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Abstract. For an integer b � 2 , let sb(n) be the sum of the digits of the integer n when written
in base b , and let Sb(N) = ∑N−1

n=0 sb(n) . Several inequalities are derived for Sb(N) . Some of
the inequalities can be interpreted as comparing the average value of sb(n) over integer intervals
of certain lengths to the average value of a beginning subinterval. Two of the main results are
applied to derive a pair of “approximate convexity” inequalities for a sequence of Takagi-like
functions. One of these inequalities was discovered recently via a different method by V. Lev;
the other is new.

1. Introduction

Fix an integer b � 2, and for n ∈ N , write the b -ary representation of n as n =
∑∞

j=0 α j(n)b j , where α j(n) := α j(n;b)∈ {0,1, . . . ,b−1} for each j . Define the b -ary
digital sum and cumulative b -ary digital sum respectively by

sb(n) =
∞

∑
j=0

α j(n), n ∈ Z+,

and

Sb(N) =
N−1

∑
n=0

sb(n), N ∈ Z+,

where Z+ denotes the set of nonnegative integers, and we make the usual convention
that the empty sum is equal to zero. These digital sums have been well investigated in
the literature, especially for the case b = 2. The investigations have mainly focused
in two directions: finding exact or asymptotic formulas for Sb(N) (e.g. Trollope [12],
Delange [3]) or determining the probability distribution of sb(n) as n ranges over cer-
tain subsets of the positive integers (e.g. Mauduit and Rivat [7], Mauduit and Sárközy
[8], or Drmota, Mauduit and Rivat [4], among many others). Stolarsky [10] discusses a
wide range of applications of digital sums. The aim of the present article is to prove a
number of inequalities for Sb(N) . One of these inequalities, for the ternary case, came
about naturally in the author’s quest to find a simpler proof of a recent result of Lev [6]
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concerning the “approximate convexity” of a particular continuous but nowhere differ-
entiable function akin to the Takagi function. The other results all concern general b .
They are either needed in the proof of the above-mentioned inequality, or are further
developments of special cases of it. Some of the inequalities are most elegantly stated
in terms of the average values

sb(s, t) :=
Sb(t)−Sb(s)

t− s
=

1
t − s

t−1

∑
n=s

sb(n), 0 � s < t. (1)

The inequalities of Theorems 3 and 4 below compare the average value of sb(n) over
certain intervals of integers to the average value over a beginning subinterval.

The first inequality is in effect a strong form of superadditivity. It is known for the
case b = 2; see, for instance, section 4 of McIlroy [9], where the inequality is used to
determine the extremal cost in a merging process.

THEOREM 1. For any nonnegative integers n and m, we have

Sb(m+n) � Sb(m)+Sb(n)+min{m,n}. (2)

Theorem 1 is used to prove the following result, which specializes to the case
b = 3 and is a number-theoretic version of Theorem 3 of Lev [6]. See Section 3, where
this connection is outlined in detail.

THEOREM 2. For any integers k , l and m with 0 � l � k � m, we have

S3(m+ k+ l)+S3(m− k)+S3(m− l)−3S3(m) � 2k+ l. (3)

Two special cases of the above inequality are particularly interesting: the case
l = 0 and the case l = k . For l = 0, (3) reduces to

S3(m+ k)+S3(m− k)−2S3(m) � 2k.

This inequality holds in fact with strict inequality, and the factor 2 on the right can
not be replaced by any smaller number. These observations follow from the following,
more general result.

THEOREM 3. Let b � 2 be arbitrary.

(i) For any nonnegative integers k and m with k � m, we have

Sb(m+ k)+Sb(m− k)−2Sb(m) �
[
b+1

2

]
k, (4)

where [x] denotes the greatest integer less than or equal to x . The constant
[(b+1)/2] can not be replaced by a smaller constant. However, strict inequality
holds in (4) when b is odd.
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(ii) For any nonnegative integers n and k , we have

sb(n,n+2k) � sb(n,n+ k)+
1
2

[
b+1

2

]
. (5)

(For the case b = 2, this result was proved previously by the present author; see
[1].)

On the other extreme, the case l = k of (3) simplifies to

S3(m+2k)+2S3(m− k)−3S3(m) � 3k.

Equality obtains when k = m (see Lemma 7 below). Setting n = m−k and dividing by
3k , the last inequality can be written as

s3(n,n+3k) � s3(n,n+ k)+1.

This extends to arbitrary b � 2 as in the following theorem, which states that the aver-
age value of sb(n) over any integer interval of length bk is at most (b− 1)/2 greater
than the average over the first k integers in the interval.

THEOREM 4. For each b � 2 and for all n,k � 0 , we have

sb(n,n+bk) � sb(n,n+ k)+
b−1

2
. (6)

Moreover, equality obtains for each k when n = 0 .

Note that for b = 2, (5) and (6) give the same result.
The proofs of Theorems 1-4 are given in the next section. Two of the theorems

are then used in Section 3 to derive a pair of inequalities for a sequence of Takagi-like
functions.

2. Proofs of the main results

Throughout this section, let b � 2 be fixed. It is convenient to introduce the nota-
tion

Σb(s,t) :=
t−1

∑
r=s

sb(r) = Sb(t)−Sb(s), s < t. (7)

Thus, Σb(s, t) is the sum of all the b -ary digits needed to write the block of consecutive
integers s,s+ 1, . . . ,t − 1. When there is no confusion possible about the base b , the
subscript b will be frequently dropped throughout this paper.

We first state a useful lemma.

LEMMA 5. For any nonnegative integers p, j,k and n with 0 � k � n � jbp and
j � b,

Σ( jbp − k, jbp)−Σ(n− k,n) = Σ( jbp−n, jbp−n+ k)−Σ(0,k).
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Proof. This follows at once since sb( jbp − r− 1)+ sb(r) = (b− 1)p+ j− 1, in-
dependent of r , for 0 � r < jbp . �

We will also use the following, easily verified fact: for any nonnegative integers n
and k , sb(n+bk) � sb(n)+1. Applying this repeatedly, we obtain the useful estimate

sb

(
n+

k

∑
i=1

bpi

)
� sb(n)+ k, n ∈ Z+, p1, . . . , pk ∈ Z+. (8)

Proof of Theorem 1. The statement is obvious for the case m = n = 0. We proceed
by induction on m + n . Let N ∈ N , and assume (2) holds for all pairs (m,n) with
m+n < N . Suppose m and n are such that m+n = N . By symmetry we may assume
that m � n . In terms of the notation (7), we must show that

Σ(m,m+n) � Σ(0,n)+n.

This is trivial when n = 0, so assume n � 1. We consider two cases:

Case 1. The range {m+1, . . . ,m+n−1} does not contain a power of b . In this
case, there is p ∈ Z+ such that bp � m � m+n−1 < bp+1 . So we can subtract 1 from
the first digit of each number m, . . . ,m+n−1 and obtain

Σ(m,m+n) = n+ Σ(m−bp,m+n−bp)
= n+S(m+n−bp)−S(m−bp)
� n+S(n)+min{m−bp,n}
� n+ Σ(0,n).

Case 2. The range {m+1, . . . ,m+n−1} contains a power of b ; say m+ j = bp ,
where 1 � j < n . Since subtracting bp maps {m+ j, . . . ,m+n−1} onto {0, . . . ,n−
j−1} , we see that

Σ(m+ j,m+n) = Σ(0,n− j)+n− j. (9)

On the other hand, by Lemma 5,

Σ(m,m+ j)−Σ(n− j,n) = Σ(m+ j−n,m+2 j−n)−Σ(0, j).

Since j < n , the induction hypothesis implies

Σ(m+ j−n,m+2 j−n)= S((m+ j−n)+ j)−S(m+ j−n)
� S( j)+ j = Σ(0, j)+ j.

Hence,
Σ(m,m+ j)−Σ(n− j,n) � j. (10)

Combining (9) and (10) yields

Σ(m,m+n)−Σ(0,n) = Σ(m+ j,m+n)+ Σ(m,m+ j)−Σ(0,n)
= Σ(m,m+ j)−Σ(n− j,n)+n− j

� j +(n− j) = n,

as required. �
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REMARK 6. The inequality (2) is sharp in the sense that equality holds whenever
n is a power of b and m < n .

The following identity is well known for the case b = 2; see McIlroy [9, eq. (4a)].

LEMMA 7. For each m ∈ N ,

Sb(bm) = bSb(m)+
b(b−1)m

2
.

Proof. For each number j ∈ {0, . . . ,m− 1} and r ∈ {0, . . . ,b− 1} , sb(b j + r) =
sb( j)+ r . Summing over r and then over j gives the lemma. �

Proof of Theorem 2. Note first that (3) can be stated equivalently as

Σ(m,m+ k+ l)−Σ(m− k,m)−Σ(m− l,m)� 2k+ l, (11)

where the omitted subscript is understood to be b = 3. We use induction on the sum
m+ k+ l . The statement is trivial for all m when k = l = 0. Let N ∈ N , and assume
(11) holds whenever m+k+ l < N . Suppose (k, l,m) is a triple with 0 � l � k � m and
m+k+ l = N . If m � 2(k+ l) , then 2m−k− l � m+k+ l and so a double application
of Theorem 1 gives

S(3m) � S(m+ k+ l)+S(2m− k− l)+(2m− k− l)
� S(m+ k+ l)+S(m− k)+S(m− l)+(m− k)+(2m− k− l)
= S(m+ k+ l)+S(m− k)+S(m− l)+3m− (2k+ l).

On the other hand, S(3m) = 3S(m)+ 3m by Lemma 7, and combining these results
gives (3). In the remainder of the proof we may therefore assume that m > 2(k + l) .
Since l � k , this implies that

m+ k+ l < 2(m− l), (12)

and
m+ k+ l < 3(m− k). (13)

Hence, the range {m− k, . . . ,m+ k+ l−1} contains at most one power of 3.

Case 1. The range {m− k+ 1, . . . ,m− 1} does not contain a power of 3. Then there
is i ∈ {1,2} and p ∈ Z+ such that 3pi � m− k � m− 1 < 3p(i+ 1) , so the numbers
m− k, . . . ,m−1 all have leading ternary digit i . Hence,

Σ(m− k,m) = Σ(m− k−3pi,m−3pi)+ ki,

and likewise,
Σ(m− l,m) = Σ(m− l−3pi,m−3pi)+ li.
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On the other hand, for each n ∈ N we have s(n+ 3pi) � s(n)+ i in view of (8), and
therefore

Σ(m,m+ k+ l) � Σ(m−3pi,m+ k+ l−3pi)+ (k+ l)i.

Hence, setting m′ = m−3pi , we have

Σ(m,m+ k+ l)−Σ(m− k,m)−Σ(m− l,m)
� Σ(m′,m′ + k+ l)−Σ(m′ − k,m′)−Σ(m′ − l,m′)
� 2k+ l,

where the last inequality uses the induction hypothesis.

Case 2. The range {m− k + 1, . . . ,m− 1} contains a power of 3. Say m− j = 3p ,
where 0 < j < k . We consider two subcases:

Case 2a. The power of 3 is among m− k + 1, . . . ,m− l , so l � j < k . By the
induction hypothesis (with j in place of k ),

Σ(m,m+ j + l)−Σ(m− j,m)−Σ(m− l,m)� 2 j + l. (14)

Next, placing a digit “2” in front of the numbers m− k, . . . ,m− j− 1 increases their
digital sums by exactly 2, so that

Σ(m− k,m− j) = Σ(m− k+2 ·3p,m− j +2 ·3p)−2(k− j).

By (13), the numbers m+ j+ l, . . . ,m+k+ l−1 are strictly smaller than 3p+1 . Hence,
by Theorem 1 and Lemma 5,

Σ(m− k+2 ·3p,m− j +2 ·3p) � Σ(m+ j + l,m+ k+ l),

and so
Σ(m− k,m− j) � Σ(m+ j + l,m+ k+ l)−2(k− j). (15)

Combining (14) and (15) gives (11).

Case 2b. The power of 3 is among m− l + 1, . . . ,m− 1, so 0 < j < l . By the
induction hypothesis (with j in place of l ),

Σ(m,m+ k+ j)−Σ(m− k,m)−Σ(m− j,m)� 2k+ j. (16)

Now by (12), the first digit of m+ k+ l−1 must be a “1”. We can now place a “1” in
front of each number m− l, . . . ,m− j−1 and use Theorem 1 and Lemma 5 to obtain

Σ(m− l,m− j) = Σ(m− l +3p,m− j +3p)− (l− j)
� Σ(m+ k+ j,m+ k+ l)− (l− j).

Along with (16), this yields (11). �

The proof of Theorem 3 uses the following lemma, whose easy proof is left as an
exercise for the interested reader.
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LEMMA 8. For each k ∈ N , there exist integers p � 0 and j � [(b+1)/2] such
that k � jbp < 2k .

Proof of Theorem 3. Fix m . We use induction on k . The statement is trivial
when k = 0, so let 1 � l � m and assume (4) holds for all k < l , with strict inequality
in case b is odd. By Lemma 8, there exist integers p � 0 and j � [(b+ 1)/2] such
that l � jbp < 2l . Thus for each r ∈ {m− l, . . . ,m + l − jbp − 1} , we have r < m ,
r+ jbp ∈ {m, . . . ,m+ l−1} and, by (8), sb(r+ jbp) � sb(r)+ j . Hence,

Σ(m− l + jbp,m+ l)−Σ(m− l,m+ l− jbp) � j(2l− jbp)

�
[
b+1

2

]
(2l− jbp). (17)

And the induction hypothesis applied to k = jbp− l gives

Σ(m,m− l + jbp)−Σ(m+ l− jbp,m) �
[
b+1

2

]
( jbp − l), (18)

since jbp − l < l . Adding inequalities (17) and (18) yields

Σ(m,m+ l)−Σ(m− l,m) �
[
b+1

2

]
l, (19)

so (4) holds also for k = l . Statement (ii) of the theorem follows immediately from (4)
by rearranging terms and dividing by 2k .

We next demonstrate strict inequality when b is odd. Assume first that l is of the
form l = jbp . (This includes the case l = 1.) If j < (b+1)/2 we have strict inequality
in (17), so assume that j = (b+ 1)/2. But then 2l > bp+1 , so we can replace p with
p + 1 and j with 1 in the induction argument above, and once again obtain strict
inequality in (17), since 1 < (b+1)/2 for odd b .

When l is not of the form jbp , the induction hypothesis is used with k = jbp− l >
0, giving strict inequality in (18). Thus, in both cases, we have strict inequality in (19).

Finally, we show that the inequality is sharp. For even b , take m = k = bn/2 for
any n ∈ N . It is easy to calculate inductively, using Lemma 7, that

Sb(bn)−2Sb

(
bn

2

)
=

bn+1

4
=
[
b+1

2

]
· b

n

2
,

obtaining equality in (4). (The base case n = 1 is left as an exercise for the interested
reader.) When b is odd, the computation is more tedious. Here we take m = k = kn :=
(bn−1)/2, and claim that

Sb(2kn)−2Sb(kn) =
b+1

2
kn − (b−1)n

2
, (20)

so that
Sb(2kn)−2Sb(kn)

kn
→ b+1

2
=
[
b+1

2

]
, as n → ∞ .
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To derive (20) we start with the well-known observation that, for any b ,

Sb(bn) =
nbn(b−1)

2
, n ∈ N.

From this, we obtain

Sb(2kn) = Sb(bn)− sb(bn−1) =
nbn(b−1)

2
−n(b−1). (21)

The computation of Sb(kn) may be done inductively, using the recursion kn+1 = bkn +
(b−1)/2. For 0 � m < b and k ∈ N we have

Sb(bk+m) = Sb(bk)+
m−1

∑
j=0

sb(bk+ j),

and since sb(bk+ j) = sb(k)+ j for 0 � j < b , this leads via Lemma 7 to a recursion for
Sb(kn) , noting that sb(kn) = n(b−1)/2. One can then inductively verify the formula

Sb(kn) =
bn−1

4

(
n(b−1)− b+1

2

)
.

This, together with (21), leads after some more manipulations to (20). �

To prove Theorem 4, we will demonstrate a slightly stronger result. Define a
partial order ≺b on N by n ≺b m if and only if αi(n;b) � αi(m;b) for every i .

THEOREM 9. Fix b � 2 . For each k ∈ N , the numbers 0,1, . . . ,bk− 1 can be
arranged in a b× k matrix Ak = [ai, j]

b,k
i=1, j=1 such that:

(i) a1, j = j−1 for j = 1, . . . ,k ;

(ii) a1, j ≺b ai, j for i = 1, . . . ,b and j = 1, . . . ,k ; and

(iii) ai, j − a1, j is the sum of exactly i− 1 powers of b; that is, sb(ai, j) = sb(a1, j)+
i−1 , for i = 1, . . . ,b and j = 1, . . . ,k .

An example of such an arrangement for b = 3 and k = 5 is

A5 =

⎡
⎣ 0 1 2 3 4

9 10 11 6 5
12 13 14 7 8

⎤
⎦ .

Note that the arrangement is by no means unique: in the above example we could
interchange 6 and 12, or 5 and 7, etc.

We prove Theorem 9 by describing a simple algorithm for constructing the matrix
Ak . This requires some terminology and a lemma. Fix b � 2. Suppose a finite set of
pegs are placed in a finite rectangular array of holes. A hole has position (i, j) if it is
the j th hole (from the left) in the i th row (from the top). For k ∈ Z+ , a bk -shift is the
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move of a peg from any position (i, j) with j > bk to the new position (i+1, j−bk) .
In other words, a bk -shift moves a peg bk columns to the left and one row down. A
power shift is any bk -shift, where k ∈ Z+ . A bk -shift from (i, j) to (i+ 1, j− bk) is
permissible if position (i+ 1, j− bk) is not yet occupied and there is l ∈ N such that
(l−1)bk+1 < j−bk < j � lbk+1 .

LEMMA 10. For any n ∈ N , a single row of n pegs can be rearranged by a finite
sequence of permissible power shifts into a table of b rows and �n/b� columns so that
each column except possibly the last contains b pegs, and in the last column no peg is
placed below an empty hole.

Proof. For k ∈ Z+ , let a k -tableau be an arrangement of b rows of pegs (possibly
empty), aligned on the left and ordered by decreasing length, with the property that each
row except perhaps one contains either zero or bk pegs. We claim that any k -tableau
can be arranged by permissible power shifts into a table as described in the lemma. This
is trivial for k = 0, as a 0-tableau already has the required form. Suppose the claim is
true for some arbitrary k ∈ Z+ , and let a (k+1)-tableau be given. Then some number
f � 0 of rows (at the top of the table) contain bk+1 pegs, row f + 1 contains some
number m of pegs (0 � m < bk+1 ), and the remaining b− f −1 rows are empty. Note
that in this tableau all bk -shifts to empty holes are permissible.

Let l ∈ {1, . . . ,b} be such that (l−1)bk � m < lbk . After performing all permis-
sible bk -shifts, the tableau is transformed into a new table with:

(i) l−1 rows of ( f +1)bk pegs; followed by

(ii) one row of f bk +m− (l−1)bk pegs; followed by

(iii) b− l rows of f bk pegs.

In this new table, each row is at least f bk long, and columns f bk +1, . . . ,( f +1)bk form
a k -tableau, which by the induction hypothesis can be rearranged as required. Together
with the first f bk columns, this gives a rearrangement of the entire (k + 1)-tableau as
required.

The statement of the lemma now follows because a row of n � 2 pegs can be
trivially turned into a k -tableau by adding b− 1 empty rows, where k is the integer
such that bk−1 < n � bk . �

Proof of Theorem 9. We may apply Lemma 10 with n = bk to see that the single
row containing the numbers 0,1, . . . ,bk−1 in increasing order may be rearranged into a
b×k matrix [ai, j] by permissible power shifts only. Clearly, the first row of this matrix
contains the numbers 0,1, . . . ,k − 1 in increasing order (since no numbers are ever
moved into the first row by power shifts), so (i) is satisfied. We show (ii) by induction
on i . Note that (ii) is trivial for i = 1. Fix j ∈ {1, . . . ,k} , and suppose a1, j ≺b ai, j . The
number ai+1, j was last moved from a position in row i by shifting it some distance br

to the left. Since this was a permissible move, we have j− 1 ≺b j + br − 1, in other
words, a1, j ≺b a1, j+br . But ai+1, j had arrived at its position in row i by a sequence of
permissible moves, so by the induction hypothesis, a1, j+br ≺b ai+1, j . Hence, a1, j ≺b
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ai+1, j . This proves (ii). Property (iii) follows from (ii), as clearly ai, j −a1, j is a sum of
i−1 powers of b . �

Proof of Theorem 4. Observe that, in terms of the notation Σb(s, t) , we are to
prove that

Σb(n,n+bk) � bΣb(n,n+ k)+
b(b−1)

2
k. (22)

Let [ai, j]
b,k
i=1, j=1 be a matrix satisfying the conclusion of Theorem 9. Note that

Σb(n,n+ k) =
k

∑
j=1

sb(n+ j−1) =
k

∑
j=1

sb(ai, j +n),

and

Σb(n,n+bk) =
bk

∑
j=1

sb(n+ j−1) =
b

∑
i=1

k

∑
j=1

sb(ai, j +n).

By property (iii) of Theorem 9 and (8), sb(ai, j +n)− sb(a1, j +n) � i−1. Hence,

Σb(n,n+bk) �
b

∑
i=1

k

∑
j=1

{sb(a1, j +n)+ i−1}

= b
k

∑
j=1

sb(a1, j +n)+ k
b

∑
i=1

(i−1)

= bΣb(n,n+ k)+
b(b−1)

2
k,

completing the proof. �

Note that property (ii) of Theorem 9 was not needed in the last proof. However,
dropping the requirement (ii) from Theorem 9 does not appear to lead to a simpler
proof, whereas including it adds to the independent interest of that theorem.

3. Application to approximate convexity

Delange [3] introduced the functions

hb(x) =
∞

∑
n=0

b−ngb(bnx),

where for each b � 2, gb is the 1-periodic continuous function defined on [0,1) by

gb(x) =
∫ x

0

(
b−1

2
− [bt]

)
dt.

For the case b = 2, we have g2(x) = (1/2)dist(x,Z) , where dist(x,Z) denotes the dis-
tance from x to the nearest integer, and hence h2 is one-half times the Takagi function
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[11]. The relationship between the Takagi function and the binary digital sum S2 was
first established by Trollope [12]. Delange [3] generalized this relationship by showing
that, for each n ∈ N ,

Sb(n) =
b−1

2
n logb n+nF(logb n), (23)

where

F(x) =
b−1

2
(1−{x})−b1−{x}hb(b{x}−1),

in which {x} := x− [x] denotes the fractional part of x . (The function h in Delange’s
paper is actually −hb ; the reason for the present representation is that hb is actually
nonnegative, as is easily verified.) In addition to establishing (23), Delange [3] proves
that hb is nowhere differentiable for each b � 2.

A different sequence of functions was recently introduced by Lev [6]. For b ∈ N ,
let φb(x) = min{dist(x,Z),1/b} , and define the function

ωb(x) :=
∞

∑
n=0

b−nφb(bnx).

Lev demonstrates a direct connection between ωb(x) and the edge-isoperimetric prob-
lem for Cayley graphs of homocyclic groups of exponent b . Comparison with De-
lange’s functions shows that ω2 = 2h2 , and ω3 = h3 . After that, the two sequences
go their separate ways: For b � 4, there is no direct relationship between hb and ωb ,
although ω4 = (1/2)ω2 = h2 .

For the Takagi function ω2 , Boros [2] proved the inequality

ω2

(
x+ y

2

)
� ω2(x)+ ω2(y)

2
+

|y− x|
2

, (24)

which had been conjectured by Házy and Páles [5]. We will show here that all of
Delange’s functions satisfy an inequality similar to (24).

THEOREM 11. Let b � 2 . For all real x and y with x < y, we have

hb

(
x+ y

2

)
� hb(x)+hb(y)

2
+

1
4

[
b+1

2

]
(y− x). (25)

For ω3 = h3 , Lev [6, Theorem 3] proves the following interesting inequality,
which develops the Boros-Pales inequality in a different but equally natural direction.

THEOREM 12. (Lev, 2012) For all real x , y and z with x � y � z, we have

h3

(
x+ y+ z

3

)
� h3(x)+h3(y)+h3(z)

3
+

1
3
(z− x). (26)
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It is straightforward to deduce Theorems 11 and 12 from Theorems 3 and 2, re-
spectively. The key is to derive an expression for hb at points of the form x = k/bn in
terms of Sb , and to use the continuity of hb .

We first define the partial sums

h(n)
b (x) =

n−1

∑
k=0

b−kgb(bkx),

and note that for k ∈ Z , hb(k/bn) = h(n)
b (k/bn) . For x ∈ [0,1) , let x = ∑∞

i=1 εi(x)b−i

denote the b -ary expansion of x , where εi(x) ∈ {0,1, . . . ,b− 1} . If x is of the form
x = k/bn , we take the expansion ending in all zeros. Observe that for each x ∈ (0,1) ,
the right-hand derivative of gb at x is (b−1)/2− ε1(x) . Hence, by the periodicity of

gb , the slope of h(n)
b at any point x not of the form k/bn is

n

∑
k=1

(
b−1

2
− εk(x)

)
=

b−1
2

n−
n

∑
k=1

εk(x).

This simple observation yields the formula

hb

(
k
bn

)
−hb

(
k−1
bn

)
= b−n

(
b−1

2
n− sb(k−1)

)
,

and hence,

hb

(
k
bn

)
= b−n

(
b−1

2
kn−

k−1

∑
i=0

sb(i)

)
= b−n

(
b−1

2
kn−Sb(k)

)
. (27)

Proof of Theorem 11. Assume first that there exist nonnegative integers n , m and
k such that

x =
m− k
bn , y =

m+ k
bn , (28)

so that (x+ y)/2 = m/bn . One verifies easily using (27) that

2hb

( m
bn

)
−hb

(
m− k

bn

)
−hb

(
m+ k

bn

)
=

Sb(m− k)+Sb(m+ k)−2Sb(m)
bn ,

since the terms involving (b−1)/2 cancel. Thus, Theorem 3 gives (25) for x and y of
the form (28), as k/bn = (y− x)/2. But any two real points x and y with x < y can be
approximated arbitrarily closely by points x′ and y′ of the form (28). Thus, the proof
is completed by using the continuity of hb . �

Proof of Theorem 12. Let 0 � x � y � z , and put a = (x+y+ z)/3. By symmetry
of h3 , we may assume without loss of generality that y � (x + z)/2, so that x � y �
a � z . Since h3 is continuous, we may assume further that x,y,z and a are all triadic
rational; that is, there exist nonnegative integers n,m,k and l with m � k � l such that

a =
m
3n , x =

m− k
3n , y =

m− l
3n , z =

m+ k+ l
3n .
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Upon multiplying both sides by 3, we can write (26) for this case as

3h3

(m
3n

)
� h3

(
m− k

3n

)
+h3

(
m− l
3n

)
+h3

(
m+ k+ l

3n

)
+

2k+ l
3n .

By (27), this is equivalent to

3(mn−S3(m)) � [(m− k)n−S3(m− k)]+ [(m− l)n−S3(m− l)]
+[(m+ k+ l)n−S3(m+ k+ l)]+ (2k+ l),

and this simplifies to (3). �

Note that the number n disappears from the inequality in the end. This suggests
that Lev’s approach of induction on n is perhaps not the most natural. While the above
proof uses Theorem 2, whose proof is quite long, Lev’s original proof is rather lengthy
as well, and the present proof seems to be conceptually more pleasing.
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[8] C. MAUDUIT AND A. SÁRKÖZY, On the arithmetic structure of the integers whose sum of digits is

fixed, Acta Arith. 81 (1997), no. 2, 145–173.
[9] M. D. MCILROY, The number of 1’s in binary integers: bounds and extremal properties, SIAM J.

Comput. 3 (1974), no. 4, 255–261.
[10] K. B. STOLARSKY,Power and exponential sums of digital sums related to binomial coefficient parity,

SIAM J. Appl. Math. 32 (1977), no. 4, 713–730.
[11] T. TAKAGI, A simple example of the continuous function without derivative, Phys.-Math. Soc. Japan

1 (1903), 176–177, The Collected Papers of Teiji Takagi, S. Kuroda, Ed., Iwanami (1973), 5–6.
[12] J. R. TROLLOPE, An explicit expression for binary digital sums, Math. Mag. 41 (1968), 21–25.

(Received August 22, 2012) Pieter C. Allaart
Department of Mathematics

University of North Texas
1155 Union Circle #311430

Denton, TX 76203-5017, USA
e-mail: allaart@unt.edu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


