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DIGITAL SUM INEQUALITIES AND APPROXIMATE

CONVEXITY OF TAKAGI–TYPE FUNCTIONS

PIETER C. ALLAART

Abstract. For an integer b � 2 , let sb(n) be the sum of the digits of the integer n when written
in base b , and let Sb(N) = ∑N−1

n=0 sb(n) . Several inequalities are derived for Sb(N) . Some of
the inequalities can be interpreted as comparing the average value of sb(n) over integer intervals
of certain lengths to the average value of a beginning subinterval. Two of the main results are
applied to derive a pair of “approximate convexity” inequalities for a sequence of Takagi-like
functions. One of these inequalities was discovered recently via a different method by V. Lev;
the other is new.
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