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Abstract. We deduce decay rates for eigenvalues of integral operators generated by power series-
like kernels on a subset X of either Rq or Cq . A power series-like kernel is a Mercer kernel
having a series expansion based on an orthogonal family { fα}α∈Z

q
+

in L2(X ,μ) , in which μ
is a complete measure on X . As so, we show that the eigenvalues of the integral operators are
given by an explicit formula defined by the coefficients in the series expansion of the kernel and
the elements of the orthogonal family. The inequalities and, in particular, the decay rates for the
sequence of eigenvalues are obtained from decay assumptions on the sequence of coefficients in
the expansion of the kernel and on the sequence {‖ fα‖}α∈Z

q
+

.

1. Introduction

Let X be a nonempty subset of either R
q or C

q endowed with a complete measure
μ and consider the space L2(X) := L2(X ,μ) . If K is a convenient positive definite
kernel on X then the formula

K ( f ) =
∫

X
K(·,w) f (w)dμ(w), f ∈ L2(X), (1)

defines a compact, positive and self-adjoint operator K : L2(X) → L2(X) . If we order
the eigenvalues of K such as

λ1(K ) � λ2(K ) � · · · � 0,

taking into account multiplicities, the basic decay λn(K ) = o(n−1) , as n → ∞ , holds.
A common problem in Applied Functional Analysis is then to search for improved
decay rates for the sequence {λn(K )} under additional assumptions on either K or
K itself. Usually, these assumptions depend on the additional structure the set X may
carry. We refer the reader to [1, 3, 5, 6, 9, 12] and references therein for decay rates in
some specific cases. Related material on the same topic can be found in [4, 14] while
general information is available in the classical references [8, 10]. We observe that in
some cases, it is also quite natural to analyze the sharpness of the rates obtained within
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the setting considered, but that will be not an issue here. In any case, we advise the
reader that our estimates along the paper are sharp.

In this paper, we will consider measurable kernels defined by expansions of the
form

K(z,w) = ∑
α∈Z

q
+

aα fα (z) fα (w), z,w ∈ X , (2)

in which {aα} ⊂ (0,∞) and the sequence { fα : α ∈ Z
q
+} is orthogonal (but not or-

thonormal) in L2(X) , that is,

〈 fα , fβ 〉2 :=
∫

X
fα(z) fβ (z)dμ(z) = 0, α �= β ,

and 0 �= 〈 fα , fα 〉2 �= 1, α ∈ Z
q
+ . The introduction of a setting as above, using an or-

thogonal family in the representation (2), instead of an orthonormal one, has some
reasons as we now explain. Depending on the set X , one can consider kernels defined
by monomial expansions, that is,

fα (z) = zα , z ∈ X , α ∈ Z
q
+.

The computations with sequences of this type may be easier to handle than those with
a general orthonormal sequence, which may include more complicated functions. For
instance, if the setting is carefully defined or chosen, the eigenvalues of the integral op-
erator can be computed through simple formulas involving elements of the sequences
{aα} and {‖ fα‖2} , where ‖ · ‖2 denotes the usual norm in L2(X) . As a consequence,
the decay for the sequence of eigenvalues can be obtained from decays for the sequences
{aα} and {‖ fα‖2} directly. A prominent example is the case in which X is a sphere or
a disk in Cq and μ is the Lebesgue measure on X . The setting we will adopt contem-
plates the features mentioned above and that justifies the use of the terminology “power
series-like kernels” in the title of the paper.

If the integral operator has a series representation that agrees with that provided by
the spectral theorem for compact and self-adjoint operators on a Hilbert space, then the
eigenvalues can be somehow computed. In Section 2, we describe two paths one can
follow in order to achieve such a representation in the setting we have chosen. Keeping
the setting described in Section 2, we will use Sections 3 and 4 to deduce decay rates
for the sequence of eigenvalues of K from decay assumptions on {aα} and {‖ fα‖2} .
In Section 5, we discuss upon two relevant examples that fit into the setting considered
in the paper, a case we intended to cover from the beginning.

2. Matching the spectral theorem

Let K and K be as in (2) and (1) respectively. A first critical step is to define rea-
sonable assumptions in order that K be a well defined compact and positive operator
on L2(X) possessing a series representation agreeing with that provided by the well-
know spectral theorem for compact and self-adjoint operators on Hilbert spaces. In this
section, we assume Z

q
+ is partially ordered and describe a general way of achieving
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that. All convergence and summation appearing ahead need to be in consonance with
the partial order adopted in Z

q
+ .

Compactness and positivity of K as an operator on L2(X) can be reached as
follows.

PROPOSITION 1. If ∑α aα‖ fα‖2
2 < ∞ then K is a well-defined compact, positive

and self-adjoint operator on L2(X) .

Proof. Assume ∑α aα‖ fα‖2
2 < ∞ . An application of [7, p. 55] reveals that

∫
X
∑
α

aα | fα (z)|2 dμ(z)
∫

X
∑
α

aα | fα (w)|2dμ(w) =
(

∑
α

aα‖ fα‖2
2

)2

.

Coupling this information with an application of the Cauchy-Schwarz inequality leads
to ∫

X

∫
X

(
∑
α

a1/2
α | fα(z)|a1/2

α | fα(w)|
)2

dμ(z)dμ(w) �
(

∑
α

aα‖ fα‖2
2

)2

.

Using the same symbol ‖ ·‖2 to denote the usual norm in L2(X ×X) := L2(X ×X ,μ ×
μ) , the Fubini-Tonelli Theorem authorizes us to write

||K||22 =
∫

X×X

∣∣∣∣∑
α

aα fα (z) fα (w)
∣∣∣∣
2

d(μ × μ)(z,w)

�
∫

X

∫
X

(
∑
α

a1/2
α | fα (z)|a1/2

α | fα (w)|
)2

dμ(z)dμ(w).

Therefore, ||K||22 < ∞ and a well-known result from functional analysis implies that K
is a compact operator from L2(X) into itself ([2, p. 86]). As for the positivity, Hölder’s
inequality validates the inequality

∑
α

aα

∫
X×X

∣∣∣ fα (z) fα (w) f (z) f (w)
∣∣∣d(μ × μ)(z,w) � ‖ f‖2

2 ∑
α

aα‖ fα‖2
2,

for f ∈ L2(X) . As so, we can interchange the integral and summation symbols to de-
duce that

〈K ( f ), f 〉2 = ∑
α

aα

∫
X×X

fα (z) fα (w) f (z) f (w)d(μ × μ)(z,w), f ∈ L2(X).

Iterating once again leads to

〈K ( f ), f 〉2 = ∑
α

aα

∫
X

fα(z) f (z)dμ(z)
∫

X
fα (w) f (w)dμ(w), f ∈ L2(X),

that is,
〈K ( f ), f 〉2 = ∑

α
aα |〈 f , fα 〉2|2 � 0, f ∈ L2(X).

The proof is complete. �



696 D. AZEVEDO AND V. A. MENEGATTO

REMARK 1. The equality
∫

X
K(x,x)dμ(x) =

∫
X
∑
α

aα fα (x) fα (x)dμ(x) = ∑
α

aα‖ fα‖2
2,

shows that the assumption ∑α aα‖ fα‖2
2 < ∞ used in the previous theorem is equivalent

to the integrability of the function x ∈ X → K(x,x) . In particular, the operator K is
also trace-class.

Let us move to a series representation for K . A sole representation can be reached
as follows.

PROPOSITION 2. Assume the following assumptions hold:
(i) supα | fα (z)| < ∞ for every z in X ;
(ii) ∑α aα‖ fα‖2 < ∞ .
Then K has a series expansion in the form

K ( f ) = ∑
α

aα〈 f , fα 〉2 fα , f ∈ L2(X).

Proof. Fix z ∈ X . If supα | fα(z)| < ∞ , Hölder’s inequality implies that

∑
α

aα

∫
X
| fα (z)|| fα (w)|| f (w)|dμ(w) � ‖ f‖2 sup

α
| fα (z)|∑

α
aα‖ fα‖2 < ∞.

So, we can interchange the summation and integral symbols to deduce that

K ( f )(z) =
∫

X
∑
α

aα fα (z) fα (w) f (w)dμ(w)

= ∑
α

aα〈 f , fα 〉2 fα (z), f ∈ L2(X).

The proposition is proved. �

REMARK 2. If μ(X) < ∞ , assumptions (i) and (ii) can be replaced with the sole
assumption ∑α aα || fα ||22 < ∞ . Indeed, due to the inequality

∫
X

F(z)dμ(z) = ∑
α

aα

∫
X
| fα(z)|dμ(z)

∫
X
| fα(w)|| f (w)|dμ(w)

� μ(X)1/2|| f ||2 ∑
α

aα || fα ||22,

the function F given by the formula

F(z) = ∑
α

aα

∫
X
| fα (z)|| fα (w)|| f (w)|dμ(w), z ∈ X ,
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would be integrable. Consequently, it would be finite a.e. and, therefore,

∑
α

aα

∫
X
| fα(z)|| fα (w)|| f (w)|dμ(w) < ∞, z ∈ X a.e..

But, Proposition 2.20 in [7] reveals that {z ∈ X : | fα (z)| = ∞} has measure 0, as long
as fα ∈ L1(X) .

A basic representation for K implied by the assumption used in Proposition 1 is
as follows. Here, it is convenient to assume that the partial order 	 in Z

q
+ does not

deviate from the expected in the following sense: α 	 β whenever |α| � |β | .

PROPOSITION 3. If ∑α aα‖ fα‖2
2 < ∞ then K has a series expansion in the form

K ( f ) =
∞

∑
|α |=0

aα〈 f , fα 〉2 fα , f ∈ L2(X).

Proof. If ∑α aα‖ fα‖2
2 < ∞ , we can imitate the proof of Proposition 1 to show that

the formula

Kn( f )(x) =
∫

X

(
n−1

∑
|α |=0

aα fα(x) fα (y)

)
f (y)dμ(y), x ∈ X , f ∈ L2(X),

generates a well-defined integral operator Kn : L2(X) → L2(X) . Hölder’s inequality
implies that

‖K ( f )−Kn( f )‖2
2 � ‖ f‖2

2

(
∞

∑
|α |=n

aα‖ fα‖2
2

)2

, f ∈ L2(X).

But,

Kn( f )(x) =
n−1

∑
|α |=0

aα〈 f , fα 〉2 fα (x), x ∈ X , f ∈ L2(X),

and the result follows.
The convenience of the assumption from Proposition 1 is justified by the following

result.

COROLLARY 1. If ∑α aα‖ fα‖2
2 < ∞ then the series representation for K pro-

vided by Proposition 1 holds.

Proof. The convergence ∑α aα‖ fα‖2
2 < ∞ implies that each one of the series

∑α aα〈 f , fα 〉2 fα is absolutely convergent. In particular, the series is unconditionally
convergent in L2(X) . As so, its convergence in L2(X) occurs in any order. �

If the outcomes in either Propositions 1 and 2 hold then each number

λα(K ) = aα‖ fα‖2
2, α ∈ Z

q
+,
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is an eigenvalue of K with corresponding eigenfunction fα . Since { fα : α ∈ Z
q
+} is

orthogonal, these are the only nonzero eigenvalues of K . Indeed, if K (g) = λg for
some g �= 0 and 0 �= λ �∈ {aα〈 fα , fα 〉2 : α ∈Z

q
+} then g is orthogonal to every fα and,

consequently,
λg = K (g) = ∑

α
aα〈g, fα 〉2 fα = 0,

a contradiction.

3. Eigenvalue estimates

From now on, we will assume Z
q
+ is partially ordered as described in the paragraph

preceding Proposition 3.
Throughout the section we will consider the integral operator (1) generated by a

kernel as described in (2) and fulfilling the following assumptions: supα | fα (z)| < ∞
for every z in X , ∑α aα‖ fα‖2 < ∞ and {‖ fα‖2} is bounded. As so, the representa-
tion in Proposition 3 holds and the convergence of the series ∑α aα‖ fα‖2

2 implies that
lim|α |→∞ λα(K ) = 0. The intention here is to describe decay rates for {λα(K )} as
|α| → ∞ from decay rates for both {aα} and {‖ fα‖2} . The boundedness assumption
on {‖ fα‖2} is plainly justified, since it is an immediate consequence of any basic decay
assumption on {‖ fα‖2} as |α| → ∞ .

The following result from calculus, not easily found in the literature, plays an
important role in some of our proofs. An elementary proof of such result is included for
the convenience of the reader while a more elaborated one can be found in [11].

LEMMA 1. Let {dn} be a decreasing sequence of positive real numbers and r
and s fixed positive real numbers. If ∑∞

n=1 nrds
n converges then

dn = o(n−(r+1)/s) as n → ∞.

Proof. Let ε > 0. If the sequence {nrds
n} is summable then it converges to 0. As

so, we can select N > 0 so that

2k

∑
n=k+1

nrds
n <

ε
22r+2 , k > N.

It is now clear that

kr+1ds
2k =

2k

∑
n=k+1

krds
2k �

2k

∑
n=k+1

nrds
n <

ε
22r+2 , k > N,

that is,

(2k)r+1ds
2k <

ε
2r+1 < ε, k > N.

On the other hand, since

(2k+1)r+1ds
2k+1 =

(
1+

1
2k

)r+1

(2k)r+1ds
2k+1 � 2r+1(2k)r+1ds

2k,
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then
(2k+1)r+1ds

2k+1 < ε, k > N.

Thus,
kr+1ds

k < ε, k > 2N +1.

We have proved that {nr+1ds
n} converges to 0 as n → ∞ and that implies the assertion

of the lemma. �
The basic setting adopted in this section provides the convergence of

{∑|α |=n λα(K )} to 0 but not the monotonicity of the sequence. In the next two re-
sults, we will assume that {∑|α |=n λα(K )} decreases to 0 but will not mention that in
the statements of the results.

PROPOSITION 4. If there exists a nonnegative number r such that ‖ fα‖2 =
O(|α|−r) as |α| → ∞ then

λα(K ) = o(|α|−1−r) as |α| → ∞.

Proof. If ‖ fα‖2 = O(|α|−r) as |α| → ∞ then there exists C > 0 so that

‖ fα‖2 � C|α|−r, α ∈ Z
q
+.

This leads to the obvious inequality

nr ∑
|α |=n

λα(K ) � C ∑
|α |=n

aα‖ fα‖2, n = 1,2, . . . , (3)

and that implies

∞

∑
n=0

nr ∑
|α |=n

λα(K ) � C
∞

∑
n=0

∑
|α |=n

aα‖ fα‖2 = C∑
α

aα‖ fα‖2 < ∞. (4)

Applying the lemma, we deduce that

∑
|α |=n

λα(K ) = o(n−1−r) as n → ∞.

The assertion of the proposition follows. �
If a decay for the sequence {aα} is to be taken into account, then the procedure

used in the proof of the previous proposition can be adapted as follows.

PROPOSITION 5. If there exists a nonnegative number r such that ‖ fα‖2 =
O(|α|−r) as |α| → ∞ and also a positive number s so that aα = O(|α|−s) as |α| → ∞
then

λα(K ) = O(|α|−2r−s) as |α| → ∞

and

∑
|α |=n

λα(K ) = O(|α|−1−2r−s+q) as |α| → ∞.
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Proof. The first decay is obvious. As for the other, following the steps of the proof
of Proposition 4 leads to

n2r+s ∑
|α |=n

λα(K ) � C′bq
n, n = 1,2, . . . ,

for some C′ > 0, in which bq
n is the cardinality of Bq

n := {α ∈ Z
q
+ : |α| = n} . Clearly,

bq
n :=

(
q−1+n

q−1

)
= O(nq−1), as n → ∞,

and the previous inequality implies that

n2r+s−q+1 ∑
|α |=n

λα(K ) � C′′, n = 1,2, . . . ,

for some C′′ > 0. The assertion of the proposition follows. �
The second decay provided by the previous proposition is meaningful whenever

2r+ s � q , even though we did not enforce that in the statement of the result.

4. Eigenvalue estimates taking into account the order in Z
q
+

In this section, the basic assumptions introduced in previous section will be kept.
Since ∑α aα‖ fα‖2

2 < ∞ , the sequence {λα(K )} decreases to 0 with respect to the
order 	 . We will re-index the sequence as

λ1(K ) � λ2(K ) � · · · � 0,

abandoning the multi-index counter appearing in the previous notation, and deduce
decay rates for {λn(K )} , as n → ∞ .

The first result in this new notation is as follows.

THEOREM 1. If there exists a real number r so that ‖ fα‖2 = O(|α|−r) as |α| →
∞ then

λn(K ) = o(n−1−r/q) as n → ∞.

Proof. It suffices to modify the proof of Proposition 5 in accordance with the re-
ordering mentioned above. First of all, inequality (4) can be upgraded to

∞

∑
n=0

bq
nn

rλbq
0+···+bq

n
(K ) < ∞.

Since ∑n
j=0 bq

j = bq+1
n and nq−1 = O(bq

n) , as n → ∞ , we obtain

∞

∑
n=0

nr+q−1λ
bq+1
n

(K ) < ∞.
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Since bq+1
n = O(nq) as n → ∞ , we can select a positive integer l so that

bq+1
n � (l n)q, n = 1,2, . . . .

Returning to the previous sum, we may conclude that

∞

∑
n=0

nr+q−1λ(l n)q(K ) < ∞.

In particular,
∞

∑
n=0

(l n)r+q−1λ(l n)q(K ) < ∞.

The fact that {λn(K )} decreases now implies that

∞

∑
n=0

(l n+ j)r+q−1λ(l n+ j)q(K ) < ∞, j = 0,1, . . . , l−1.

Hence,
∞

∑
n=0

nr+q−1λnq(K ) < ∞.

An elementary manipulation of the series leads to

∞

∑
n=0

nr/qλn(K ) < ∞.

An application of Lemma 1 provides the decay in the statement of the theorem. �

Our second result requires the following lemma.

LEMMA 2. Let {cn} be a sequence of nonnegative reals decreasing to 0. If there
exist positive integers l and m and a real number t so that

c(l n)m � C
nt , n � n0 (5)

for some no then

cn � C′

nt/m
, n � n1

for some C′ > 0 and some n1 .

Proof. Let l , m and t be as in the statement of the lemma. The inequality (5)
implies the following one:

cnm � Clt

nt , n � ln0.
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Define C1 = Clt and pick N in the set {ln0, ln0 +1, . . .} . Since cNm � C1N−t and the
sequence {cn} decreases, then

cNm+1 � C1

(Nm)t/m
=

C1

(Nm +1)t/m

(
Nm +1

Nm

)t/m

.

Inductively,

cNm+ j � C1

(Nm + j)t/m

(
Nm + j

Nm

)t/m

, j = 1,2, . . . ,(N +1)m−Nm−1.

However, since

(N +1)m−Nm−1 � Nm
[(

1+
1
N

)m

−1

]
� (2m −1)Nm

it follows that
Nm + j

Nm � 2m.

Hence,

cNm+ j � C12t

(Nm + j)t/m
, j = 1,2, . . . ,(N +1)m−Nm−1.

Therefore, the desired inequality follows with C′ = C12t and n1 = Nm . �

THEOREM 2. If there exists a nonnegative number r such that ‖ fα‖2 = O(|α|−r)
as |α| → ∞ and also a positive number s so that aα = O(|α|−s) as |α| → ∞ then

λn(K ) = O(n−(2r+s)/q) as n → ∞.

Proof. Here, inequality (3) can be put into the form

n2r+sbq
nλ

bq+1
n

(K ) � Cbq
n, n = 1,2, . . . ,

for some C > 0, and that leads to

n2r+sλ(l n)q(K ) � C′, n = 1,2, . . . ,

for some C′ > 0, in which l is as described in the proof of the previous theorem.
Applying Lemma 2, we conclude that

n(2r+s)/qλn(K ) � C′′, n = 1,2, . . . ,

for some C′′ > 0. The proof is complete. �
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5. Two concrete examples

The first example we would like to discuss is the one that served as motivation to
us: X is the unit sphere Ω2q in C

q , q � 2, μq is the usual probability measure on X
while

fα (z) = zα , α ∈ Z
q
+.

Here, the order 	 in Z
q
+ needs to match the following requirement: if α 	 β then

either |α| < |β | or |α| = |β | and α! � β ! .
It is well-known ([13, p. 16], [15, p. 13]) that

∫
Ω2q

zαzβ dμq(z) =

⎧⎨
⎩

0 if α �= β
(q−1)!α!

(q−1+ |α|)! if α = β .

Hence, the family { fα} is orthogonal,

‖ fα‖2 � 1, α ∈ Z
q
+,

and
sup

z
sup

α
| fα (z)| � 1.

In particular, the setting adopted in the previous sections is a reality in this case. Next,
let us determine how the sequence {‖ fα‖} decays. First, observe that

(q−1)!α!
(q−1+ |α|)! =

(
q−1+ |α|

|α|
)−1 α!

|α|! =
(
bq
|α |
)−1 α!

|α|! , α ∈ Z
q
+.

On the other hand, we know that |α|q−1 = O(bq
|α |) as |α| → ∞ while an induction

argument on the dimension q reveals that α! � |α|! , α ∈ Z
q
+ . Thus,

‖ fα‖2 = O(|α|−(q−1)/2), as |α| → ∞.

The decay in Proposition 4 becomes

λα(K ) = o(|α|−1−(q−1)/2) as |α| → ∞

while the one in Proposition 5 takes the form

λα(K ) = O(|α|−s) as |α| → ∞.

Moving to Section 4, the decay in Theorem 1 is

λn(K ) = o(n−1−(q−1)/2q), as n → ∞,

while that in Theorem 2 is

λn(K ) = O(n−1−(s−1)/q), as n → ∞.
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The previous setting can be extended to the case in which X is the unit disk Δq :=
{z ∈ Cq : zz � 1} in Cq and νq is the probability measure on Δq obtained from the
usual Lebesgue measure on Cq . Since the measures νq and μq are related to each
other by the formula ([13, p. 13], [15, p. 9])

∫
Δq

f dνq = 2q
∫ 1

0
r2q−1dr

∫
Ω2q

f (rz)dμq(z),

we deduce that∫
Δq

ξ α ξ
β

dνq(ξ ) = 2q
∫ 1

0
r2q−1+|α |+|β |dr

∫
Ω2q

zα zβ dμq(z)

=
2q

2q+ |α|+ |β |
∫

Ω2q

zα zβ dμq(z).

Therefore, ∫
Δq

ξ α ξ
β
dνq(z) =

⎧⎨
⎩

0 if α �= β
q!α!

(q+ |α|)! if α = β ,

and the same decays described above hold in the present case.
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