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Abstract. For a Lebesgue integrable complex-valued function f defined over the n -dimensional
torus Tn := [0,2π)n , n∈N , let f̂ (k) denote the Fourier coefficient of f , where k = (k1, . . . ,kn)
∈ Zn . The Riemann-Lebesgue lemma shows that f̂ (k) = o(1) as |k| → 0 for any f ∈ L1(Tn) .
However, it is known that, these Fourier coefficients can tend to zero as slowly as we wish. The
definitive results are due to V. Fülöp and F. Móricz for functions of bounded variation, and due
to B. L. Ghodadra for functions of bounded p -variation. In this paper, defining the notion of
bounded φ -variation for a function from [0,2π]n to C in two different ways, we prove that
this is the case for Fourier coefficients of such functions also. Interestingly, in proving our main
results we use the famous Jensen’s inequality for integrals. Our new results with φ(x) = xp

(p � 1) gives our earlier results [Acta Math. Hungar, 128 (4) (2010), 328–343].

1. Introduction

For a function of two variables several definitions of bounded variation are given
and various properties are studied (see, for example, [5, 1]). In 2002 F. Móricz [6]
studied the order of magnitude of double Fourier coefficients with the help of Riemann-
Stieltjes integral of functions of two variables and in 2004 V. Fülöp and F. Móricz [4]
studied the order of magnitude of multiple Fourier coefficients of functions of bounded
variation in the sense of Vitali and, Hardy and Krause (see [2]) in a straightforward
way without using Riemann-Stieltjes integral. In [3] we have defined the concept of
bounded p-variation ( p � 1) for a function of several variables in two different ways
and studied the order of magnitude of Fourier coefficients for such functions. Here, we
define the concept of bounded φ -variation and study the order of magnitude of Fourier
coefficients for such functions. Interestingly, in proving our main results (Theorems 1
and 2 below) we use the famous Jensen’s inequality for integrals. Our new results with
φ(x) = xp (p � 1) gives our earlier results [3].
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2. Notation and Definitions

Let R be the rectangle R = [a1,b1]× . . .× [an,bn] . By a (finite) partition P of
R we mean the set P = {R1, . . . ,Rm} , in which Ri ’s are pairwise disjoint (no two
have common interior) subrectangles of R having their sides (faces) parallel to the
standard coordinate hyperplanes and whose union is R . Let f = f (x1, . . . ,xn) be a real
or complex-valued function on R . For any subrectangle R′ = [α1,β1]× . . .× [αn,βn]
of R with ai � αi < βi � bi for all i = 1,2, . . . ,n , we define Δ f (R′) as follows: When
n = 2 we put

Δ f (R′) : = Δ f ([α1,β1]× [α2,β2])
= f (β1,β2)− f (β1,α2)− f (α1,β2)+ f (α1,α2);

for n = 3

Δ f (R′) : = Δ f ([α1,β1]× . . .× [α3,β3])
= [ f (β1,β2,β3)− f (β1,α2,β3)− f (α1,β2,β3)+ f (α1,α2,β3)]
− [ f (β1,β2,α3)− f (β1,α2,α3)− f (α1,β2,α3)+ f (α1,α2,α3)]

= Δ[α3,β3]Δ f ([α1,β1]× [α2,β2]),say;

and successively for any n � 3

Δ f (R′) : = Δ f ([α1,β1]× . . .× [αn,βn])
= Δ[αn,βn]Δ f ([α1,β1]× . . .× [αn−1,βn−1]).

In what follows, we consider φ : [0,∞) → R a strictly increasing convex function
with φ(0) = 0. The function φ is said to be a Δ2 -function if there is a constant d � 2
such that φ(2x) � dφ(x) for all x � 0.

DEFINITION 1. We say that f is of bounded φ -variation over R in the sense of
Vitali (written as f ∈ φBVV(R)) if Vφ ( f ;R) , the total φ -variation of f over R , is
finite, where

Vφ ( f ;R) := sup

{
m

∑
i=1

φ (|Δ f (Ri)|)
}

, (1)

in which the supremum is taken over all partitions {R1, . . . ,Rm} of R .

REMARK 1. Note that for φ(x) = xp ( p � 1) above definition is same as the
definition of a function of bounded p -variation (see [3, Definition V]) and hence for
φ(x) = x above definition is equivalent to that of Vitali (see, for example, [2, 4] and [3,
Remark 1]).

As noted by V. Fülöp and F. Móricz [4, p. 96], in this case also, when n� 2, a func-
tion f in the class φBVV(R) is not necessarily measurable in the sense of Lebesgue.
This is a consequence of the fact that if a function f = f (x1, . . . ,xn) does not depend on
at least one of the x1, . . . ,xn , then for any subrectangle R′ of R we have Δ f (R′) = 0, so
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that Vφ ( f ;R) = 0. Consequently, the class φBVV(R) contains functions for which the
n -dimensional Lebesgue integral over R fails to exist. Following definition is motivated
by this fact.

DEFINITION 2. In case n = 2, we say that a function f = f (x1,x2) is of bounded
φ -variation over R := [a1,b1]× [a2,b2] in the sense of Hardy, in symbol: f ∈ φBVH(R) ,
if it is in the class φBVV(R) and if the marginal functions f (x1,a2) and f (a1,x2) are
of bounded φ -variation on the intervals I1 := [a1,b1] and I2 := [a2,b2] , respectively in
the sense of Young [8].

In case n � 3, the notion of bounded φ -variation in the sense of Hardy over a
rectangle R can naturally be defined by the following recurrence: f ∈ φBVH(R) if
f ∈ φBVV(R) and each of the marginal functions f (x1, . . . ,ak, . . . ,xn) is in the class
φBVH(R(ak)) , where k = 1, . . . ,n and

R(ak) = {(x1, . . . ,xk−1,xk+1, . . . ,xn) ∈ R
n−1 : a j � x j � b j

for j = 1, . . . ,k−1,k+1, . . . ,n}.
This definition can be equivalently reformulated as follows: f ∈ φBVH(R) if and

only if f ∈ φBVV(R) and for any choice of (1 �) j1 < .. . < jm (� n) , 1 � m < n , the
function f (x1, . . . ,a j1 , . . . ,a jm , . . . ,xn) is in the class φBVV(R(a j1 , . . . ,a jm)) , where

R(a j1 , . . . ,a jm) := {(x�1 , . . . ,x�n−m) ∈ R
n−m : a j � x j � b j

for j = �1, . . . , �n−m}

and {�1, . . . , �n−m} is the complementary set of { j1, . . . , jm} with respect to {1, . . . ,n} .

REMARK 2. When φ(x) = xp (p � 1) our Definition 2 is same as our earlier def-
inition of a function of bounded p -variation (see [3, Definition H]) and hence when
φ(x) = x above definition is equivalent that given by Hardy and Krause (see, for exam-
ple, [2, 4])(refer Lemma 2 below).

Next let n be a positive integer, Tn the n -dimensional torus identified with Q =
[−π ,π ]n and let its dual be identified with Zn. The points (x1, . . . ,xn) of Q and
(k1, . . . ,kn) of Zn are denoted by x and k respectively; k ·x denotes the scalar product
given by k ·x = k1x1 + . . .+ knxn and |x| denotes the number

√
|x1|2 + . . .+ |xn|2. For

f ∈ L1(Tn) its formal Fourier series is given by

f (x) ∼ ∑
k∈Zn

f̂ (k)ei(k·x),

where f̂ (k) denotes the kth Fourier coefficient of f (x) given by

f̂ (k) =
1

(2π)n

∫
Q

f (x)e−i(k·x)dx.
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3. Statements of Results

We prove the following results.

LEMMA 1. If f ∈ φBVH(R) then f is bounded over R.

LEMMA 2. If φ is Δ2 and f ∈ φBVH(R) then for any arbitrary fixed values
c j1 ∈ [a j1 ,b j1 ], . . . ,c jm ∈ [a jm ,b jm ] , (1 �) j1 < .. . < jm (� n) , and 1 � m < n, the
function f (·, . . . ,c j1 , . . . ,c jm , . . . , ·) is in the class φBVH(R(a j1 , . . . ,a jm)) and that

Vφ ( f (·, . . . ,c j1 , . . . ,c jm , . . . , ·);R(a j1 , . . . ,a jm))

� dm
{

Vφ ( f ;R)+
m

∑
k=1

∑
s1<...<sk ,

s1 ,...,sk∈{ j1 ,..., jm}

Vφ
(
f (·, . . . ,as1 , . . . ,ask , . . . , ·);R(as1 , . . . ,ask)

)}
.

LEMMA 3. Let f ∈ φBVV(R) , where R = [a1,b1]× . . .× [an,bn]. Let {R1, . . . ,Rm}
be a partition of R. Then f ∈ φBVV(Ri) for each i = 1, . . . ,m, and that

m

∑
i=1

Vφ ( f ;Ri) � Vφ ( f ;R).

LEMMA 4. Let f ∈ φBVV(R), where R = [a1,b1]× [a2,b2] . If f (x, y) (respec-
tively f (x ,y)) for some y (respectively x ) has only a denumerable number of discon-
tinuities in x (respectively y), the discontinuities in x (respectively y) of f (x,y) are
located on a denumerable number of parallels to the y-axis (respectively x-axis).

LEMMA 5. Let f ∈ φBVV(R) , where R = [a1,b1]× [a2,b2] . Then the set of all
points (x , y)∈ R for which f (x,y) is discontinuous at (x , y) , but f (x, y) is continuous
at x and f (x ,y) is continuous at y , is denumerable.

LEMMA 6. Let f ∈ φBVH(R) , where R = [a1,b1]× [a2,b2] . Then the discontinu-
ities of f (x,y) are located on a countable number of parallels to the axes.

LEMMA 7. Let f ∈ φBVH(R) , where R = [a1,b1]× . . .× [an,bn]. Then the dis-
continuities of f are located on a countable number of (n− 1)-dimensional hyper-
planes parallel to some of the coordinate hyperplanes.

THEOREM 1. Let f : Rn → C be 2π -periodic in each variable. If φ is Δ2 , f ∈
φBVV([0,2π ]n)∩L1(Tn) and k = (k1, . . . ,kn) ∈ Zn is such that k j �= 0 for each j, then

f̂ (k) = O

(
φ−1

(
1

|∏n
j=1 k j|

))
.
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THEOREM 2. Let f : Rn → C be 2π -periodic in each variable. If φ is Δ2 and
f ∈ φBVH([0,2π ]n) then for any 0 �= k = (k1, . . . ,kn) ∈ Zn ,

f̂ (k) = O

(
φ−1

(
1

|∏n
j=1,k j �=0 k j|

))
.

REMARK 3. Taking φ(x) = xp (p � 1) , we get our earlier results (see [3, Theo-
rems 1 and 2]) and hence our new results generalize our earlier results.

4. Proof of the results

Proof of Lemma 1. Observe that when n = 2, for any (x1,x2) ∈ R = I1 × I2 we
have

| f (x1,x2)| � | f (x1,x2)− f (x1,a2)− f (a1,x2)+ f (a1,a2)|
+ | f (x1,a2)− f (a1,a2)|+ | f (a1,x2)− f (a1,a2)|+ | f (a1,a2)|

� φ−1(Vφ ( f ;R))+ φ−1(Vφ ( f (·,a2); I1))+ φ−1(Vφ ( f (a1, ·); I2))+ | f (a1,a2)|.

Similarly when n � 2, for any x ∈ R = [a1,b1]× . . .× [an,bn] we have

| f (x)| � φ−1(Vφ ( f ;R))+ | f (a)|

+

{
n−1

∑
m=1

∑
1� j1<...< jm�n

φ−1 (Vφ ( f (·, . . . ,a j1 , . . . ,a jm , . . . , ·);R(a j1 , . . . ,a jm))
)}

.

This completes the proof of Lemma 1. �

Proof of Lemma 2. Note that for any x,y � 0 we have

φ(x+ y) � φ(2max{x,y}) � dφ(max{x,y}) � d (φ(x)+ φ(y)) , (2)

since φ is increasing and Δ2 .
First we will prove the lemma for n = 2. We must show that for any a2 < c2 � b2

and a1 < c1 � b1 we have

Vφ ( f (·,c2); I1) � d
{
Vφ ( f ;R)+Vφ ( f (·,a2); I1)

}
; (3)

Vφ ( f (c1, ·); I2) � d
{
Vφ ( f ;R)+Vφ ( f (a1, ·); I2)

}
. (4)

Fix a2 < c2 � b2 . Then for any partition {a1 = x0
1, x1

1, . . . , xm
1 = b1} of I1 , in view of
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(2), we have

m

∑
i=1

φ
(| f (xi

1,c2)− f (xi−1
1 ,c2)|

)

=
m

∑
i=1

φ
(|Δ f

(
[xi−1

1 ,xi
1]× [a2,c2]

)
+{ f (xi

1,a2)− f (xi−1
1 ,a2)}|

)

� d

{
m

∑
i=1

φ
(|Δ f

(
[xi−1

1 ,xi
1]× [a2,c2]

) |)+ m

∑
i=1

φ
(| f (xi

1,a2)− f (xi−1
1 ,a2)|

)}

� d
{
Vφ ( f ;R)+Vφ ( f (·,a2); I1)

}
.

Taking supremum over all partitions of I1 we get (3). The proof of (4) is similar to that
of (3).

Now we will show the lemma for n = 3. By symmetry in the variables x1,x2,x3 ,
it is enough to show the following:

(i) For any a3 < c3 � b3

Vφ ( f (·, ·,c3);R(a3)) � d
{
Vφ ( f ;R)+Vφ ( f (·, ·,a3);R(a3))

}
.

(ii) For any a2 < c2 � b2 and a3 < c3 � b3

Vφ ( f (·,c2,c3);R(a2,a3)) � d2{Vφ ( f ;R)+Vφ ( f (·,a2, ·);R(a2))

+Vφ ( f (·, ·,a3);R(a3))+Vφ( f (·,a2,a3);R(a2,a3))
}
.

To prove (i), consider a partition {Ri}s
i=1 of R(a3) . Then {Ri × [a3,c3]}s

i=1 is a
collection of disjoint subrectangles of R . Therefore in view of (2)

s

∑
i=1

φ (|Δ f (·, ·,c3)(Ri)|) =
s

∑
i=1

φ (|Δ f (Ri × [a3,c3])+ Δ f (·, ·,a3)(Ri)|)

� d

{
s

∑
i=1

φ (|Δ f (Ri × [a3,c3])|)+
s

∑
i=1

φ (|Δ f (·, ·,a3)(Ri)|)
}

� d
{
Vφ ( f ;R)+Vφ ( f (·, ·,a3);R(a3))

}
.

Taking supremum over all partitions of R(a3) we get (i).

Next, to prove (ii), consider a partition {a1 = x0
1,x

1
1, . . . ,x

s
1 = b1} of R(a2,a3) .
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Then using (2) twice we get

s

∑
i=1

φ(| f (xi
1,c2,c3)− f (xi−1

1 ,c2,c3)|)

=
s

∑
i=1

φ
(|Δ f ([xi−1

1 ,xi
1]× [a2,c2]× [a3,c3])+ Δ f (·,a2, ·)([xi−1

1 ,xi
1]× [a3,c3])

+ Δ f (·, ·,a3)([xi−1
1 ,xi

1]× [a2,c2])+{ f (xi
1,a2,a3)− f (xi−1

1 ,a2,a3)}|
)

� d2
s

∑
i=1

{
φ
(|Δ f ([xi−1

1 ,xi
1]× [a2,c2]× [a3,c3])|

)
+ φ
(|Δ f (·,a2, ·)([xi−1

1 ,xi
1]× [a3,c3])|

)

+ φ
(|Δ f (·, ·,a3)([xi−1

1 ,xi
1]× [a2,c2])|

)
+ φ
(| f (xi

1,a2,a3)− f (xi−1
1 ,a2,a3)|

)}
� d2{Vφ ( f ;R)+Vφ ( f (·,a2, ·);R(a2))+Vφ( f (·, ·,a3);R(a3))

+Vφ ( f (·,a2,a3);R(a2,a3))
}
.

This proves the lemma for n = 3. A similar argument proves the lemma for any n . �

Proof of Lemma 3. Let {Ri j : j = 1, . . . ,ni} be any partition of Ri , for each i =
1, . . . ,m . Then {Ri j : j = 1, . . . ,ni; i = 1, . . . ,m} is clearly a partition of R and since
f ∈ φBVV(R) ,

m

∑
i=1

ni

∑
j=1

φ (|Δ f (Ri j)|) � Vφ ( f ;R).

Taking supremum over all partitions {R1 j : j = 1, . . . ,n1} of R1 (keeping the partitions
of R2, . . . ,Rm fixed) we get

Vφ ( f ;R1)+
m

∑
i=2

ni

∑
j=1

φ (|Δ f (Ri j)|) � Vφ ( f ;R).

Similarly taking supremumover all partitions of R2 (keeping the partitions of R3, . . . ,Rm

fixed), and continuing in this way for R3, . . . ,Rm we get the lemma. �

Proof of Lemma 4. Let E = {(x,y) ∈ R : f has a discontinuity in x} and Ey =
{(x, y) ∈ R : f (x, y) is discontinuous at x}. Then Ey ⊂ E and by our assumption Ey is
denumerable.

If possible suppose there is a non-denumerable set S of vertical lines each con-
taining at least one point of E . Since Ey is denumerable, clearly only a denumerable
subset of S made up wholly of points of Ey . Let the remaining lines of S constitute
the subset S1 ; then each line of S1 contains at least one point of E and no point of
Ey , and S1 is non-denumerable. On each line of S1 (which lie interior to R) choose a
point of E ; at this point the saltus, say, s of f in x is positive and hence φ(s/4) is also
positive. This non-denumerable set of positive values φ(s/4) contains a subset whose
elements are the terms of a divergent series. Thus there is a sequence {(xi,yi)}∞

i=1 of
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distinct points in E , which lie interior to R and on different lines in S1 , such that

∞

∑
i=1

φ
( si

4

)
= ∞,

where si = the saltus in x at (xi,yi) = | f (xi+,yi)− f (xi−,yi)| . Now by arguing as in
the proof of Lemma 4 in [3], for εi = si

4 , we can choose x′i , x′′i such that x′i < xi < x′′i
for each i , the intervals {[x′i, x′′i ]}∞

i=1 are pairwise disjoint, and

| f (x′′i ,yi)− f (x′i,yi)− f (x′′i , y)+ f (x′i, y)| � εi.

Thus if Ri denotes the rectangle with vertices (x′′i ,yi) , (x′i,yi) , (x′′i , y) and (x′i, y) for
each i then, since φ is non-decreasing, we get

∞

∑
i=1

φ (|Δ f (Ri)|) �
∞

∑
i=1

φ(εi) =
∞

∑
i=1

φ
( si

4

)
= ∞.

This shows that Vφ ( f ;R) = ∞ ; from this contradiction lemma follows. �

Proof of Lemma 5. Let (x , y) be such a discontinuity. Then there exists ε > 0
such that for every δ > 0 there is a point, say, (x′,y′) (depending on δ ) such that√

(x′ − x)2 +(y′ − y)2 < δ but | f (x′,y′)− f (x , y)| � ε. (5)

Also, by the continuity of f (·, y) and f (x , ·) at x and y respectively, there is a δ > 0
such that

|x− x| < δ ⇒ | f (x, y)− f (x, y)| < ε
4

and |y− y| < δ ⇒ | f (x ,y)− f (x , y)| < ε
4
.

For this δ , as above, there is a point (x′,y′) such that (5) holds. Since√
(x′ − x)2 +(y′ − y)2 � |x′ − x | and

√
(x′ − x)2 +(y′ − y)2 � |y′ − y|

we get

| f (x′, y)− f (x, y)| < ε
4
, | f (x ,y′)− f (x, y)| < ε

4
;

which shows that
| f (x′, y)+ f (x,y′)−2 f (x, y)| < ε

2
.

Thus for the rectangle R′ with sides parallel to the axes and whose two vertices are
(x , y) and (x′,y′) , we have

φ
(|Δ f (R′)|)= φ

(| f (x′,y′)− f (x′, y)− f (x,y′)+ f (x , y)|)
� φ

(| f (x′,y′)− f (x, y)|− | f (x′, y)+ f (x ,y′)−2 f (x, y)|)
> φ

(
ε − ε

2

)
= φ

(ε
2

)
.
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The assumption that the set of such discontinuities is non-denumerable then leads to a
contradiction just as in the case of Lemma 4. �

Proof of Lemma 6. Since f ∈ φBVH(R) , f ∈ φBVV(R) and the marginal func-
tions f (x,a2) and f (a1,y) are of bounded φ -variation on I1 and I2 respectively.
Therefore f (x,a2) has only a denumerable number of discontinuities in x and f (a1,y)
has only a denumerable number of discontinuities in y (see, for example, [7, p. 51]).
So, in view of Lemma 4, the discontinuities in x or y of f (x,y) are located on a count-
able number of parallels to the coordinate axes. Now the lemma follows from Lemma
5. �

Proof of Lemma 7. In view of Lemmas 5 and 6, the proof of this lemma is similar
to that of Lemma 7 in [3] and we shall omit it. �

Proof of Theorem 1. For the sake of simplicity in writing, we carry out the proof
for n = 2, and we write (x,y) and (k, �) in place of (x1,x2) and (k1,k2) respectively.

Let k = (k, �) ∈ Z
2 be such that k �= 0, � �= 0. Then the functions e−ikx and e−i�y

are periodic functions of periods 2π
|k| and 2π

|�| respectively. Thus by putting

ar = r · 2π
|k| (r = 0,1, . . . , |k|); bs = s · 2π

|�| (s = 0,1, . . . , |�|)

we get

∫ ar

ar−1

e−ikxdx = 0 (r = 1,2, . . . , |k|);
∫ bs

bs−1

e−i�ydy = 0 (s = 1,2, . . . , |�|). (6)

Define three functions f1 , f2 , f3 on T2 by setting

f1(x,y) = f (x,bs−1) (0 � x < 2π ; bs−1 � y < bs) for s = 1, . . . , |�| ;
f2(x,y) = f (ar−1,y) (ar−1 � x < ar; 0 � y < 2π) for r = 1, . . . , |k| ;

and
f3(x,y) = f (ar−1,bs−1) (ar−1 � x < ar; bs−1 � y < bs)

for r = 1, . . . , |k|; s = 1, . . . , |�| .
Since f ∈ φBVV([0,2π ]2)∩L1(T2) , each fi ∈ φBVV([0,2π ]2)∩L1(T2) . Since

φ is Δ2 , in view of (2), f − f1 − f2 + f3 ∈ φBVV([0,2π ]2)∩L1(T2) . Further in view
of Fubini’s theorem and relations (6) we have

∫ 2π

0

∫ 2π

0
f1(x,y)e−ikxe−i�ydxdy =

∫ 2π

0

[ |�|
∑
s=1

∫ bs

bs−1

f (x,bs−1)e−i�ydy

]
e−ikxdx = 0,

∫ 2π

0

∫ 2π

0
f2(x,y)e−ikxe−i�ydxdy =

∫ 2π

0

[ |k|
∑
r=1

∫ ar

ar−1

f (ar−1,y)e−ikxdx

]
e−i�ydy = 0
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and

∫ 2π

0

∫ 2π

0
f3(x,y)e−ikxe−i�ydxdy =

|k|
∑
r=1

|�|
∑
s=1

∫ ar

ar−1

∫ bs

bs−1

f (ar−1,bs−1)e−ikxe−i�ydxdy = 0.

Using these equations in the definition of f̂ (k) we get

| f̂ (k)| =
∣∣∣∣ 1
(2π)2

∫ 2π

0

∫ 2π

0
f (x,y)e−ikxe−i�ydxdy

∣∣∣∣
=
∣∣∣∣ 1
(2π)2

∫ 2π

0

∫ 2π

0
( f − f1− f2 + f3)(x,y)e−ikxe−i�ydxdy

∣∣∣∣
� 1

(2π)2

∫ 2π

0

∫ 2π

0
|( f − f1− f2 + f3)(x,y)|dxdy.

Thus for any c > 0, using Jensen’s inequality for integrals, in view of Lemma 3, we get

φ(c| f̂ (k)|) � φ
(

c
(2π)2

∫ 2π

0

∫ 2π

0
|( f − f1− f2 + f3)(x,y)|dxdy

)

� 1
(2π)2

∫ 2π

0

∫ 2π

0
φ (c|( f − f1− f2 + f3)(x,y)|)dxdy

=
1

(2π)2

|k|
∑
r=1

|�|
∑
s=1

∫ ar

ar−1

∫ bs

bs−1

φ (c|( f − f1− f2 + f3)(x,y)|)dxdy

=
1

(2π)2

|k|
∑
r=1

|�|
∑
s=1

∫ ar

ar−1

∫ bs

bs−1

φ(c| f (x,y)− f (x,bs−1)

− f (ar−1,y)+ f (ar−1,bs−1)|)dxdy

� 1
(2π)2

|k|
∑
r=1

|�|
∑
s=1

Vφ (c f ; [ar−1,ar]× [bs−1,bs])(ar −ar−1)(bs −bs−1)

� 1
(2π)2 ·

(2π)2

|k�| ·Vφ (c f ; [0,2π ]2). (7)

Since φ is convex and φ(0) = 0, for c ∈ (0,1) we have φ(cx) � cφ(x) and hence we
can choose sufficiently small c ∈ (0,1) such that Vφ (c f ; [0,2π ]2) � 1. Thus, in view
of (7), we get

| f̂ (k)| � 1
c

φ−1
(

1
|k�|
)

.

This completes the proof of Theorem 1. �

Proof of Theorem 2. Here also we will carry out the proof for n = 2 and use nota-
tions as in the proof of Theorem 1. Since f ∈ φBVH([0,2π ]2) , in view of Lemma 6 (use
Lemma 7 for general case), the discontinuities of f lie on countable number of parallels
to the axes and hence f is measurable over T

2 in the sense of Lebesgue. Further, by
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Lemma 1, f is bounded over [0,2π ]2 and hence f ∈ L1(T2) . As φBVH([0,2π ]2) ⊂
BVV([0,2π ]2) , f ∈ L1(T2)∩φBVV([0,2π ]2) . Therefore if k = (k, �) ∈ Z2 is such that
k �= 0, � �= 0, by Theorem 1, f̂ (k) = O

(
φ−1 (1/|k�|)) . Next, let k = (k, �) ∈Z2 be such

that k �= 0, � = 0 and let ar ’s and f2 be as defined in the proof of Theorem 1. Then we
have ∫ 2π

0

∫ 2π

0
f2(x,y)e−ikxdxdy =

∫ 2π

0

{ |k|
∑
r=1

f (ar−1,y)
[∫ ar

ar−1

e−ikxdx

]}
dy = 0,

in view of Fubini’s theorem and (6); and,

| f̂ (k)| =
∣∣∣∣ 1
(2π)2

∫ 2π

0

∫ 2π

0
( f − f2)(x,y)e−ikxdxdy

∣∣∣∣
� 1

(2π)2

∫ 2π

0

∫ 2π

0
|( f − f2)(x,y)|dxdy.

Thus for any c > 0, by Jensen’s inequality, we have

φ
(
c| f̂ (k)|)� φ

(
c

(2π)2

∫ 2π

0

∫ 2π

0
|( f − f2)(x,y)|dxdy

)

� 1
(2π)2

∫ 2π

0

∫ 2π

0
φ (c|( f − f2)(x,y)|)dxdy

=
1

(2π)2

∫ 2π

0

[ |k|
∑
r=1

∫ ar

ar−1

φ (c| f (x,y)− f (ar−1,y)|)dx

]
dy

� 1
(2π)2

∫ 2π

0

[ |k|
∑
r=1

Vφ (c f (·,y); [ar−1,ar])(ar −ar−1)

]
dy

� 1
(2π)2 ·

2π
|k|
∫ 2π

0
Vφ (c f (·,y); [0,2π ])dy

� 1
2π |k|

∫ 2π

0
d[Vφ (c f ; [0,2π ]2)+Vφ(c f (·,0); [0,2π ])]dy

=
d[Vφ (c f ; [0,2π ]2)+Vφ (c f (·,0); [0,2π ])]

|k| ,

in view of Lemma 3 (for a function of one variable) and Lemma 2. Since φ is convex
and φ(0) = 0, now we can choose c ∈ (0,1) so small such that Vφ (c f ; [0,2π ]2) � 1

2d
and Vφ (c f (·,0); [0,2π ]) � 1

2d . Thus by above inequality we get

f̂ (k) = f̂ (k,0) = O

(
φ−1

(
1
|k|
))

.

The case k = 0, � �= 0, is similar to the above case and in this case we get

f̂ (0, �) = O

(
φ−1

(
1
|�|
))

.

This completes the proof of the Theorem 2. �
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