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LEVY-KHINTCHINE REPRESENTATION OF THE GEOMETRIC
MEAN OF MANY POSITIVE NUMBERS AND APPLICATIONS

FENG QI, XIAO-JING ZHANG, AND WEN-HUI L1

(Communicated by N. Elezovic)

Abstract. In the paper, the authors establish, by Cauchy integral formula in the theory of complex
functions, Lévy-Khintchine representation for the geometric mean of many positive numbers,
find that the geometric mean of many positive numbers is a complete Bernstein function, and
supply a new proof of the well known arithmetic-geometric mean inequality.

1. Introduction

We recall some definitions and notions.
Throughout this paper, the notation N stands for the set of all positive integers.

DEFINITION 1.1. ([26, Chapter IV]) An infinitely differentiable function f on an
interval [ is said to be completely monotonic on [ if it satisfies

(=1 D) =0
forxel and n € N.

We denote the class of all completely monotonic functions on an interval / by the
notation ¢’[1]. The class €’[(0, )] is characterized by the famous Hausdorff-Bernstein-
Widder theorem below.

PROPOSITION 1.1 ([26, Theorem 12b]) A necessary and sufficient condition that f(x)
should be completely monotonic for 0 < x < oo is that

£(0) :/:e’x’da(m (1.1)

where o,(t) is non-decreasing and the integral converges for 0 < x < oo.

Mathematics subject classification (2010): Primary 26E60; Secondary 26A48, 30E20, 44A10, 44A20.

Keywords and phrases: Lévy-Khintchine representation; integral representation; geometric mean;
completely monotonic function; logarithmically completely monotonic function; Bernstein function; com-
plete Bernstein function; Cauchy integral formula; arithmetic-geometric mean inequality.

The first author was partially supported by the NNSF under Grant No. 11361038 of China.

© t1€I"€N' Zagreb 719

Paper MIA-17-53


http://dx.doi.org/10.7153/mia-17-53

720 F. Q1, X.-J. ZHANG, AND W.-H. L1

DEFINITION 1.2. ([1, 13, 15]) An infinitely differentiable function f on an in-
terval / is said to be logarithmically completely monotonic on [ if its logarithm In f
satisfies

(D) f@0)]® >0

forkeNon 1.

We denote the set of all logarithmically completely monotonic functions on an in-
terval I by Z[I]. When I = (0, ), Definition 1.2 becomes [24, Definiton 5.8] and [25,
Definition 5.10]. See also [25, p. 67].

DEFINITION 1.3. ([24, Definition 2.1]) If a function f : (0,e0) — [0,e0) can be
written in the form

a < ]
10 =2b+ [ ——dut), (1.2)

then it is called a Stieltjes function or a Stieltjes transform, where a,b > 0 are constants
and u is a measure on (0,e0) such that [; I%H du(s) <eo.

We denote the family of all Stieltjes functions by .&.
There exist inclusions

LU €l and . C.Z[(0,)],

which are called Qi-Berg’s inclusions in the literature. For more detailed information
on these inclusions, please refer to [3, Theorem 1.1], [7, Theorem 4], [12, Section 1],
[13, Theorem 1], [15, Theorem 4], [16, Remark 8], [17, Section 1], [18, Remark 4.7],
[24, Theorem 5.9], and plenty of references therein.

DEFINITION 1.4. An infinitely differentiable function f : 1 — [0,0) is called a
Bernstein function on an interval  if f7(¢) is completely monotonic on 1.

When I = (0,e0), Definition 1.4 becomes [24, Definition 3.1]. We denote the
group of all Bernstein functions on an interval I by 2]I]. The class 2[(0,)] can be
characterized by

PROPOSITION 1.2 ([24, Theorem 3.2]) A function f : (0,00) — [0,00) is a Bernstein
function if and only if it admits the representation

£(0) :a+bx+/0m(l—e’x’)du(t), (1.3)

where a,b >0 and [ is a measure on (0,e0) satisfying [y min{l,z}dp(t) < eo. In
particular, the triplet (a,b,ll) determines f uniquely and vice versa.

The formula (1.3) is called Lévy-Khintchine representation of f. The representing
measure [ and the characteristic triplet (a, b, i) from (1.3) are often respectively called
Lévy measure and Lévy triplet of the Bernstein function f.

In [5, pp. 161-162, Theorem 3] and [24, Proposition 5.17], it was discovered that
the reciprocal of any Bernstein function is logarithmically completely monotonic.
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DEFINITION 1.5. ([1]) If for some non-negative integer k the derivative f(*)(r)
is completely monotonic on an interval 7, but f (k_l)(t) is not completely monotonic
on [, then f(¢) is called a completely monotonic function of k-th order on /.

It is clear that a completely monotonic function of first order on [ is a Bernstein
function on 7 if and only if it is non-negative on 1.

DEFINITION 1.6. ([24, Definition 6.1]) If Lévy measure y from (1.3) has a com-
pletely monotonic density m(r) with respect to Lebesgue measure, that is, the integral
representation

£x) =a+bx+/:(1 — e m(r)dr (1.4)

holds for a,b > 0, where m(t) is a completely monotonic function on (0,e0) and sat-
isfies [;"min{1,7}m(t)ds < oo, then f is said to be a complete Bernstein function on
(0,2).

We denote the collection of all complete Bernstein functions on (0,0) by ¢ %.

DEFINITION 1.7. ([24, Definition 8.1]) Under conditions of Definition 1.6, if the
function rm(¢) is completely monotonic on (0,e0), then f is said to be a Thorin-
Bernstein function on (0,e0).

We use .7 % to denote the class of all Thorin-Bernstein functions on (0,e). It is
clearthat %4 C € 4.
We now begin to introduce the motivation of this paper.
For A € (0,1) and x,y >0, let
Gy (x,y) =ty
which is called the weighted geometric mean of two positive numbers x and y with
unit weight (4,1 —A). For z € C\ (—eo,—min{x,y}) and x,y € R, let

Grya(2) = Go(x+2,y+2) = (z+2)* (2 +y) 2 (1.5)

In[14, Corollary 1] it was proved that G;c,y;l (t) € Z[(—min{x,y},o0)] and that G, ., (t)
is a completely monotonic function of first order in # € (—min{x,y},e). In other
words, Gy .3 (1) € B[(—min{x,y},e0)].

In [23], among other things, the fact that G, . /»(¢) € Z[(—min{x,y}, )] was re-
covered by several approaches, Lévy-Khintchine representation of the principal branch
of G,,.1/2(z) for x>y >0 and z € C\ (—oo, —y| was established, and the conclusion
Gy y12(t) € TP for x >y >0 was verified. See also [27, Chapter 2].

In [21], among other things, Lévy-Khintchine representation of the principal branch
of the weighted geometric mean G, ,.; (z), defined by (1.5), for A € (0,1) and x >y >
0, was established and the result G, . (t) € 7% for A € (0,1) and x,y >0 was
concluded.



722 F. QI, X.-J. ZHANG, AND W.-H. LI

Let n € N and a = (aj,a,...,a,) be a positive sequence, that is, a; > 0 for
1 <k < n. Itis well known that the arithmetic and geometric means A,(a) and G,(a)
of the positive sequence a are defined respectively as

n n 1/"
Au(a) = ! Y ax and Gu(a) = (Hak) :

= k=1

It is general knowledge that
Gu(a) < Au(a), (1.6)

with equality if and only if a; =a, = --- = a,. This is called in the literature the
arithmetic-geometric mean inequality.
n

. —
For z € C\ (—eo,—min{ay,l <k<n}]and n>2,lete=(1,1,...,1) and

n

Gu(a+ze) = [H(ak + z)] l/n.

k=1

The first aim of this paper is to establish, by using Cauchy integral formula in the
theory of complex functions, Lévy-Khintchine representation of the geometric mean
Gp(a+ze) and to deduce that G,(a+te) € €% for r € (—min{ag, 1 <k < n}, ).

THEOREM 1.1 Let ¢ be a permutation of the sequence {1,2,...,n} such that the
sequence o(a) = (a0(1)7a0(2)7 e ,ac(n)) is a rearrangement of a in an ascending or-
der ag(1) < Aga) < **+ < dg(y). Then the principal branch of the geometric mean
G, (a+ ze) has the integral representation

Ag((+1) | 42

1
Gn(a+ze):An(a)+z——Esin—n/
TiZn nJa

a(l)

for z€ C\ (—eo, —min{ay, 1 <k < n}]. Equivalently, the principal branch of the geo-
metric mean G,(a+ ze) has Lévy-Khintchine representation

Gn(a+ze):Gn(a)+z+/0 (1—e™)Q(u)du, (1.8)
where
1 n—1 /¢ ag n 1/n
O(u) = — zsin—”/ UM(a—1)| e ar.
=1 nJagey k=1

Consequently, G,(a+te) € €A fort € (—min{a;, 1 <k < n}, ).

The second aim of this paper is to, with the help of the integral representation (1.7),
supply a new proof of the arithmetic-geometric mean inequality (1.6).
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2. Lemmas
In order to prove our main results, we need the following lemmas.

LEMMA 2.1 (CAUCHY INTEGRAL FORMULA [6, p. 113]) Let D be a bounded domain
with piecewise smooth boundary. If f(z) is analytic on D and extendable smoothly to
the boundary of D, then

1
_ L™ e 2.1
2ri Jop w—1z2

f(2)

LEMMA 2.2 For z € C\ (—eo,—min{ay, 1 < k < n}], the principal branch of the com-
plex function

fan(z) = Gu(a+ze) —z (2.2)
fulfils
lim fan(2) = An(a). (2.3)

Proof. By L'Hbspital’s rule in the theory of complex functions, we have

lim fu,0(2) = lim {Z[Gn <e+ g) . 1]}

7—00

o n 1/n
:limM:Iimi{ (l—i—akz)] =A,(a).
k=1

=0 Z —0dz
Lemma 2.2 is thus proved.

LEMMA 2.3 Let 6 be a permutation of the sequence {1,2,...,n} such that the se-
quence c(a) = (ac(l),ao(z), . ,ac(n)) is a rearrangement of a in an ascending order
as(1) < Ag(2) <o K Ag(n)- For z € (C\ (—0070}, let

ha(z) = Gu(0(a) —ag (e +ze) —z. (2.4)
Then the principal branch of hy,(z) satisfies

lim Shy(—1 + ie)

e—0T
1/n

_ L Mlaow =asqy—]] - sin =5 1€ (a0t = ooy ~dom] 5 5)

0, 12 ag(n) —do(1)

for 1 <f<n—1.

Proof. For 1 € (0,%0) \ {ag(s11)—ag(1),1 <€ <n—1} and & >0, we have
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ho(—t +i€) = G, (0(a) — ag(1ye —te+ige) +-1 —ie
:exp[ Zln(a(F )—l+l£)] +t—ie
= exp{

Z [In|ay — ag()—t +ie|+iarg(ag) — as( )—l+l£)]}+l—i8
1 n

exp(; 2 n|a6 —dg(] —t’ + —l) +t, te (ag(/;) —Ag(1), Ao (0+1) —ag(l))
1
n

:l'—‘

exp( Z n|ac(k) —dg(1) — l’ + TEl) +1, r> Ag(n) — Ao(1)

n 1/n In
<H|%<k)—%<1>—f|> exp (=) 1. 1€ (ao(n) — o) o(es1) — o)

k=1

n 1/n
<H|a0(k)—a0(1)—t|> exp(ni)—I—I, 1> ag(n) —do(1)
k=1

as € — 01. As aresult, we have

lim_ Shy(—t +i€)

£—0

n nym
[Tlaow —asm—t| ) sin—. 1€ (as() = a1)ao(r+1) = ao(1));
k=1

0, > agm) —dg(1)-

For t = ag(s1) —ag(1) for 1 << n—1, we have

1 & 1
hy(—t+ie) =exp [— Z ln(ac(k) —dg(1) —t+ig) + —ln(is)} +t—ie
Uy n
n

1 1 T
:exp[— D ln(ac(k)—ac(l)—t+i8)} exp[—(ln\s\—i—ziﬂ—%t—ie
Ly n

n

—>expE D ln(ag(k)—ag(l)—t)] hm exp[ (ln|£|+—z>}+t
KA+

=t
as € — 0", Hence, when ¢ = ag(;11) — ag(1) for I < <n—1,we have

lim Shy(—t+ig) = 0.

e—0T

The proof of Lemma 2.3 is completed.

3. Proof of Theorem 1.1

We now turn our attention to the proof of Theorem 1.1.
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By standard arguments, it is not difficult to see that

1i1;1)1+ [zh,(z)] =0 and  h,(2) = ha(2), (3.1)
—
where h,(z) is defined by (2.4).
For any fixed point zg = xo + iyg € C\ (—e,0], choose € and r such that
0<e <yl <zl <r, yo#0,
O<e<xo=lz|<r, yo=0,
and consider the positively oriented contour C(g,r) in C\ (—eoe,0] consisting of the half
circle z = ee®® for 6 € [—Z,Z] and the half lines z = x+ie for x < 0 until they cut
the circle |z| = r, which close the contour at the points —r(&) £ i€, where 0 < r(€) — r
as € — 0. See Figure 1 below.

YA

V=

—r

Figure 1. The contour C(g,r)

By Cauchy integral formula, that is, Lemma 2.1, we have

1 I
hn(z0) = fﬂ(g ; ) 4

2mi

w—20
1 —r/2 ieeieh(eeie) arg[—r(e)+ie] ireieh(reie)
== / 97d9+ .97(19 (3.2)
21i [ Jr)2 ge'¥ —zo arg[—r(e)—ie] 1€’ — 20
0 i —r(g) g
L0 bie) gy / hux — i€) dx] .
—r(e) X+ 1€—20 0 X—1E—20
By the limit in (3.1), it follows that
) -m/2 jge'h, (Seie)
lim —————>df=0. (3.3)

e—0tJr/2 eel® — 20
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By virtue of the limit (2.3) in Lemma 2.2, we deduce that

. ) . T jrei®h, (reie)
lim ————d6=1lim [ ———~d6
e=0" Jurglr(e)—ie] 1€’ —20 rmeon e =2 (3.4)
=24, (0(a) —ag(1)e) .

Utilizing the second formula in (3.1) and the limit (2.5) in Lemma 2.3 results in

arg[-r(e)+ie] jre'® hy, (re'®

0 ; —r(e) 3
/ hy(x+ig) dx+/ hn(x i€) dx
) X+ i€ —2p 0 —1€E—2
_ [ n(x+i€) hn()f—ie)]dx
x+ie—z9g x—Ii€—2
—ige—z0)hp(x+i€) — (x+ie — z0)hp(x — i€)
(x+ie—z0)(x—ie—2z0)
X —20)[n(x 4 i€) — hy(x — ig)] — ie[hn(x — i€) + hy(x + i€)]
~r(e) (x+ie —z0)(x — ie —20)
/ (x—20)Shp(x+ig) — eRh,(x+i€) dx
(x+ie—z0)(x—ie—z0)
Y hmgﬁm Shy(x+i€) d
—r X—20
B _21/’ limg_ o+ Shy(—t +i€)
B 1429
/ lim,_,g+ Shy(—1 +i€)
— —2i
t+20

dx

I
\\

dx

dt

dr

n—1

I [o(sn) o) [ (L Un gy
= —2i 2 sm7/ [H|ag(k) —ag(1) —t|] (3.5)
o (1)

H—ds k=1 I+20

as € — 0" and r — . Substituting equations (3.3), (3.4), and (3.5) into (3.2) and
simplifying generate

hn (ZO) = An (G(a) — ao(l)e)
Ll tm reswn—asn) n 4
- — in — — —t —. (36
3 g‘sm n /a [H’ac o1 ’] ) (36)
From (2.2) and (2.4), it is easy to obtain that

fan(20) = ha(z2+ac(1)) +ao(1)-

Combining this with (3.6) and changing the variables of integrals, it is immediate to
deduce that

fan(z0) = An(0(a) —ag1ye) +ag)
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n—1 1/n
_lzsn—/ e [H|ag —dg(1 —t|] dr
a(

i 0)~4o(1) 1+z0+aeg(r)
1) o(l+1) 1/" dr
=A ——Zsm—/ H\ao ,
ﬂ:/ 1 Ag(0) I+20

from which and the facts that

An(o(a)) =An(a) and  []lagw —t/= [T lax—1l,
k=1

k=1

the integral representation (1.7) follows.
Since —— =[5 e™ (+2)u 4y for R(z +z) > 0, the integral representation (1.7) may
be rewrltten as

Gn(a+ze) = / O(u du+z+/ O(u)du. (3.7)

Letting z — 0 on both sides of (3.7) gives [; Q(u)du = A,(a) — G,(a). Hence, the
integral representation (1.8) follows.

It is clear that the function Q(u) is completely monotonic on (0,ee), which means
that the geometric mean G,(a+ xe) is a complete Bernstein function on (0,e0). The
proof of Theorem 1.1 is complete.

4. A new proof of the arithmetic-geometric mean inequality

There has been a large number, presumably over one hundred, of proofs of the
arithmetic-geometric mean inequality (1.6) in the mathematical literature. The most
complete information, so far, can be found in the monographs [2, 4, 8, 9, 10] and a lot
of references therein.

As an application of the integral representation (1.7) in Theorem 1.1, a new proof
for the arithmetic-geometric mean inequality (1.6) may be formulated as follows.

Taking z = 0 in the integral representation (1.7) yields

n—1 1/n
G.(a)=A —lan—/ o [Hak—t] ggAn(a), 4.1
TC/ 1 Ag(() !

from which the inequality (1.6) follows.

From (4.1), it is also immediate that the equality in (1.6) is valid if and only if
Ag(1) = Ag(2) =+ = dg(n), thatis, a; = ax = -+- = a,. The proof of the arithmetic-
geometric mean inequality (1.6) is complete.

REMARK 4.1. The integral representation (1.7) in Theorem 1.1 has been applied
in [11] to find an integral representation of Stirling numbers of the first kind. It has also

been generalized in [20].

REMARK 4.2. This article combines and upgrades the preprints [19, 22].
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