)
φ(t1g1p+ . . .+ tmgmp)

. (28)

By denoting

αi =
h(ti)φ(gip)

h(t1)φ(g1p)+ . . .+h(tm)φ(gmp)
for i = 1,2, . . . ,m ,

we have
m
∑
i=1

αi = 1 with αi > 0.

It follows that gip∈D for all i , since D is G-invariant. From Lemma 2.1 applied
for pi = gip , we obtain

Φ(t1g1p+ . . .+ tmgmp)
φ(t1g1p+ . . .+ tmgmp)

≺0 α1
Φ(g1p)
φ(g1p)

+ . . .+ αm
Φ(gmp)
φ(gmp)

, (29)
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where the symbol ≺0 is defined as follows. For u,w ∈ W ,

u ≺0 w iff

⎧⎨
⎩

u = w if Φ is (id,h)-affine and φ is (id,h)-affine,
u ≺1 w if Φ is (id,h;≺1)-convex and φ is (id,h)-affine,
u ≺K,1 w if Φ is (id,h;≺1)-convex and φ is (id,h)-concave.

(30)

From (28), (29), (23) and by the G-invariance of φ we get

Φ(q)
φ(q)

≺0 α1
Φ(p)
φ(p)

+ . . .+ αm
Φ(p)
φ(p)

=
Φ(p)
φ(p)

. (31)

Finally, by (31) and (30), we conclude that the required inequalities in (24)-(26) hold,
which is our claim. �

COROLLARY 4.2. Under assumptions of Theorem 4.1, let f : W → R be a func-
tion.

Then for p,q ∈ D0
φ ,

q ≺G p implies f

(
Φ(q)
φ(q)

)
� f

(
Φ(p)
φ(p)

)
,

(with equality in case (i)) with the additional assumption that f is ≺1 -increasing in
case (ii), or f is both ≺1 -increasing and ≺K -increasing in case (iii).

In light of (8), for x,y ∈ W , we write

x ≺1,H y if and only if x ≺1 z ≺H y for some z ∈ W

(see e.g. (34)). Likewise,

x ≺K,1,H y if and only if x ≺K z ≺1 w ≺H y for some z,w ∈ W

(see e.g. (35)).

THEOREM 4.3. Let G ⊂ GL(V ) be a group inducing group majorization ≺G on
V , and H ⊂ GL(W ) be a group inducing group majorization ≺H on W . Let D be a
G-invariant convex set in V and ≺1 be a cone preorder on W .

Let h : (0,1) → (0,∞) be a given multiplicative function. Suppose that φ : D →
[0,∞) is a G-invariant mapping on D . Assume that for any p ∈ D , a mapping Φ :
D → W attains ≺H -maximum on the set D0

φ ∩Gp at some point p0 ∈ D0
φ ∩Gp , i.e.,

Φ(gp) ≺H Φ(p0) for all p ∈ D and g ∈ G. (32)

Then for p,q ∈ D0
φ the following three statements hold.

(i) If Φ is (id,h)-affine and φ is (id,h)-affine then

q ≺G p implies
Φ(q)
φ(q)

≺H
Φ(p0)
φ(p0)

. (33)
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(ii) If Φ is (id,h;≺1)-convex and φ is (id,h)-affine then

q ≺G p implies
Φ(q)
φ(q)

≺1,H
Φ(p0)
φ(p0)

. (34)

(iii) If Φ is (id,h;≺1)-convex and φ is (id,h)-concave then

q ≺G p implies
Φ(q)
φ(q)

≺K,1,H
Φ(p0)
φ(p0)

. (35)

Proof. As in the proof of Theorem 4.1, by applying Lemma 2.1 we get

Φ(q)
φ(q)

=
Φ(t1g1p+ . . .+ tmgmp)
φ(t1g1p+ . . .+ tmgmp)

≺0 α1
Φ(g1p)
φ(g1p)

+ . . .+ αm
Φ(gmp)
φ(gmp)

(36)

with ≺0 defined by (30) and g1, . . . ,gm and t1, . . . ,tm given by (27).
On account of (36), (32) and the G-invariance of φ , we have

Φ(q)
φ(q)

≺0 α1
Φ(g1p)
φ(p0)

+ . . .+ αm
Φ(gmp)
φ(p0)

≺H α1
Φ(p0)
φ(p0)

+ . . .+ αm
Φ(p0)
φ(p0)

=
Φ(p0)
φ(p0)

.

(37)
Now, it follows from (37) and (30) that inequalities in (33)-(35) are valid. �

COROLLARY 4.4. Under assumptions of Theorem 4.3, let f : W →R be an ≺H -
increasing function.

Then for p,q ∈ D0
φ ,

q ≺G p implies f

(
Φ(q)
φ(q)

)
� f

(
Φ(p0)
φ(p0)

)
,

with the additional assumption that f is ≺1 -increasing in case (ii), or f is both ≺1 -
increasing and ≺K -increasing in case (iii).

COROLLARY 4.5. Under assumptions of Theorem 4.3, let h(t) = ts , t ∈ (0,1) ,
s ∈ R .

If Φ is (s,≺1)-convex and φ is s-concave then for p,q ∈ D0
φ statement (35) is

met.
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[8] M. KRNIĆ, N. LOVRIČEVIĆ AND J. PEČARIĆ, On some properties of Jensen-Mercer’s functional, J.
Math. Inequal., 6 (1) (2012), 125–139.
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