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ON (k,h;m)—CONVEX MAPPINGS AND APPLICATIONS

MAREK NIEZGODA

(Communicated by J. Pecaric)

Abstract. In this paper, for given positive integer m and real functions k and h, we prove

(k,h;m) -convexity of the mapping p — ¢ (p) f (%) with a convex (increasing) function f and

a (k,h;m)-convex mapping ® and a positive (k,h;m)-concave mapping ¢ . As application, we
establish a subadditivity result for completely monotone and Bernstein functions. We also show
monotonity of the mappings p — % and p— f (%) with respect to a group majorization

combined with other preorders.

1. Introduction

A nonempty subset .o# of a real linear space ¥ is called additive if x,y € o
implies x+y € &7
A mapping F : o/ — R defined on an additive set &/ C 7 is said to be

(1) additive if
F(p+q)=F(p)+F(q) forp,qe .,

(i1) subadditive if
F(p+q)<F(p)+F(q) forp,qe o,

(iii) superadditive if

F(p+q)>F(p)+F(q) forp,qe ..

For a function f : I — R, where I C R is an interval, x = (x1,xp,...,x,) € I" and
pE< 32,9, where

P ={p=(p1.p2.-..,pn) 1 pi 20, P, >0} with P,=) pi
i=1
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the Jensen functional is defined by

n 1 n
J(f,x,p) = Y. pif (xi) — Puf (; Zpixz) (1)
i=1 ni=1

(see [0]).
With the help of the standard inner product (-,-) of R", equation (1) can be rewrit-
ten in the form

x0) = .- )7 (B3, @

where f(x) = (f(x1),f(x2),...,f(x,)) and e= (1,1,...,1) e R".
By Jensen’s inequality,

J(f,x,p) =0 fora convex function f.

THEOREM A. [6] If f:I — R is a convex function then the mapping p —
J(f,x,p) is superadditive for any x € I", i.e.,

J(f.x,p+q) = J(f.x,p)+J(f,x,q) forp,qe P. 3)

In consequence, the mapping p — J(f,X,p) is monotone for any x € ", i.e.,

J(f,x,p+q) = J(f,x,p) forp,qe 2.

A result related to Theorem A is proved in [9, Theorem 1] which shows superaddi-
tivity and monotonicity properties of the so-called Jessen functional regarding positive
isotonic functionals.

It is not hard to check that property (3) is equivalent to the subadditivity of the

mapping )
P, X

p— <p,e>f<<p 0

That is, the convexity of f implies that

(p+q.e)f (%) < (p,e)f (gg) +<q7e>f<§3’:;> for p,q € 2. (4)

Let f: [a,b] — R be a function and x = (x1,x2,...,X,) € [a,b]", where [a,b] CR
is an interval. Assume p = (p1,p2,...,pn) € P°. The Jensen-Mercer functional is
defined by

), pe .

i=1 ni=1

MU x.0) = Pif(@) + F6)] = X pif () — Bof ( tho o 2p>

(see [8]). Equivalently,

M(f.x.p) = [f(@) + F(5))(pr€) — (p.f(X)) — (p.e)f ( atb)p.e) - <"”‘>) )

(p.€)
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where £(x) = (f(x1), f(x2), ... f(x2)) and e = (1,1,...,1) € R".
By Mercer’s inequality,
M(f,x,p) >0 fora convex function f.

THEOREM B. [8] If f:I — R is a convex function then the mapping p —
M(f,x,p) is superadditive for any x € I", i.e.,

M(f,x,p+q) > M(f,x,p) +M(f,x,q) forp,qe 2. (6)

In consequence, the mapping p — M(f,x,p) is monotone for any x € I", i.e.,

M(f,x,p+q) > M(fx,p) forp,qe ).
Notice that property (6) is equivalent to the subadditivity of the mapping

p— <p7e>f<§1;’g), pe 7,

where y = (a+b)e —x.
That is, the convexity of f implies that

s (BT <y (B0 s g ({82 forpac .
(7

Remind that a nonempty set & in a real linear space ¥ is said to be a convex cone
if i) X,y € ¥ implies x+y € Z,and (ii) x€ Y and r > 0 imply tx € 7.

A relation < on a real linear space 7 is said to be a cone preorder if there exists
aconvex cone 2 C ¥ such that for x,y € ¥, x <y ifandonlyif y—x€ 2.

In what follows, for a function ¢ : 2 — [0,e) we denote

29 ={de 2:¢(d) > 0}.

A general result related to (4) and (7) is as follows.

THEOREM C. [3, Theorem 5] Let £ be a convex cone in a linear space ¥ and
¢ : 2 — [0,00) be an additive functional on 2 and ®: Z — [0,c0) be a subadditive
functional on 7.

If f:[0,0) — R is an increasing convex function, then the mapping

p— ¢<p>f(%)

is subadditive on _@g Lie.,

o(p+q)f (%) <o(p)f (%) +¢(q)f (%) for p,q € 7.

Recently, sub- and superadditive functions are a research field of growing interest
[3, 4,5, 10, 11]. In [14], the author have extended Theorem C to sub-/superadditive
vector-valued mappings @ and ¢, respectively. The aim of the present paper is give
a further generalization of Theorem C for (k,h;m)-convex mapping ® and positive
(k,h;m)-concave mapping ¢. As applications, we interpret the obtained results for
completely monotone and Bernstein functions and utilize them in majorization theory.
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2. (k,h;m)-convex/concave mappings

We begin with some relevant notation and terminology.

Throughout the paper, ¥" and #  are real linear spaces.

A relation < on a set . is called a preorder if (i) x < x for x € ./, and (ii)) x <y
and y <z imply x < z for x,y,z € .77

Given two preorders <; and <, on </, and vectors X,y € </, we write

X <1,y ifandonlyif x<;z <,y forsomezec </ . ®)

If («7,<1) and (%, <) are preordered sets, then a mapping F : .o/ — 2 is said
to be (<1, <)-increasing on < , if for X,y € o7,

x <1y implies F(x)<F(y).

When (#4,<) = (R,<) we write < -increasing instead of (<1, <)-increasing for
brevity.

It is clear that if (&7,<1), (&, <>) and (%, <) are preordered sets, and a map-
ping F : &/ — 2 is both (<, <)-increasing and (<3, <)-increasing, then for x,y €
,

X <oy implies F(x)<F(y).

For x,y € /', we write
x <gy ifandonlyif ax=y forsome o € [1,0). ©)
(see [7, p. 121]). So, for x,y € #,
X <k, Yy ifandonlyif x <xz <y forsomezec % (10)

(see e.g. (15)).
A preorder <; on # is said to be preserved under multiplying by positive scalars
if for x,y € #,
X <1y implies Ax <; Ay for A € (0,00).

DEFINITION 1. (Cf. [13, Def. 2.1]) Let £ : (0,1) — R be a given function and
m > 2 be a given positive integer. Then a set Z C ¥ is said to be (k;m)-convex if
k(ty)p1+...+k(tn)pm € Z forall py,....,pu € Z and 11,... .1, € (0,1) with 1, +... +
tm=1.

DEFINITION 2. (Cf. [13, Def. 2.4], [2, p. 254]) Let k,h: (0,1) — R be two given
functions and m > 2 be a given positive integer. A function F': Z — R defined on a
(kym)-convex set & C ¥ is said to be (k,h;m)-convex (resp. (k,h;m)-concave) if for
all p1,...,pm € Z and 11,... 1y, € (0,1) with t; + ... +1, =1,

F(k(t1)p1+ .- +k(tm)Pm) < (=) h(t1)F(p1) + ...+ h(tm) F (Pm)- (11)

If equality holds in (11) then F is called (k,h;m)-affine.
In particular, in (11), if k(#) =¢ and h(z) =¢*, t € (0,1) and s € R, then F is said
to be s-convex (resp. s-concave).
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See [13] for an interesting discussion on some important classes of functions in-
cluded in the class of (k,h;m)-convex functions for m =2.

It is not difficult to prove by induction on m that if k and / are positive and
multiplicative than (k,h;m)-convexity with m = 2 is equivalent to (k,;m)-convexity
for all positive integers m > 2.

DEFINITION 3. (Cf. [13, Def. 2.4]) Let k,h: (0,1) — R be two given functions
and m > 2 be a given positive integer. Let the linear space # be equipp with a pre-
order <;. A function F : 9 — # defined on a (k;m)-convex set 2 C ¥ is said
to be (k,h;m,<1)-convex (resp. (k,h;m,<)-concave) if for all py,...,p, € Z and
Hyooostmw €(0,1) with 17 4+ ...+ 1, = 1,

F(k(t)p1+ ... +k(tm)Pm) <1 (=1) h(t1)F(p1) + ...+ h(tw)F (Pm)- (12)

If equality holds in (12) then F is called (k,h;m)-affine.
In particular, in (12), if k(r) = and h(r) =¢*, 1 € (0,1) and s € R, then F is said
to be (s,<1)-convex (resp. (s,=<1)-concave).

When m = 2, we adopt simpler prefix symbols by dropping m off, e.g., (k,h;<1)
instead of (k,h;m,<1).

Note that if 2 C ¥ is a (k;m)-convex set and a functional ¢ : 2 — [0,00) is
(k,h;m)-concave on 2 with h(-) >0 on (0, 1), then the set

P9 ={de2:¢(d) >0}

is (k;m)-convex.
Proofs of the next results will be simplified if we first prove a technical lemma.

LEMMA 2.1. Let k:(0,1) >R and h:(0,1) — (0,e0) be two given functions and
m = 2 be a given positive integer. Let ® : 9 — W and ¢ : D — [0,00) with a (k;m)-
convex set 9 C V. Assume that < is a preorder on W preserved under multiplying
by positive scalars.

Let p1,p2,---,Pm € .@g and ty,ty,....t,, >0 with t; +t, + ...+, = 1. Denote

_ h(t)¢ (p:)
h(t1)@(p1) + -+ hltm) 9 (Pm)

Then the following three statements hold.

fori=1,2,....m.

(i) If ® is (k,h;m)-affine and ¢ is (k,h;m)-affine then

k()P + ...+ k(tw)Pm) _  P(P1) D(pim)

= + ...+ 0y . 13
Skp ke o T o

(ii) If @ is (k,h;m,=<1)-convex and ¢ is (k,h;m)-affine then
@(k(t1)p1 + - - +k(tm)Pm) - @(p1) @(pn) (14)

¢ (k(t))p1 + ...+ k(tm)pm) Yo T e lpa)
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(iii) If @ is (k,h;m,=<1)-convex and ¢ is (k,h;m)-concave, then

Q)P+ Kn)om) PP+ Kn)D)
¢(k(11)p1 + - -+ k(tm)Pm)

(Z)(k(tl )pl +...+ k(tm)pm) m)Pm
@(p,) @(pm)
BT I T R
where
g QkOIPI+ .+ kln)Pn) (16)

h(t1)(P1) + -+ A(tw) O (Pm)
Proof. (i). Since @ and ¢ are (k,h;m)-affine, we have
O(k(t1)p1 + -+ k(tm)Pm) = h(t1)P(p1) + ...+ h(tm)P(Pm),

¢(k(r)p1 + . +k(tm)pm) = R(11)O(P1) + -+ 1(tn) 9 (Pm)-

Now, it is routine to verify that identity (13) holds.
(i1). In this case, we have

Ok(t)p1+- .- +k(tn)Pm) <1 h(t)DO(p1) + ... + (1) P(Pm),
Gk(t)p1 + ... +k(tm)pm) =h(t1)0(P1) + ... + 1(tn) 0 (Pm)-

Since ¢ takes positive values on _@g and < is preserved under multiplying by positive
scalars, we obtain

O(k(t1)p1 + ...+ k(tw)Pm) - h(t1)@(p1) + - . . + h(tw)P(pm)

¢(k(tl)pl+~~~+k(tm)pm) ! h(t1)¢(pl)+ +h(lrn)¢(pln)
_@(p) D(pn)
BT BT

which ends the proof of inequality (14).
(iii). From the (k,h;m,<)-convexity of @ and (k,h;m)-concavity of ¢, we have

O(k(t1)p1 + - .. +k(tm)pm) <1 A(t1)P(p1) + ... + A(ty) P (Pm),

Gk(t))pr+ ... +k(tm)Pm) = h(t1)0(p1) + ...+ 1(t) O (Pm)-

Therefore, by taking B defined by (16), we get B > 1.
For this reason, by (9), we conclude that

Ok()ps + .+ k(tn)Pn) B(I)(k(tl)pl F o+ k) Pm)
O(k(t)p1+ ...+ k(tm)Pm) O (k(t)p1+ -+ k(tn)pPm)
~ Ok(r)p1 + -+ k(tm)Pm)

— h()o(p1) + -+ h(tn) (D)

» h(t1)®(p1) + - .-+ h(tw) P(Pm)

h(t1)9(p1) + ...+ h(tm) 9 (Pm)
@(p1) @ (pm)
= @00 H o
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Summarizing all of this, we see that (15) holds. [

In the forthcoming theorem we aim to extend Theorem C (see Section 1) and [14,
Theorem 2.3] from sub-/superadditive functions to (k,h;m)-convex/ (k,h;m)-concave
mappings, respectively.

THEOREM 2.2. Let k: (0,1) = R and h: (0,1) — (0,c0) be two given functions
and m > 2 be a given positive integer. Let ®: P — W and ¢ : D — [0,00) with
a (k;m)-convex set 9 C V. Assume that < is a preorder on W preserved under
multiplying by positive scalars. Let f: % — R be a convex function.

Then the following three statements hold.

(i) If ® is (k,h;m)-affine and ¢ is (k,h;m)-affine then the mapping

(D(p)) 0

p—>¢pf<— , PEY,,

(P) ¢(p)

is (k,h;m)-convex, ie., for p1,p2,---,Pm € 98 and t,ty,... L, > 0 with t| +

bh4...+ty=1,

O (K )Pt + .+ k(i) (

@(p;)
o(p1)

O (k(t;)p1 + ... +k(tm)pm))
O(k(t)p1+ ...+ k(tm)Pm)

) + oA h(tn) O (pm) f (?;((;’:)) . (17)

< h(n)«p(pl)f(

(ii) If ® is (k,h;m,=<1)-convex and ¢ is (k,h;m)-affine and [ is <i-increasing,
then (17) holds.

(iii) If @ is (k,h;m,<)-convex and ¢ is (k,h;m)-concave and f is < -increasing
with f(0) <0, then (17) holds.

Proof. (i). Using the convexity of f and eq. (13) in Lemma 2.1, it is easy to obtain
the following inequality:

O(k(t1)p1 + ..+ k(ty)pm)
/ ( O (k(t)p1+ ...+ k(tm)Pm) )

h(11)¢(p1) ®(p;)
s h(t1)¢(p1)+...+h(¢m)¢(pm)f<¢(p1)) T (18)
h(tn)9 (Pm) f (CD(pm)
h(t)d(p1) + ...+ h(tw)d(Pm)” \ ¢(Pm)

Multiplying both the sides of (18) by

Gk(t)p1+ ... +k(tw)pm) =h(t1)0(P1) + ...+ h(t) O (Pm) >0

yields (17).
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(i1). Similarly as in the proof of (i), we employ eq. (14) in Lemma 2.1 and use the
<1 -increasity and convexity of f, which gives (18) and (17).
(iii). From Lemma 2.1, eq. (15), we have

O(k(t1)p1 + ...+ k(tw)pm) ®(p;) D(pm)

SkP1 + - Kmpm) 00 T o)

where [ is defined by (16). Hence, by the < -increasity and convexity of f, we derive

O(k(11)p1 + - - -+ k(tm)Pm) O(p) O(ppm)
/ (ﬂ o k(1)1 +...+k<tm>pm>> S "“f<<z><pl>> +"'+°"”f<¢<pm>) - 19

Since ¢ is (k,h;m)-concave, we have 3 > 1 (see (16)). Simultaneously, f(0) <0, so
we infer that

O(k(t1)p1 + - - -+ k(tm)Pm) O(k(t1)p1+ - ..+ k(tm)Pm)
A1 (¢><k<n>p1+...+k<tm>pm>) </ (” ¢(k<n>p1+...+k(rm>pm>)' 20

Combining (20) and (19) yields

O(k(t;)p1 + ...+ k(tw)Pm) ®(p;) D(pn)
ﬁf(¢(k(t1)p1 +~-~+k(tm)pm)) S alf((b(pl)) +"'+amf<¢(pm)> '

Now, in order to get (17), it suffices to multiply the above inequality by h(r;)¢(p1) +
oo+ h(ty)0(pm) > 0. This completes the proof. [

B

REMARK 2.3. In the case
(#,<1)=R,<) and k(r)=1, h(r)=1, re€(0,1),
Theorem 2.2 reduces to Theorem C (see Section 1).

REMARK 2.4. In Theorem 2.2, part (iii), if the condition f(0) < 0 is replaced by
” f is <g-increasing”, then (17) becomes

Q(k(11)p1 .. +k(tm)pm)>
O(k(t)p1+ ...+ k(tn)pm)
(D(pm))

O(Pm) )

<h<n>¢<pl>+...+h<tm>¢<pm>>f(

D (p;)
o(p1)

COROLLARY 2.5. Under assumptions of Theorem 2.2, if in addition p — L(p) €
R, p€ 2, is a (k,h;m)-affine mapping on 9, then the mapping

<n)o(mns (G2 )+ htoton)s

p— L(p)—¢(p)f (%) pey . (21)

is (k,hym)-concave.
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REMARK 2.6. In Corollary 2.5, the (k,h;m)-concavity of the mapping (21) cor-
responds to the superadditivity of the Jensen functional (2) (see Theorem A) and of the
Jensen-Mercer functional (5) (see Theorem B).

We now give a specification of Theorem 2.2, part (iii), for

(#,<1)=R,<) and k(r)=t, h(t)=¢t, seR, te(0,1).

COROLLARY 2.7. Let ®: P — R and ¢ : 9 — [0,0) with a convex set D C V.
If © is s-convex and ¢ is s-concave and f : R — R is an increasing convex
Sunction with f(0) <0, then the mapping

p%¢@ﬁ(%%9, PeYy

is s-convex, i.e., for p1,p2,---,Pm € _@8 and ty,ty,...,ty >0 with tiy +to+...+t, =1,

D(tpr+ ... —Hmpm))
d(rip1+ ...+ tmPm)
q)(pm)>
o(pm) )

¢@prh~+%mwf<

D(py)
¢(p1)

<riowns (52 ) ..+ noton)s

3. Completely monotone and Bernstein functions

In this section we give an interpretation of Theorem 2.2 for completely monotone
and Bernstein functions.
The definitions and lemma below are quoted from [1].

DEFINITION 4. (See [1, Def. 1]) A function ¢ : (0,00) — R is completely mono-
tone if it is infinitely differentiable, non-negative, and (—1)"¢@" (x) >0 forn=1,2,...
and x > 0.

If in addition )}Lngo ¢o(x) =0 then ¢ is said to be a bare completely monotone

Sfunction. The set of all bare completely monotone functions is denoted by CMO.

DEFINITION 5. (See [1, Def. 2]) A function ¢ : (0,00) — R is a Bernstein func-
tion if it is infinitely differentiable, non-negative, and (—1)"¢" (x) <0 forn=1,2,...
and x > 0.

If in addition }1_120 @ =0 and @(0") = 0. then ¢ is said to be a bare Bernstein

Sfunction. The set of all bare Bernstein functions is denoted by BFO0.

DEFINITION 6. (See [1, p. 604]) For positive integers [, a function ¢ : (0,00) —
R belongs to the class BFI if

o) = [w(o)dr, x€ (0.),
0

for some y € BF(I—1).
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LEMMA 3.1. (See [1, Lemma 4]) Let ¢ : (0,0) — R. If ¢ € CMOUBFO then ¢
is subadditive on (0,00). If @ € CMI, 1 > 1, then @ is superadditive on (0,o).

By using Theorem 2.2 for k=1, h=1,and ¥ =% =R and 2 = [0,), one
obtains the following.

COROLLARY 3.2. Let @ :[0,00) - R and ¢ : [0,00) — [0,0). Let f:R — R be
an increasing convex function with f(0) < 0.
If ® € CMOUBFO and ¢ € CMI, | > 1, then the mapping

p— o(p)f (%) Jor p € ]0,00) such that ¢(p) >0,

is subadditive, i.e., for p1,p2,...,Pm € [0,00) such that ¢(p;) >0,

or-+ o (P <o (S0 ) ptomir (2 ).

4. Applications for group majorization

A vector q = (q1,¢2,---,qn) € R" is said to be majorized by a vector p = (p1, p2,
...,pn) € R" written as q <, p, if

k k
Y < Y ppy forallk=1.2,...,n
j=1 j=1

with equality for k = n (see [12, p. 8]). Here the symbols g(; and p[;) stand for the
jth largest entry of q and p, respectively.
It is well-known (see [12, pp. 10, 34]) that for p,q € R",

q <, p if and only if q € convplP,, (22)

where P, denotes the group of n X n permutation matrices, and convpP, denotes the
convex hull of the set pP,, = {pg:g € P,}.

Remind that throughout ¥ and % are real linear spaces.

Let G C GL(?') be a subgroup of the group GL(#') of all invertible linear opera-
tors acting on 7. By the group majorization induced by G we mean the preorder <
on ¥ defined by: for p,q € 7,

q <gp ifandonlyif q € convGp,

where convGp denotes the convex hull of the set Gp = {gp: g € G} (see [7, p. 112],
cf. (22)).

For a given group G C GL(?'),aset 2 C ¥ is said to be G-invariant if gp € 9
forall g€ G and p € Z. A mapping F defined on a G-invariant set 2 C ¥ is said to
be G-invariant if

F(gp)=F(p) forpeZ and g€G. (23)

Here we apply Lemma 2.1 for the identity function k(z) =t for t € (0,1).
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THEOREM 4.1. Let G C GL(¥') be a group inducing group majorization <¢ on
V. Let 9 be a G-invariant convex set in ¥ and < be a cone preorder on W .

Let h:(0,1) — (0,00) be a given multiplicative function. Suppose that ® : 9 — W
and ¢ : 9 — [0,%0) are G-invariant mappings.

Then for p,q € :@g the following three statements hold.

(i) If @ is (id,h) -affine and ¢ is (id,h)-affine then

o @) @(p)
< I - 2P 24
AToR TP 5lg) T o (p) e
(ii) If ® is (id,h;<1)-convex and ¢ is (id,h)-affine then
o @) 2(p)
< l <1 = 25
A=GP RS @) " o p) 9
(iii) If @ is (id,h; <1)-convex and ¢ is (id,h)-concave then
q<gPp implies dCl =< % (26)

0@ ' o(p)’
where < 1 is defined by (10).

Proof. Let p,q € _@8 such that q < p be taken arbitrarily. According to (22), we
can write that

q=1g1P+. .-+ tmgmP (27)
for some positive integer m, linear operators gi,...,g, € G and numbers ¢q,...,t, >0
such that g ti=1. If m=1 then q = g;p and the theorem follows directly by the
G-invarialgcl: of ® and ¢.

So, assume m > 2. Then by (27) we find that

(I)(q) _ q)(tlglp+~~~+tmgmp) (28)
(1’(‘1) ¢(tlglp+~~~+tmgmp).

By denoting
h(t)¢(gip)

;= fori=1,2,...,m,
% )0 (gip) + A9 (emp) "

m
we have Y o; =1 with ¢ > 0.
i=1
It follows that g;p € Z forall i, since & is G-invariant. From Lemma 2.1 applied
for p; = g;p, we obtain

O(t1g1p+ ...+ tmgmP) o D(g1p) ®(g,p)

Tt 7 29
O(t1gip+ -+ 1mgup)  0(1D) * o (gmp) 9
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where the symbol < is defined as follows. For u,w € %,

u=w if ®is (id,h)-affine and ¢ is (id, )-affine,
u=<ow iff ¢ u=<;w if®is(id,h;<;)-convex and ¢ is (id, h)-affine, (30)
u <g wif @ is (id, h;<;)-convex and ¢ is (id, h)-concave.

From (28), (29), (23) and by the G-invariance of ¢ we get

%<Oalw+...+am%=%- 3D

o(q) o(p) o(p) ¢(p)

Finally, by (31) and (30), we conclude that the required inequalities in (24)-(26) hold,
which is our claim. [

COROLLARY 4.2. Under assumptions of Theorem 4.1, let f: % — R be a func-
tion.
Then for p,q € 29,

q=Gp implies f(%) <f<%>’

(with equality in case (1)) with the additional assumption that f is <|-increasing in
case (ii), or f is both < -increasing and < -increasing in case (iii).

In light of (), for x,y € #, we write
x <1y ifandonlyif x<;z<yy forsomezec ¥
(see e.g. (34)). Likewise,
x<g1py ifandonlyif x <gz<; w=<gy forsomez,we ¥

(see e.g. (35)).

THEOREM 4.3. Let G C GL(¥') be a group inducing group majorization <¢ on
V', and H C GL(#') be a group inducing group majorization <y on % . Let 9 be a
G -invariant convex set in ¥ and <1 be a cone preorder on W .

Let h:(0,1) — (0,00) be a given multiplicative function. Suppose that ¢ : 9 —
[0,%0) is a G-invariant mapping on 2. Assume that for any p € 9, a mapping © :
9 — W attains <y -maximum on the set _@g N Gp at some point py € _@g NGp, i.e.,

®(gp) <y ©(py) forallpe 2 and g € G. (32)
Then for p,q € _@g the following three statements hold.
(i) If @ is (id,h) -affine and ¢ is (id,h)-affine then

) ()
6@ " 9lpo)

q <gp implies (33)
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(it) If ® is (id,h; <) -convex and ¢ is (id,h)-affine then

o @(q) @(po)
q <gp implies <1H . (34)
¢(q) " ¢(po)
(iii) If @ is (id,h; <1)-convex and ¢ is (id,h)-concave then
. D(q) @(po)
q <gp implies <K, . (35)
¢ o(@ " 9(po)
Proof. As in the proof of Theorem 4.1, by applying Lemma 2.1 we get
D D(1 oot tngm D (o} m
(q) _ (tigip+ .-+ tmgmp) <00 (g1p) Yot (gmp) (36)
¢a)  oigP+...+1mgmP) ¢(g1p) ¢(gmp)
with < defined by (30) and g,...,g», and #1,....t, given by (27).
On account of (36), (32) and the G-invariance of ¢, we have
(o} o o (o} (o} (o}
@ _ 20w, o Pew) o Pe), o Do) _ Ppo)
¢(q) ¢(po) ¢(po) ¢(po) ¢(po) ¢(P0237)

Now, it follows from (37) and (30) that inequalities in (33)-(35) are valid. [

COROLLARY 4.4. Under assumptions of Theorem 4.3, let f:# — R be an < -
increasing function.
Then for p,q € 29,

a<Gp implies f(%) <f<j>)((§§)))’

with the additional assumption that f is <|-increasing in case (ii), or f is both < -
increasing and < -increasing in case (iii).

COROLLARY 4.5. Under assumptions of Theorem 4.3, let h(t) =1, t € (0,1),
seR.

If ® is (s,<1)-convex and ¢ is s-concave then for p,q € _@g statement (35) is
met.
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