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EIGENVALUE DECAY OF INTEGRAL OPERATORS

GENERATED BY POWER SERIES–LIKE KERNELS

D. AZEVEDO AND V. A. MENEGATTO

Abstract. We deduce decay rates for eigenvalues of integral operators generated by power series-
like kernels on a subset X of either Rq or Cq . A power series-like kernel is a Mercer kernel
having a series expansion based on an orthogonal family { fα}α∈Z
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in L2(X ,μ) , in which μ
is a complete measure on X . As so, we show that the eigenvalues of the integral operators are
given by an explicit formula defined by the coefficients in the series expansion of the kernel and
the elements of the orthogonal family. The inequalities and, in particular, the decay rates for the
sequence of eigenvalues are obtained from decay assumptions on the sequence of coefficients in
the expansion of the kernel and on the sequence {‖ fα‖}α∈Z
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