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WENZHI YANG AND SHUHE HU

(Communicated by I. Perić)

Abstract. In this paper, we go on to investigate the concave Young function inequalities for N-
demimartingales and obtain some maximal type inequalities for these stochastic process. As
some specific concave Young functions, some related inequalities for N-demimartingales are
presented. Meanwhile, some convex function inequalities for nonnegative N-demimartingales
are also obtained, including the classical Doob type inequalities. In addition, the Marshall type
inequalities and other maximal type inequalities for N-demimartingales are studied too.

1. Introduction

Assume that X1 , X2, · · · or S1 , S2, · · · is a sequence of random variables defined
on a probability space (Ω,F ,P) . Let S0 = 0 and IA be the indicator function of the
set A .

DEFINITION 1.1. Let S1,S2, · · · be an L1 sequence of random variables. Assume
that for j = 1,2, · · ·

E{(S j+1−S j) f (S1, · · · ,S j)} � 0 (1.1)

for all coordinatewise nondecreasing functions f such that the expectation is defined.
Then {S j} j�1 is called a demimartingale. If in addition the function f is assumed to
be nonnegative, the sequence {S j} j�1 is called a demisubmartingale.

DEFINITION 1.2. Let S1,S2, · · · be an L1 sequence of random variables. Assume
that for j = 1,2, · · ·

E{(S j+1−S j) f (S1, · · · ,S j)} � 0 (1.2)

for all coordinatewise nondecreasing functions f such that the expectation is defined.
Then {S j} j�1 is called an N-demimartingale. If in addition the function f is assumed
to be nonnegative, the sequence {S j} j�1 is called an N-demisupermartingale.

The concept of demimartingales and demisubmartingales was due to Newman
and Wright [19]. It can be checked that a submartingale with the natural choice of
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σ -algebras is a demisubmartingale but the converse statement cannot always be true.
Newman and Wright [19] proved that the partial sum of mean zero associated random
variables forms a demimartingale. For the examples of associated random variables,
limit theorems of associated random fields and related systems, one can refer to the
book by Bulinski and Shaskin [2].

Similarly, the notion of N-demimartingales and N-demisupermartingales can be
found in Christofides [4]. It is trivial to verify that the partial sum of mean zero nega-
tively associated random variables forms an N-demimartingale and a supermartingale
with the natural choice of σ -algebras is an N-demisupermartingale, but the converse
statement cannot always be true (see Christofides [4]).

It is worth mentioning that a martingale with the natural choice of σ -algebras
is both a demimartingale and an N-demimartingale, since it satisfies (1.1) and (1.2)
respectively. Various results and examples of demimartingales and N-demimartingales
can be found in Newman and Wright [19], Wood [32, 33], Christofides [3, 4, 5], Wang
[26], Prakasa Rao [22, 23], Christofides and Hadjikyriakou [6, 7], Wang et al. [27],
Wang et al. [28], Wang et al. [29], Hadjikyriakou [10, 11], the book by Prakasa Rao
[24] and the references therein. For the related works on martingales, one can refer to
Osȩkowski [20] and Wang et al. [30], etc.

By investigating the concave Young function inequalities for nonnegative super-
martingales and submartingales, Agbeko [1] obtained some maximal inequalities for
these stochastic processes. Christofides [4] extended the result of Agbeko [1] for su-
permartingales to the case of N-demisupermartingales. Recently, Wang et al. [31]
also extended some results of Agbeko [1] to the cases of demimartingales and N-
demimartingales. Meanwhile, the Marshall type inequalities for demimartingales and
the convex function type inequalities for demimartingales and N-demimartingales were
presented in Hu et al. [13], who extended some results of Mu and Miao [18].

Inspired by Agbeko [1], Christofides [4], Prakasa Rao [22, 23], Mu and Miao
[18], Wang et al. [31], etc., we go on to study the concave Young function inequali-
ties for N-demimartingales, and obtain some similar results of Agbeko [1]. As some
specific concave Young functions, some related inequalities for N-demimartingales are
presented. For the details, please see the results and remarks in Section 2. Based on
the convex functions, we also have some convex function inequalities for nonnegative
N-demimartingales, which include the classical Doob type inequalities. For the de-
tails, one can refer to the corresponding results in Section 3. Furthermore, by using
the maximal inequality for N-demimartingales, we study the Marshall type inequalities
for N-demimartingales (see the results in Section 4). Finally, some other maximal type
inequalities of nonnegative N-demimartingales are also presented in Section 5.

Now, we give a preliminary, which is a key technique to obtain the results in this
paper.

LEMMA 1.1. (cf. Prakasa Rao [22], Theorem 3.1) Assume that {Sn}n�1 is an N-
demimartingale and m(·) is a nonnegative nondecreasing function on R with m(0) =
0 . Let g(·) be a function on R with g(0) = 0 and suppose that

g(x)−g(y) � (y− x)h(y) (1.3)
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for all x,y, where h(·) is a nonnegative and nondecreasing function. Further assume
that {ck,1 � k � n} is a sequence of positive numbers such that (ck − ck+1)g(Sk) � 0
for 1 � k � n−1 . Define Yk = max

1� j�k
c jg(S j) , k � 1, Y0 = 0 . Then

E(
∫ Yn

0
udm(u)) �

n

∑
i=1

ciE[(g(Si)−g(Si−1))m(Yn)].

Particularly, for every ε > 0 ,

εP( max
1�k�n

ckg(Sk) � ε) �
n

∑
i=1

ciE[(g(Si)−g(Si−1))I( max
1�k�n

ckg(Sk) � ε)]. (1.4)

REMARK 1.1. It can be seen that g(x) =−αx , α � 0 and g(x) =−αx+ , α � 0,
satisfy the condition of (1.3) (see Prakasa Rao [22, 24]). Here x+ = x if x � 0 and
x+ = 0 if x < 0.

By using Lemma 1.1, Hadjikyriakou [10] got the following maximal inequality for
N-demimartingales.

COROLLARY 1.1. (Hadjikyriakou [10], Theorem 3.2.1) Assume that {Sn}n�1 is
an N-demimartingale. Then for every ε > 0 ,

εP( max
1�k�n

Sk � ε) � E(SnI( max
1�k�n

Sk � ε)). (1.5)

Similar to Corollary 1.1, we apply Lemma 1.1 and get the following result.

COROLLARY 1.2. Let {Sn}n�1 be a nonnegative N-demimartingale and {cn}n�1

be a nonincreasing sequence of positive numbers. Then for every ε > 0

εP( max
1�k�n

ckSk � ε) �
n

∑
i=1

ciE[(Si −Si−1)I( max
1�k�n

ckSk � ε)]. (1.6)

Proof. The proof is inspired by the proof of Theorem 3.2.1 of Hadjikyriakou
[10]. It is a fact that if {Sn}n�1 is an N-demimartingale, then {−Sn}n�1 is also an
N-demimartingale (see Christofides [4] or Prakasa Rao [24]). If g(x) = −x and {Sn}
is replace by {−Sn} , then it can be seen that

(ck − ck+1)g(Sk) = (ck − ck+1)Sk � 0, k � 1.

Therefore, by (1.4), one has (1.6) finally. �
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2. Concave function inequalities for nonnegative N-demimartingales

Let ϕ(t) be a right continuous decreasing function defined on (0,∞) satisfying
the condition

ϕ(∞) = lim
t→∞

ϕ(t) = 0.

Suppose that ϕ is also integrable with respect to the Lebesgue measure on any finite
interval (0,x) . Let

Φ(x) =
∫ x

0
ϕ(t)dt, x � 0.

Then Φ is a nonnegative increasing concave function such that Φ(0) = 0. We further
assume that Φ(∞) = ∞ . Then Φ is called a concave Young function.

For more details and properties of concave Young function, one can refer to Ag-
beko [1]. Examples of such functions are Φ(x) = xp , 0 < p < 1, x � 0 and Φ(x) =
ln(1+ x) , x � 0. One can also refer to Long [16] for the properties of concave Young
function. Agbeko [1] obtained the following maximal inequalities based on the class of
concave Young functions for supermartingales (see Theorem 2.1 of Agbeko [1]).

THEOREM 2.1. Let Φ be a concave Young function. Denote ξ (x) = Φ(x) −
xϕ(x) . Then for any nonnegative supermartingale (Xn,Fn) we have:

(i)
Eξ ( max

1�k�n
Xk) � EΦ(X1).

(ii) The inequality

(1−b)EΦ( max
1�k�n

Xk)−a � Eξ ( max
1�k�n

Xk)

is valid for some constants a � 0 and 0 < b < 1 , if and only if

limsup
x→∞

xϕ(x)
Φ(x)

< 1. (2.1)

(iii) If (2.1) satisfies, then

EΦ( max
1�k�n

Xk) � KΦ[1+EΦ(X1)]

for some constant KΦ > 0 depending only on Φ .

By studying the properties of N-demimartingales, Christofides [4] extended The-
orem 2.1 to the case of N-demisupermartingales. Wang et al. [31] also obtained some
concave Young function inequalities for demimartingales and N-demimartingales.

In this section, we also investigate the concave Young function inequalities for
N-demimartingales, and get the following theorem.

THEOREM 2.2. Assume that {Sn}n�1 is a nonnegative N-demimartingale and
{cn}n�1 is a nonincreasing sequence of positive numbers. Let Φ be a concave Young
function. Denote ξ (x) = Φ(x)− xϕ(x) . Then we have
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(i)
Eξ ( max

1�k�n
ckSk) � Φ(c1ES1). (2.2)

(ii) The inequality

(1−b)EΦ( max
1�k�n

ckSk)−a � Eξ ( max
1�k�n

ckSk) (2.3)

is valid for some constants a � 0 and 0 < b < 1 if and only if (2.1) satisfies.
(iii) If (2.1) satisfies, then

EΦ( max
1�k�n

ckSk) � KΦ[1+ Φ(c1ES1)] (2.4)

for some constant KΦ > 0 depending only on Φ .

Proof. The proof is inspired by the proof of Theorem 2.1 of Agbeko [1]. Denote

Tn =
n
∑
i=1

ci(Si−Si−1) , n � 1. Under the conditions of Theorem 2.2, it is easy to see that

Tn =
n

∑
i=1

ci(Si−Si−1) =
n−1

∑
i=1

(ci − ci+1)Si + cnSn � 0, n � 1.

By the property of N-demimartingale that ESn = · · · = ES1 , n � 1, it can be seen that
ETn = c1ES1 . Consequently, by (1.6) in Corollary 1.2, we can find that

xP( max
1�k�n

ckSk � x) � min{ETn,x} = min{c1ES1,x}, x > 0. (2.5)

By the properties of ϕ and Φ with Φ(0) = 0, it can be seen that

lim
x→0

xϕ(x) � lim
x→0

2(Φ(x)−Φ(x/2)) = 0.

So, integrate both sides of (2.5) on [0,∞) with respect to the measure d(−ϕ(x)) , we
have∫ ∞

0

∫
( max
1�k�n

ckSk�x)
xdPd(−ϕ(x)) �

∫ ∞

0
min{c1ES1,x}d(−ϕ(x))

=
∫ c1ES1

0
xd(−ϕ(x))+ c1ES1

∫ ∞

c1ES1

d(−ϕ(x))

= −c1ES1ϕ(c1ES1)+ Φ(c1ES1)+ c1ES1ϕ(c1ES1)
= Φ(c1ES1),

which implies

E
∫ max

1�k�n
ckSk

0
xd(−ϕ(x)) � Φ(c1ES1). (2.6)

On the other hand, integration by parts, it follows

E
∫ max

1�k�n
ckSk

0
xd(−ϕ(x)) = −E( max

1�k�n
ckSkϕ( max

1�k�n
ckSk))+EΦ( max

1�k�n
ckSk)

= Eξ ( max
1�k�n

ckSk). (2.7)
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Combining (2.6) with (2.7), one has (2.2) immediately.
Meanwhile, similar to the proof of (ii) of Theorem 2.1 of Agbeko [1], we can get

the result of (ii) of Theorem 2.2.
Finally, by (2.2), (2.3) and the proof of (iii) of Theorem 2.1 of Agbeko [1], it is

easy to have the result of (2.4). �

As the specific concave Young functions such as Φ(x) = xp , 0 < p < 1, x � 0
and Φ(x) = ln(1+ x) , x � 0, we get some related inequalities for N-demimartingales
in this section.

COROLLARY 2.1. Assume that {Sn}n�1 is a nonnegative N-demimartingale and
{cn}n�1 is a nonincreasing sequence of positive numbers. Then for any 0 < p < 1 ,

E( max
1�k�n

ckSk)p � 1
1− p

(c1ES1)p, (2.8)

E( max
1�k�n

ckSk)ν �
( 1

1− p

)ν/p
(c1ES1)ν , 0 < ν < p < 1. (2.9)

Particularly, if cn ≡ 1 , n � 1 , then for any 0 < p < 1 , it has

ESp
1 � E( max

1�k�n
Sk)p � 1

1− p
(ES1)p, (2.10)

ESν
1 � E( max

1�k�n
Sk)ν �

( 1
1− p

)ν/p
(ES1)ν , 0 < ν < p < 1. (2.11)

Proof. If Φ(x) = xp , 0 < p < 1, then ϕ(x) = pxp−1 and ξ (x) = Φ(x)− xϕ(x) =
(1− p)xp . So, by (2.2), it follows

Eξ ( max
1�k�n

ckSk) = (1− p)E( max
1�k�n

ckSk)p � (c1ES1)p,

which implies (2.8) immediately.
On the other hand, if 0 < ν < p < 1, by Hölder inequality and (2.8), it can be

checked that

E( max
1�k�n

ckSk)ν � [E( max
1�k�n

ckSk)p]ν/p �
[ 1
1− p

(c1ES1)p
]ν/p

=
( 1

1− p

)ν/p
(c1ES1)ν ,

i.e. (2.9) holds.
Obviously, it has ESp

1 � E( max
1�k�n

Sk)p and ESν
1 � E( max

1�k�n
Sk)ν . Meanwhile, by

taking cn ≡ 1, n � 1 in (2.8) and (2.9), we can get (2.10) and (2.11) finally. �

Similar to Corollary 2.1, by taking Φ(x) = ln(1+ x) in Theorem 2.2, we will get
the following result.
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COROLLARY 2.2. Assume that {Sn}n�1 is a nonnegative N-demimartingale and
{cn}n�1 is a nonincreasing sequence of positive numbers. Then

E ln(1+ max
1�k�n

ckSk) � 1+ ln(1+ c1ES1). (2.12)

Particularly, if cn ≡ 1 , n � 1 , then

E ln(1+S1) � E ln(1+ max
1�k�n

Sk) � 1+ ln(1+ES1). (2.13)

Proof. If Φ(x) = ln(1+ x) , x � 0, then ϕ(x) = 1
1+x and

ξ (x) = Φ(x)− xϕ(x) = ln(1+ x)− x
1+ x

, x � 0.

So, by (2.2), it has

Eξ ( max
1�k�n

ckSk) = E ln(1+ max
1�k�n

ckSk)−E
max

1�k�n
ckSk

1+ max
1�k�n

ckSk
� ln(1+ c1ES1).

By the inequality above, (2.12) holds immediately.
On the other hand, it is easy to see that E ln(1+S1) � E ln(1+ max

1�k�n
Sk) . Last, let

cn ≡ 1, n � 1 in (2.12), we obtain (2.13) immediately. �

REMARK 2.1. Similar to our Theorem 2.2, some concave function inequalities
for N-demimartingales are obtained in Wang et al. [31] (see Theorem 3.1, Corollary
3.1 and Corollary 3.2 of Wang et al. [31]). It is pointed out that g(x) = −x cannot be
taken in Theorem 3.1 of Wang et al. [31]. But we take g(x) = −x to prove Corollary
1.2, which is used to get our Theorem 2.2. So our Theorem 2.2, Corollary 2.1 and
Corollary 2.2 cannot be obtained by Theorem 3.1 of Wang et al. [31].

Similar to the Theorem 3.2 of Agbeko [1], we continue to study the estimate of
EΦ( max

1�k�n
ckSk) under a different assumption from the one of (2.1).

THEOREM 2.3. Assume that {Sn}n�1 is a nonnegative N-demimartingale and
{cn}n�1 is a nonincreasing sequence of positive numbers. Let Φ be a concave Young
function satisfying that ∫ ∞

1

ϕ(t)
t

dt = Kϕ < ∞, (2.14)

where Kϕ is a positive constant depending only on ϕ . Then

EΦ( max
1�k�n

ckSk) � Φ(1)+Kϕc1ES1. (2.15)

Proof. The proof is inspired by the proof of Theorem 3.2 of Agbeko [1]. Integrate
inequality (1.6) with ε = x > 0 on [1,∞) , with respect to the measure generated by the
nondecreasing function ∫ x

1

ϕ(t)
t

dt.
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By Fubini theorem, we have that

∫ ∞

1
P( max

1�k�n
ckSk � x)ϕ(x)dx �

n

∑
i=1

ci

∫ ∞

1
E[(Si−Si−1)I( max

1�k�n
ckSk � x)]

ϕ(x)
x

dx

=
n

∑
i=1

ciE

[
(Si −Si−1)

∫ max{ max
1�k�n

ckSk,1}

1

ϕ(x)
x

dx

]

=
n−1

∑
i=1

(ci − ci+1)E
[
Si

∫ max{ max
1�k�n

ckSk,1}

1

ϕ(x)
x

dx

]

+cnE

[
Sn

∫ max{ max
1�k�n

ckSk,1}

1

ϕ(x)
x

dx

]

� Kϕ
n−1

∑
i=1

(ci − ci+1)ESi +KϕcnESn

= Kϕc1ES1, (2.16)

since ESn = · · · = ES1 , n � 1.
Meanwhile, by Fubini theorem again, one has that

∫ ∞

1
P( max

1�k�n
ckSk � x)ϕ(x)dx = E

[∫ max{ max
1�k�n

ckSk,1}

1
ϕ(x)dx

]

= EΦ(max{ max
1�k�n

ckSk,1})−Φ(1)

� EΦ( max
1�k�n

ckSk)−Φ(1). (2.17)

Combining (2.16) with (2.17), we obtain (2.15) finally. �

REMARK 2.2. Similar to our Theorem 2.3, Wang et al. [31] extended Theorem
3.2 of Agbeko [1] for nonnegative submartingales to the case of demimartingales (see
Theorem 2.2 of Wang et al. [31]). In this paper, we also extend Theorem 3.2 of Agbeko
[1] to the case of nonnegative N-demimartingales. On the other hand, if Φ(x) = xp ,

0 < p < 1, x � 0, then ϕ(x) = pxp−1 and Kϕ =
∫ ∞
1

ϕ(t)
t dt = p

1−p . So, it follows from
(2.15) that

E( max
1�k�n

ckSk)p � 1+
p

1− p
c1ES1.

3. Convex functions inequalities for nonnegative N-demimartingales

First, we introduce some results for convex function (see Garsia [9]) in this section.
Assume that the convex function Φ(u) is of the type

Φ(u) =
∫ u

0
ϕ(t)dt

with, ϕ(t) strictly increasing and nonnegative in [0,∞) .
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To such a Φ(u) we can associate a convex function Ψ(v) of the same type (the
conjugate of Φ in the sense of Young) such that

Ψ(v) =
∫ v

0
ψ(t)dt,

where ϕ(t) and ψ(t) are inverses of each other.
It can be checked that

uϕ(u) = Φ(u)+ Ψ(ϕ(u)),∫ v

0
tdψ(t) = Φ(ψ(v)), (3.1)

uv � Φ(u)+ Ψ(v) (Young’s inequality), (3.2)

Φ
( u

λ

)
� 1

λ
Φ(u), ∀ λ � 1. (3.3)

Furthermore, when
Φ(2u) � cΦ(u), (3.4)

then, setting

p = sup
u>0

uϕ(u)
Φ(u)

, (3.5)

one can easily get 1 < p � c−1 < ∞ .
Finally, one also gets

Φ(ρu) � ρ pΦ(u), ∀ ρ > 1,

Ψ(v) � (p−1)Φ(ψ(v)). (3.6)

The proofs of these assertions can be found in Krasnoselkii and Rutickii [15] or
Long [16]. The following pairs of functions (see Krasnoselkii and Rutickii [15]):

Φ1(u) =
up

p
, u � 0, Ψ1(v) =

vq

q
, v � 0, p > 1,

1
p

+
1
q

= 1,

Φ2(u) = eu−u−1, u � 0, Ψ2(v) = (1+ v) ln(1+ v)− v, v � 0

can serve as examples of Φ and Ψ functions above.
If ϕ(0) = 0, then ψ(0) = 0, since ϕ(·) strictly increases and ϕ(·) and ψ(·) are

inverses of each other.
Assume that {Xn,Fn}n�1 is a nonnegative submartingale and Ψ(v) is a convex

function (the conjugate of Φ in the sense of Young). Garsia [9] obtained that

E[Ψ( max
1�k�n

Xk)] � pE[Ψ(pXn)], (3.7)

where p satisfies (3.4) and (3.5).
Hu et al. [13] extended the similar inequality (3.7) for demimartingales and N-

demimartingales. In this section, we also study the inequality (3.7) for nonnegative
N-demimartingales.
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THEOREM 3.1. Assume that {Sn}n�1 is a nonnegative N-demimartingale and
{cn}n�1 is a nonincreasing sequence of positive numbers. Let

Smax
n = max

1�k�n
ckSk, Tn =

n

∑
i=1

ci(Si −Si−1), n � 1, (3.8)

Ψ(v) be a convex function (the conjugate of Φ in the sense of Young) with ψ(0) = 0 .
Then,

E[Ψ(Smax
n )] � pE[Ψ(pTn)], (3.9)

where p satisfies (3.4) and (3.5).

Proof. By (1.6) and (3.8), it follows

tP(Smax
n � t) � E[TnI(Smax

n � t)], t > 0.

Integrate both sides of this inequality on [0,∞) with respect to the measure dψ(t) , we
get ∫ ∞

0

∫
(Smax

n �t)
tdPdψ(t) �

∫ ∞

0

∫
(Smax

n �t)
TndPdψ(t).

From Fubini theorem, it has
∫

Ω

∫ Smax
n

0
tdψ(t)dP �

∫
Ω

Tn

∫ Smax
n

0
dψ(t)dP,

which implies
E[Φ(ψ(Smax

n ))] � E[Tnψ(Smax
n )],

following from relation (3.1) and ψ(0) = 0. Thus, by Young’s inequality (3.2), we have

E[Φ(ψ(Smax
n ))] � E

[
Φ

(ψ(Smax
n )
p

)]
+E[Ψ(pTn)],

and by (3.3) we also have

p−1
p

E[Φ(ψ(Smax
n ))] � E[Ψ(pTn)].

Finally, by (3.6) and the two inequalities above, one can get the desired result (3.9). �

If cn ≡ 1 for each n � 1 in Theorem 3.1, one will get the following result.

COROLLARY 3.1. Let {Sn}n�1 be a nonnegative N-demimartingale and Ψ(v) be
a convex function (the conjugate of Φ in the sense of Young) with ψ(0) = 0 . Then,

E[Ψ( max
1�k�n

Sk)] � pE[Ψ(pSn)], (3.10)

where p satisfies (3.4) and (3.5).

REMARK 3.1. Inequalities of this type of Theorem 3.1 and Corollaries 3.1, es-
pecially in the case Ψ(v) = vq

q (q > 1) , are classical Doob type inequalities for N-
demimartingales. For example, the Doob type inequality of the nonnegative N-demi-
martingales was presented in Corollary 3.2.4 of Hadjikyriakou [10]. On the other hand,
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the convex function inequalities are also obtained in Theorem 3.2 and Corollary 3.3 of
Hu et al. [13]. But similar to Remark 2.1, g(x) = −x cannot be taken in Theorem 3.2
of Hu et al. [13], so our Theorem 3.1 and Corollary 3.1 cannot be obtained by Theorem
3.2 of Hu et al. [13].

4. Marshall type inequalities for N-demimartingales

Let
EX1 = 0, E(Xi|X1,X2, · · · ,Xi−1) = 0, a.s., 2 � i � n

and Sk = ∑k
j=1 Xj , 1 � k � n . Assume that E|Xi|p < ∞ , p � 2, i = 1,2, · · · ,n , Mu and

Miao [18] generalized the Marshall inequality to the form:

P{ max
1�k�n

Sk � ε} � E|Sn|p
α1−pε p +E|Sn|p , ∀ ε > 0, (4.1)

where α is the maximum value of the function

h(x) = 1− x+(1− x)2−qxq−1, x ∈ [0,1]

and 1/p + 1/q = 1. In particular, when p = 2, inequality (4.1) is the Marshall’s in-
equality.

Hu et al. [13] generalized some results of Mu and Miao [18] for martingales to
the case of demimartingales. For the more details of Marshall inequality, one can refer
to Uspensky [25], Marshall [17], Mu and Miao [18], Hu et al. [13] and the references
therein.

In this section, we also investigate the Marshall type inequalities for N-demimar-
tingales and get some similar results of Hu et al. [13]. The following lemma is useful
to prove our results in this section.

LEMMA 4.1. Let {Sn}n�1 be an N-demimartingale with ES1 � 0 and assume
that there exists p > 1 such that E|Si|p < ∞ for 1 � i � n. Let 1/p+1/q= 1 . Denote
Λ = { max

1�k�n
Sk � ε} . Then for every ε > 0 ,

[P(Λ)(1−P(Λ))q +(1−P(Λ))P(Λ)q]1/q(E|Sn|p)1/p � εP(Λ). (4.2)

Proof. It is similar to the proof of Lemma 2.1 of Mu and Miao (2011) and the
proof of Lemma 2.4 of Hu et al. (2012). For an N-demimartingale, it has a property
that ESn = · · · = ES1 n � 1. Therefore, by Hölder’s inequality, inequaliy (1.5) and
ES1 � 0, we have that

(E|Y −EY |q)1/q(E|Sn|p)1/p � E[(Y −EY)Sn] = E(YSn)−ESnEY

� E(SnIΛ) � εP(Λ), (4.3)

where Y = IΛ . Meanwhile, it has

E|Y −EY |q = P(Λ)(1−P(Λ))q +(1−P(Λ))P(Λ)q. (4.4)

Thus, (4.2) follows from (4.3) and (4.4) finally. �
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THEOREM 4.1. Let {Sn}n�1 be an N-demimartingale with ES1 � 0 . Assume that
there exists p > 1 such that 0 < E|Si|p < ∞ for 1 � i � n. Let 1/p+ 1/q = 1 . Then
for every ε > 0 ,

P( max
1�k�n

Sk � ε) � 1
1+M

, (4.5)

where M is the positive solution of the following equation:

xq = (β −1)x+ β , x ∈ (0,∞),

and β = εq/(E|Sn|p)q/p .

Proof. Similar to the proofs of Theorem 2.1 of Mu and Miao [18] and Theorem
2.1 of Hu et al. [13], by (4.2) in Lemma 4.1, one will get (4.5) immediately. We omit
its proof here. �

THEOREM 4.2. Let {Sn}n�1 be an N-demimartingale with ES1 � 0 . Assume that
there exists p � 2 such that E|Si|p < ∞ for 1 � i � n. Let 1/p+ 1/q = 1 . Then for
every ε > 0 ,

P( max
1�k�n

Sk � ε) � E|Sn|p
α1−pε p +E|Sn|p , (4.6)

where α is the maximum value of function

h(x) = 1− x+(1− x)2−qxq−1, x ∈ [0,1].

In particular, inequality (4.6) is the Marshall’s inequality when p = 2 .

Proof. Similar to the proofs of Theorem 3.1 of Mu and Miao [18], by (4.2), one
can easily get (4.6) finally. �

COROLLARY 4.1. If {Sn}n�1 is an N-demimartingale with ES1 � 0 and E|Si|3 <
∞ for 1 � i � n, then for every ε > 0 ,

P( max
1�k�n

Sk � ε) � E|Sn|3
4ε3/(3+2

√
2)+E|Sn|3

.

Proof. As an application of Theorem 4.2, similar to the proof of Corollary 3.2 of
Mu and Miao [18], it is easy to have the desired result. �

COROLLARY 4.2. Let {Sn}n�1 be an N-demimartingale with ES1 � 0 . Assume
that there exists p � 2 such that E|Si|p < ∞ for 1 � i � n. Then for every ε > 0 ,

P( max
1�k�n

Sk � ε) � E|Sn|p
4(ε/2)p +E|Sn|p .

If p = 2 , then the Marshall’s inequality also holds true.

Proof. Since the proof is similar to the proof of Theorem 3.2 of Mu and Miao
[18], we omit its proof here. �
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THEOREM 4.3. Let {Sn}n�1 be an N-demimartingale with ES1 � 0 and assume
that there exists δ > 0 such that E|Si|1+δ < ∞ for 1 � i � n. Then for every ε � E|Sn| ,

P( max
1�k�n

Sk � ε) � E|Sn|
ε +E|Sn| .

Proof. Similar to the proofs of Theorem 3.3 of Mu and Miao [18] and Theorem
2.4 of Hu et al. [13], we will have the desired result by (1.5) and Lemma 4.1 finally. �

REMARK 4.1. Based on the paper of Mu and Miao [18], Hu et al. [13] not only
obtained the maximal Marshall type inequalities for demimartingales, but also had the
minimal Marshall type inequalities for nonnegative demimartingales. Under some con-
ditions, we can find that the maximal Marshall type inequalities for N-demimartingales
also hold true. The partial sum of mean zero negatively associated random variables as
well as a martingale with the natural choice of σ -algebras are N-demimartingales, the
results obtained in this section also hold true for these random variables.

5. Some other maximal type inequalities for nonnegative N-demimartingales

In this section, we go on to investigate some other maximal type inequalities for
nonnegative N-demimartingales. Let ln+ x

.= ln(max(x,1)) . Pakes [21] proved a limit
superior of maximal inequality for the nonnegative submartingales. As a slight gener-
alization of Pakes [21], Iksanov and Marynych [14] extended their result to the case of
nonnegative martingales and got the following theorem.

THEOREM 5.1. Let {Zn,n ∈ N0} be a nonnegative martingale with Z0 = a > 0 ,
E(Zn ln+ Zn) < ∞ , n ∈ N , and lim

n→∞
E(Zn ln+ Zn) = ∞ , then

limsup
n→∞

E( max
0�k�n

Zk)

E(Zn ln+ Zn)
� a.

In this section, we generalize Theorem 5.1 to the case of nonnegative N-demimar-
tingales.

THEOREM 5.2. Let {Sn,n � 1} be a nonnegative N-demimartingale with S1 =
a > 0 . Assume that E(Sn ln+ Sn) < ∞ , n ∈ N , and lim

n→∞
E(Sn ln+ Sn) = ∞ . Then

limsup
n→∞

E( max
1�k�n

Sk)

E(Sn ln+ Sn)
� a. (5.1)

Proof. It can be studied the N-demimartingale Sn/a instead of Sn . Without loss
of generality, we assume that S1 = 1 in the proof. It is known that for any a,b > 0 and
x0 > e , it has

b ln+ a � b ln+ b+ax−1
0 +b(lnx0−1). (5.2)
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Observe that max
1�k�n

Sk � S1 = 1 and hence we have by (1.5) and (5.2) with a = max
1�k�n

Sk

and b = Sn that for any x0 > e ,

E( max
1�k�n

Sk)−1 =
∫ ∞

0
P( max

1�k�n
Sk � t)dt−1 =

∫ ∞

1
P( max

1�k�n
Sk � t)dt

�
∫ ∞

1

1
t
E(SnI( max

1�k�n
Sk � t))dt

= E[Sn

∫ max
1�k�n

Sk

1

1
t
dt] = E(Sn ln+( max

1�k�n
Sk)) (5.3)

� E(Sn ln+ Sn)+ x−1
0 E( max

1�k�n
Sk)+ESn(lnx0−1).

Combining ESn = · · · = ES1 with ES1 = 1, we get that

limsup
n→∞

E( max
1�k�n

Sk)

E(Sn ln+ Sn)
� x0

x0−1
. (5.4)

To prove (5.1), we make x0 → ∞ in (5.4) to complete the proof finally. �

REMARK 5.1. Wang et al. [29] extended Theorem 5.1 for nonnegative martin-
gales to the case of nonnegative demimartingales (see Theorem 3.1 of Wang et al.
[29]). Similar to Wang et al. [29], we extend Theorem 5.1 to the case of nonnega-
tive N-demimartingales.

Harremoës [12] obtained the following inequalities for nonnegative martingales
(see Theorem 3 of Harremoës [12]).

THEOREM 5.3. Let (S1,F1) , (S2,F2) , · · · , (Sn,Fn) be a nonnegative martin-
gale. If S1 = 1 , then

γ(E( max
1�k�n

Sk)) � E(Sn lnSn) (5.5)

and
γ(E( min

1�k�n
Sk)) � E(Sn lnSn), (5.6)

where γ(x) = x−1− lnx for x > 0 .

It can be seen that γ(x) is a strictly convex function with minimum γ(1) = 0.
Prakasa Rao [23] extended (5.5) and (5.6) for nonnegative martingales to the case of
nonnegative demimartingales (see Theorem 2.10 of Prakasa Rao [23]).

Inspired by Harremoës [12] and Prakasa Rao [23], we extend (5.5) to the case of
nonnegative N-demimartingales.

THEOREM 5.4. Let {Sn,n � 1} be a nonnegative N-demimartingale. If S1 = 1 ,
then (5.5) holds.

Proof. Since max
1�k�n

Sk � S1 = 1, by the proof of (5.3), it has

E( max
1�k�n

Sk)−1 � E(Sn ln+( max
1�k�n

Sk)) = E(Sn ln( max
1�k�n

Sk)).
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Since γ is nonnegative and ESn = · · · = ES1 = 1, we have

E( max
1�k�n

Sk)−1 � E

⎡
⎣Sn

⎛
⎝ln( max

1�k�n
Sk)+ γ(

max
1�k�n

Sk

SnE( max
1�k�n

Sk)
)

⎞
⎠

⎤
⎦

= 1−ESn +E(Sn lnSn)+E(Sn ln(E max
1�k�n

Sk))

= E(Sn lnSn)+ lnE( max
1�k�n

Sk). (5.7)

According to the definition of γ , we obtain (5.5) by reorganizing (5.7) immediately. �

REMARK 5.2. By using maximal inequality for demisubmaringales, Prakasa Rao
[23] investigated the Orlicz functions and obtained some maximal φ -inequalities for
nonnegative demisubmartingales (see Theorem 3.1, Theorem 3.2, Theorem 3.4-The-
orem 3.8 of Prakasa Rao [23]). Combining the maximal inequality (1.5) with Prakasa
Rao [23], one can have some similar φ -inequalities for nonnegativeN-demi(super)mar-
tingales. We omit them here.

By taking f ≡ 1 and f ≡ −1 in Definition 1.1 and Definition 1.2, we can check
that demimartingales and N-demimartingales have the same property that ESn = · · · =
ES1 , n � 1. Furthermore, it can be found that demimartingales and N-demimartingales
have some similar inequalities such as various maximal type inequalities as well as
martingales. On the other hand, there are some differences between demimartingales
and N-demimartingales. For example, like to martingales, demimartingales have some
minimal type inequalities (see Theorem 2.8-Theorem2.10 of Prakasa Rao [23], Lemma
2.5 and Theorem 2.2 of Hu et al. [13]), but these minimal type inequalities for N-
demimartingales have not been obtained up to now. Meanwhile, some exponential in-
equalities and Marcinkiewicz-Zygmund type inequalities for N-demimartingales have
been presented in Christofides and Hadjikyriakou [6] and Hadjikyriakou [11], respec-
tively. But the moment inequalities for demimartingales are presented in Christofides
and Hadjikyriakou [7], which are different from the ones of N-demimartingales ob-
tained by Hadjikyriakou [11]. So it is also interesting to investigate the properties of
demimartingales and N-demimartingales. By the way, some related definitions such as
conditional association, conditional negatively associated, conditional demimartingales
and conditional N-demimartingales have been received more attention. One can refer
to Christofides and Hadjikyriakou [8], Hadjikyriakou [10] and Prakasa Rao [24] for the
details.
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