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Abstract. In the paper, the authors establish, by Cauchy integral formula in the theory of complex
functions, Lévy-Khintchine representation for the geometric mean of many positive numbers,
find that the geometric mean of many positive numbers is a complete Bernstein function, and
supply a new proof of the well known arithmetic-geometric mean inequality.

1. Introduction

We recall some definitions and notions.
Throughout this paper, the notation N stands for the set of all positive integers.

DEFINITION 1.1. ([26, Chapter IV]) An infinitely differentiable function f on an
interval I is said to be completely monotonic on I if it satisfies

(−1)n−1 f (n−1)(t) � 0

for x ∈ I and n ∈ N .

We denote the class of all completely monotonic functions on an interval I by the
notation C [I] . The class C [(0,∞)] is characterized by the famous Hausdorff-Bernstein-
Widder theorem below.

PROPOSITION 1.1 ([26, Theorem 12b]) A necessary and sufficient condition that f (x)
should be completely monotonic for 0 < x < ∞ is that

f (x) =
∫ ∞

0
e−xt dα(t), (1.1)

where α(t) is non-decreasing and the integral converges for 0 < x < ∞ .
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DEFINITION 1.2. ([1, 13, 15]) An infinitely differentiable function f on an in-
terval I is said to be logarithmically completely monotonic on I if its logarithm ln f
satisfies

(−1)k[ln f (t)](k) � 0

for k ∈ N on I .

We denote the set of all logarithmically completely monotonic functions on an in-
terval I by L [I] . When I = (0,∞) , Definition 1.2 becomes [24, Definiton 5.8] and [25,
Definition 5.10]. See also [25, p. 67].

DEFINITION 1.3. ([24, Definition 2.1]) If a function f : (0,∞) → [0,∞) can be
written in the form

f (x) =
a
x

+b+
∫ ∞

0

1
s+ x

dμ(s), (1.2)

then it is called a Stieltjes function or a Stieltjes transform, where a,b � 0 are constants
and μ is a measure on (0,∞) such that

∫ ∞
0

1
1+s dμ(s) < ∞ .

We denote the family of all Stieltjes functions by S .
There exist inclusions

L [I] ⊂ C [I] and S ⊂ L [(0,∞)],

which are called Qi-Berg’s inclusions in the literature. For more detailed information
on these inclusions, please refer to [3, Theorem 1.1], [7, Theorem 4], [12, Section 1],
[13, Theorem 1], [15, Theorem 4], [16, Remark 8], [17, Section 1], [18, Remark 4.7],
[24, Theorem 5.9], and plenty of references therein.

DEFINITION 1.4. An infinitely differentiable function f : I → [0,∞) is called a
Bernstein function on an interval I if f ′(t) is completely monotonic on I .

When I = (0,∞) , Definition 1.4 becomes [24, Definition 3.1]. We denote the
group of all Bernstein functions on an interval I by B[I] . The class B[(0,∞)] can be
characterized by

PROPOSITION 1.2 ([24, Theorem 3.2]) A function f : (0,∞) → [0,∞) is a Bernstein
function if and only if it admits the representation

f (x) = a+bx+
∫ ∞

0

(
1− e−xt)dμ(t), (1.3)

where a,b � 0 and μ is a measure on (0,∞) satisfying
∫ ∞
0 min{1,t}dμ(t) < ∞ . In

particular, the triplet (a,b,μ) determines f uniquely and vice versa.

The formula (1.3) is called Lévy-Khintchine representation of f . The representing
measure μ and the characteristic triplet (a,b,μ) from (1.3) are often respectively called
Lévy measure and Lévy triplet of the Bernstein function f .

In [5, pp. 161–162, Theorem 3] and [24, Proposition 5.17], it was discovered that
the reciprocal of any Bernstein function is logarithmically completely monotonic.
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DEFINITION 1.5. ([1]) If for some non-negative integer k the derivative f (k)(t)
is completely monotonic on an interval I , but f (k−1)(t) is not completely monotonic
on I , then f (t) is called a completely monotonic function of k -th order on I .

It is clear that a completely monotonic function of first order on I is a Bernstein
function on I if and only if it is non-negative on I .

DEFINITION 1.6. ([24, Definition 6.1]) If Lévy measure μ from (1.3) has a com-
pletely monotonic density m(t) with respect to Lebesgue measure, that is, the integral
representation

f (x) = a+bx+
∫ ∞

0

(
1− e−xt)m(t)d t (1.4)

holds for a,b � 0, where m(t) is a completely monotonic function on (0,∞) and sat-
isfies

∫ ∞
0 min{1, t}m(t)dt < ∞ , then f is said to be a complete Bernstein function on

(0,∞) .

We denote the collection of all complete Bernstein functions on (0,∞) by CB .

DEFINITION 1.7. ([24, Definition 8.1]) Under conditions of Definition 1.6, if the
function tm(t) is completely monotonic on (0,∞) , then f is said to be a Thorin-
Bernstein function on (0,∞) .

We use T B to denote the class of all Thorin-Bernstein functions on (0,∞) . It is
clear that T B ⊂ C B .

We now begin to introduce the motivation of this paper.
For λ ∈ (0,1) and x,y > 0, let

Gλ (x,y) = xλ y1−λ ,

which is called the weighted geometric mean of two positive numbers x and y with
unit weight (λ ,1−λ ) . For z ∈ C\ (−∞,−min{x,y}) and x,y ∈ R , let

Gx,y;λ (z) = Gλ (x+ z,y+ z) = (z+ x)λ (z+ y)1−λ . (1.5)

In [14, Corollary 1] it was proved that G′
x,y;λ (t)∈L [(−min{x,y},∞)] and that Gx,y;λ (t)

is a completely monotonic function of first order in t ∈ (−min{x,y},∞) . In other
words, Gx,y;λ (t) ∈ B[(−min{x,y},∞)] .

In [23], among other things, the fact that Gx,y;1/2(t)∈B[(−min{x,y},∞)] was re-
covered by several approaches, Lévy-Khintchine representation of the principal branch
of Gx,y;1/2(z) for x > y > 0 and z ∈ C\ (−∞,−y] was established, and the conclusion
Gx,y;1/2(t) ∈ T B for x > y > 0 was verified. See also [27, Chapter 2].

In [21], among other things, Lévy-Khintchine representation of the principal branch
of the weighted geometric mean Gx,y;λ (z) , defined by (1.5), for λ ∈ (0,1) and x > y >
0, was established and the result Gx,y;λ (t) ∈ T B for λ ∈ (0,1) and x,y > 0 was
concluded.
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Let n ∈ N and a = (a1,a2, . . . ,an) be a positive sequence, that is, ak > 0 for
1 � k � n . It is well known that the arithmetic and geometric means An(a) and Gn(a)
of the positive sequence a are defined respectively as

An(a) =
1
n

n

∑
k=1

ak and Gn(a) =
( n

∏
k=1

ak

)1/n

.

It is general knowledge that

Gn(a) � An(a), (1.6)

with equality if and only if a1 = a2 = · · · = an . This is called in the literature the
arithmetic-geometric mean inequality.

For z ∈ C\ (−∞,−min{ak,1 � k � n}] and n � 2, let e = (

n︷ ︸︸ ︷
1,1, . . . ,1) and

Gn(a+ ze) =
[ n

∏
k=1

(ak + z)
]1/n

.

The first aim of this paper is to establish, by using Cauchy integral formula in the
theory of complex functions, Lévy-Khintchine representation of the geometric mean
Gn(a+ ze) and to deduce that Gn(a+ te)∈ CB for t ∈ (−min{ak,1 � k � n},∞) .

THEOREM 1.1 Let σ be a permutation of the sequence {1,2, . . . ,n} such that the
sequence σ(a) =

(
aσ(1),aσ(2), . . . ,aσ(n)

)
is a rearrangement of a in an ascending or-

der aσ(1) � aσ(2) � · · · � aσ(n) . Then the principal branch of the geometric mean
Gn(a+ ze) has the integral representation

Gn(a+ ze) = An(a)+ z− 1
π

n−1

∑
�=1

sin
�π
n

∫ aσ(�+1)

aσ(�)

∣∣∣∣ n

∏
k=1

(ak − t)
∣∣∣∣1/n dt

t + z
(1.7)

for z ∈ C\ (−∞,−min{ak,1 � k � n}] . Equivalently, the principal branch of the geo-
metric mean Gn(a+ ze) has Lévy-Khintchine representation

Gn(a+ ze) = Gn(a)+ z+
∫ ∞

0

(
1− e−zu)Q(u)du, (1.8)

where

Q(u) =
1
π

n−1

∑
�=1

sin
�π
n

∫ aσ(�+1)

aσ(�)

∣∣∣∣ n

∏
k=1

(ak − t)
∣∣∣∣1/n

e−tu d t.

Consequently, Gn(a+ te)∈ CB for t ∈ (−min{ak,1 � k � n},∞) .

The second aim of this paper is to, with the help of the integral representation (1.7),
supply a new proof of the arithmetic-geometric mean inequality (1.6).
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2. Lemmas

In order to prove our main results, we need the following lemmas.

LEMMA 2.1 (CAUCHY INTEGRAL FORMULA [6, p. 113]) Let D be a bounded domain
with piecewise smooth boundary. If f (z) is analytic on D and extendable smoothly to
the boundary of D, then

f (z) =
1

2π i

∮
∂D

f (w)
w− z

dw, z ∈ D. (2.1)

LEMMA 2.2 For z ∈ C\ (−∞,−min{ak,1 � k � n}] , the principal branch of the com-
plex function

fa,n(z) = Gn(a+ ze)− z (2.2)

fulfils
lim
z→∞

fa,n(z) = An(a). (2.3)

Proof. By L’Hôspital’s rule in the theory of complex functions, we have

lim
z→∞

fa,n(z) = lim
z→∞

{
z
[
Gn

(
e+

a
z

)
−1
]}

= lim
z→0

Gn(1+ za)−1
z

= lim
z→0

d
dz

[ n

∏
k=1

(1+akz)
]1/n

= An(a).

Lemma 2.2 is thus proved.

LEMMA 2.3 Let σ be a permutation of the sequence {1,2, . . . ,n} such that the se-
quence σ(a) =

(
aσ(1),aσ(2), . . . ,aσ(n)

)
is a rearrangement of a in an ascending order

aσ(1) � aσ(2) � · · · � aσ(n) . For z ∈ C\ (−∞,0] , let

hn(z) = Gn
(
σ(a)−aσ(1)e+ ze

)− z. (2.4)

Then the principal branch of hn(z) satisfies

lim
ε→0+

ℑhn(−t + iε)

=

⎧⎪⎨
⎪⎩
[ n

∏
k=1

∣∣aσ(k)−aσ(1)− t
∣∣]1/n

sin
�π
n

, t ∈ (aσ(�)−aσ(1),aσ(�+1)−aσ(1)
]

0, t � aσ(n)−aσ(1)

(2.5)

for 1 � � � n−1 .

Proof. For t ∈ (0,∞)\{aσ(�+1)−aσ(1),1 � � � n−1
}

and ε > 0, we have
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hn(−t + iε) = Gn
(
σ(a)−aσ(1)e− te+ iεe

)
+ t− iε

= exp

[
1
n

n

∑
k=1

ln
(
aσ(k)−aσ(1)− t + iε

)]
+ t− iε

= exp

{
1
n

n

∑
k=1

[
ln
∣∣ak −aσ(1)− t + iε

∣∣+ iarg
(
aσ(k)−aσ(1)− t + iε

)]}
+ t− iε

→

⎧⎪⎪⎨
⎪⎪⎩

exp

(
1
n

n

∑
k=1

ln
∣∣aσ(k)−aσ(1)− t

∣∣+ �π
n

i

)
+ t, t ∈ (aσ(�)−aσ(1),aσ(�+1)−aσ(1)

)
exp

(
1
n

n

∑
k=1

ln
∣∣aσ(k)−aσ(1)− t

∣∣+ π i

)
+ t, t > aσ(n)−aσ(1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( n

∏
k=1

∣∣aσ(k)−aσ(1)− t
∣∣)1/n

exp
(�π

n
i
)

+ t, t ∈ (aσ(�)−aσ(1),aσ(�+1)−aσ(1)
)

( n

∏
k=1

∣∣aσ(k)−aσ(1)− t
∣∣)1/n

exp(π i)+ t, t > aσ(n)−aσ(1)

as ε → 0+ . As a result, we have

lim
ε→0+

ℑhn(−t + iε)

=

⎧⎪⎨
⎪⎩
( n

∏
k=1

∣∣aσ(k)−aσ(1)− t
∣∣)1/n

sin
�π
n

, t ∈ (aσ(�)−aσ(1),aσ(�+1)−aσ(1)
)
;

0, t > aσ(n)−aσ(1).

For t = aσ(�+1)−aσ(1) for 1 � � � n−1, we have

hn(−t + iε) = exp

[
1
n

n

∑
k �=�+1

ln
(
aσ(k)−aσ(1)− t + iε

)
+

1
n

ln(iε)
]

+ t− iε

= exp

[
1
n

n

∑
k �=�+1

ln
(
aσ(k)−aσ(1)− t + iε

)]
exp
[1
n

(
ln |ε|+ π

2
i
)]

+t− iε

→ exp

[
1
n

n

∑
k �=�+1

ln
(
aσ(k)−aσ(1)− t

)]
lim

ε→0+
exp
[1
n

(
ln |ε|+ π

2
i
)]

+t

= t

as ε → 0+ . Hence, when t = aσ(�+1)−aσ(1) for 1 � � � n−1, we have

lim
ε→0+

ℑhn(−t + iε) = 0.

The proof of Lemma 2.3 is completed.

3. Proof of Theorem 1.1

We now turn our attention to the proof of Theorem 1.1.
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By standard arguments, it is not difficult to see that

lim
z→0+

[zhn(z)] = 0 and hn(z) = hn(z), (3.1)

where hn(z) is defined by (2.4).
For any fixed point z0 = x0 + iy0 ∈ C\ (−∞,0] , choose ε and r such that{

0 < ε < |y0| � |z0| < r, y0 �= 0,

0 < ε < x0 = |z0| < r, y0 = 0,

and consider the positively oriented contour C(ε,r) in C\(−∞,0] consisting of the half
circle z = εeiθ for θ ∈ [− π

2 , π
2

]
and the half lines z = x± iε for x � 0 until they cut

the circle |z|= r , which close the contour at the points −r(ε)± iε , where 0 < r(ε)→ r
as ε → 0. See Figure 1 below.

 

 

x

y

z = εeiθ

|z| = r

z = x+ εi−r(ε) + εi

z = x− εi−r(ε)− εi

O

−ε

ε

−r

Figure 1. The contour C(ε ,r)

By Cauchy integral formula, that is, Lemma 2.1, we have

hn(z0) =
1

2π i

∮
C(ε,r)

hn(w)
w− z0

dw

=
1

2π i

[∫ −π/2

π/2

iεeiθ h
(
εeiθ)

εeiθ − z0
dθ +

∫ arg[−r(ε)+iε]

arg[−r(ε)−iε]

ireiθ h
(
reiθ)

reiθ − z0
dθ

+
∫ 0

−r(ε)

hn(x+ iε)
x+ iε − z0

dx+
∫ −r(ε)

0

hn(x− iε)
x− iε − z0

dx

]
.

(3.2)

By the limit in (3.1), it follows that

lim
ε→0+

∫ −π/2

π/2

iεeiθ hn
(
εeiθ)

εeiθ − z0
dθ = 0. (3.3)
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By virtue of the limit (2.3) in Lemma 2.2, we deduce that

lim
ε→0+
r→∞

∫ arg[−r(ε)+iε]

arg[−r(ε)−iε]

ireiθ hn
(
reiθ )

reiθ − z0
dθ = lim

r→∞

∫ π

−π

ireiθ hn
(
reiθ )

reiθ − z0
dθ

= 2An
(
σ(a)−aσ(1)e

)
π i.

(3.4)

Utilizing the second formula in (3.1) and the limit (2.5) in Lemma 2.3 results in

∫ 0

−r(ε)

hn(x+ iε)
x+ iε − z0

dx+
∫ −r(ε)

0

hn(x− iε)
x− iε − z0

dx

=
∫ 0

−r(ε)

[
hn(x+ iε)
x+ iε − z0

− hn(x− iε)
x− iε − z0

]
dx

=
∫ 0

−r(ε)

(x− iε − z0)hn(x+ iε)− (x+ iε− z0)hn(x− iε)
(x+ iε − z0)(x− iε − z0)

dx

=
∫ 0

−r(ε)

(x− z0)[hn(x+ iε)−hn(x− iε)]− iε[hn(x− iε)+hn(x+ iε)]
(x+ iε − z0)(x− iε − z0)

dx

= 2i
∫ 0

−r(ε)

(x− z0)ℑhn(x+ iε)− εℜhn(x+ iε)
(x+ iε − z0)(x− iε − z0)

dx

→ 2i
∫ 0

−r

limε→0+ ℑhn(x+ iε)
x− z0

dx

= −2i
∫ r

0

limε→0+ ℑhn(−t + iε)
t + z0

dt

→−2i
∫ ∞

0

limε→0+ ℑhn(−t + iε)
t + z0

dt

= −2i
n−1

∑
�=1

sin
�π
n

∫ aσ(�+1)−aσ(1)

aσ(�)−aσ(1)

[ n

∏
k=1

∣∣aσ(k)−aσ(1)− t
∣∣]1/n d t

t + z0
(3.5)

as ε → 0+ and r → ∞ . Substituting equations (3.3), (3.4), and (3.5) into (3.2) and
simplifying generate

hn(z0) = An
(
σ(a)−aσ(1)e

)
− 1

π

n−1

∑
�=1

sin
�π
n

∫ aσ(�+1)−aσ(1)

aσ(�)−aσ(1)

[ n

∏
k=1

∣∣aσ(k)−aσ(1)− t
∣∣]1/n dt

t + z0
. (3.6)

From (2.2) and (2.4), it is easy to obtain that

fa,n(z0) = hn
(
z+aσ(1)

)
+aσ(1).

Combining this with (3.6) and changing the variables of integrals, it is immediate to
deduce that

fa,n(z0) = An
(
σ(a)−aσ(1)e

)
+aσ(1)
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− 1
π

n−1

∑
�=1

sin
�π
n

∫ aσ(�+1)−aσ(1)

aσ(�)−aσ(1)

[ n

∏
k=1

∣∣aσ(k)−aσ(1)− t
∣∣]1/n dt

t + z0 +aσ(1)

= An(σ(a))− 1
π

n−1

∑
�=1

sin
�π
n

∫ aσ(�+1)

aσ(�)

[ n

∏
k=1

|aσ(k)− t|
]1/n d t

t + z0
,

from which and the facts that

An(σ(a)) = An(a) and
n

∏
k=1

|aσ(k)− t|=
n

∏
k=1

|ak − t|,

the integral representation (1.7) follows.
Since 1

t+z =
∫ ∞
0 e−(t+z)u du for ℜ(t + z) > 0, the integral representation (1.7) may

be rewritten as

Gn(a+ ze) = An(a)−
∫ ∞

0
Q(u)du+ z+

∫ ∞

0

(
1− e−zu)Q(u)du. (3.7)

Letting z → 0 on both sides of (3.7) gives
∫ ∞
0 Q(u)du = An(a)−Gn(a). Hence, the

integral representation (1.8) follows.
It is clear that the function Q(u) is completely monotonic on (0,∞) , which means

that the geometric mean Gn(a+ xe) is a complete Bernstein function on (0,∞) . The
proof of Theorem 1.1 is complete.

4. A new proof of the arithmetic-geometric mean inequality

There has been a large number, presumably over one hundred, of proofs of the
arithmetic-geometric mean inequality (1.6) in the mathematical literature. The most
complete information, so far, can be found in the monographs [2, 4, 8, 9, 10] and a lot
of references therein.

As an application of the integral representation (1.7) in Theorem 1.1, a new proof
for the arithmetic-geometric mean inequality (1.6) may be formulated as follows.

Taking z = 0 in the integral representation (1.7) yields

Gn(a) = An(a)− 1
π

n−1

∑
�=1

sin
�π
n

∫ aσ(�+1)

aσ(�)

[ n

∏
k=1

|ak − t|
]1/n d t

t
� An(a), (4.1)

from which the inequality (1.6) follows.
From (4.1), it is also immediate that the equality in (1.6) is valid if and only if

aσ(1) = aσ(2) = · · · = aσ(n) , that is, a1 = a2 = · · · = an . The proof of the arithmetic-
geometric mean inequality (1.6) is complete.

REMARK 4.1. The integral representation (1.7) in Theorem 1.1 has been applied
in [11] to find an integral representation of Stirling numbers of the first kind. It has also
been generalized in [20].

REMARK 4.2. This article combines and upgrades the preprints [19, 22].
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