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Abstract. In this paper the β -absolute convergence (0 < β � 2) of Vilenkin-Fourier series for
the functions of various classes of functions of generalized bounded fluctuation is studied. In
proving our main results we use famous Hölder’s inequality and Jensen’s inequality for integrals.
As a particular case our results give bounded Vilenkin group analogue of the corresponding circle
group results of Schramm and Waterman [Acta. Math. Acad. Sci. Hungar 40 (3–4) (1982), 273–
276]. One of our results generalizes the earlier result of Uno [Sci. Rep. Kanazawa Univ. 29 (2)
(1984), 97–102]. It also generalizes the results of Onneweer [Duke Math. J. 39 (4) (1972),
599–609; Corollary 3 and Corollary 4].

1. Introduction

Let G be a Vilenkin group, that is, a compact metrizable zero-dimensional (in-
finite) abelian group. Then the dual group X of G is a discrete, countable, torsion,
abelian group (see [4, Theorems 24.15 and 24.26]). In 1947, N. J. Vilenkin [16] devel-
oped part of the Fourier theory on G and proved an analogue of Bernstein’s theorem
[1, Vol. II, p. 154] concerning the absolute convergence of Vilenkin-Fourier series for a
primary group G [16, Theorem 5]. Later Onneweer and Waterman [5]–[8] introduced
various classes of functions of bounded fluctuations and studied the convergence prob-
lems for functions of these classes. Interestingly, Onneweer [5, Corollary 2] proved an
analogue of Bernstein’s theorem for any bounded Vilenkin group and an analogue of
Zygmund’s theorem [1, Vol. II, p. 161] for functions of p -generalized bounded fluctu-
ation (1 � p < 2) defined on any bounded Vilenkin group [5, Corollary 3]. Onneweer
continued study further and in his second paper he obtained a sufficiency condition in
terms of n -th integral modulus of continuity of order p of a function f ∈ Lp(G) to
be in A(β ) [6, Theorem 1] and derived an analogue of Szász’s theorem [14] from it.
Vilenkin and Rubinstěin [17] proved an analogue of a well-known theorem Stečhkin
[13]. Quek and Yap [10] then extended above results of Onneweer to arbitrary Vilenkin
groups and Uno [15] proved an analogue of a circle group result of Schramm and Wa-
terman [11, Theorem 1] for any Vilenkin group. In this paper, for any bounded Vilenkin
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group, we first generalize the result of Uno (see Theorem 1) and then prove a similar
result for functions in the class of φ -Λ-generalized bounded fluctuation (see Theorem
2). In proving our main results Theorem 1 and Theorem 2 we use famous Hölder’s and
Jensen’s inequalities for integrals respectively. Our result (see Theorem 1) also gen-
eralizes the results of Onneweer [5, Corollary 3 and Corollary 4]. Further, our results
contains as special cases Vilenkin group analogues of both the circle group results [11,
Theorem 1 and Theorem 2] of Schramm and Waterman. As noted by Schramm and
Waterman [11, p. 273], here also we observe that though the result for φΛGBF , Theo-
rem 2, is more general in the sense that it is more widely applicable, but unfortunately
it does not contain Theorem 1 as a special case.

2. Notation and Definitions

For G and X as above, Vilenkin [16, Sections 1.1, 1.2] proved the existence of
a sequence {Xn} of finite subgroups of X and of a sequence {ϕn} in X such that the
following hold:

(i) X0 = {χ0}, where χ0 is the identity character on G ;
(ii) X0 ⊂ X1 ⊂ X2 ⊂ . . . ;
(iii) for each n � 1, the quotient group Xn/Xn−1 is of prime order pn ;
(iv) X =

⋃∞
n=0 Xn ;

(v) ϕn ∈ Xn+1 \Xn for all n � 0;
(v) ϕ pn+1

n ∈ Xn for all n � 0.
The group G is bounded if

p0 = sup
i=1,2,...

pi < ∞;

otherwise, G is said to be unbounded. Using the ϕn ’s, we can enumerate X as follows.
Let m0 = 1, and let mn = ∏n

i=1 pi for n ∈ N . Then each k ∈ N can be uniquely repre-
sented as k = ∑s

i=0 aimi with 0 � ai < pi+1 for 0 � i � s ; we define χk by the formula
χk = ϕa0

0 · . . . ·ϕas
s .

G = ∏∞
n=1 Zpn , {pn} – a sequence of prime numbers, is a standard example. If

pn = 2 for all n , X is the group of Walsh functions ψn , n = 0,1,2, . . . , and Xn =
{ψ0,ψ1, . . . ,ψ2n−1} (using Payley enumeration; see [9]) described by N. J. Fine [3]. If
pn = p for all n , X is the group of generalized Walsh functions [2].

Let dx or m denote the normalized Haar measure on G . For f ∈ L1(G) , the
Vilenkin-Fourier series of f is given by

S[ f ](x) =
∞

∑
n=0

f̂ (n)χn(x), f̂ (n) =
∫

G
f (x)χn(x)dx,

where f̂ (n) (n = 0,1,2, . . .) is the n th Vilenkin-Fourier coefficient of f . It is said to
be β -absolutely convergent, where β is a positive real number, if ∑∞

n=0 | f̂ (n)|β < ∞ .
In this case we write f ∈ A(β ) and we shall denote A(1) by A.
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Observe that for each n , Xn = {χk : 0 � k < mn} . Let Gn be the annihilator of Xn,
that is,

Gn = {x ∈ G : χ(x) = 1,χ ∈ Xn} = {x ∈ G : χk(x) = 1, 0 � k < mn}.
Then obviously, G = G0 ⊃G1 ⊃G2 ⊃ . . . ,

⋂∞
n=0 Gn = {0} , and the Gn ’s form a funda-

mental system of neighborhoods of zero in G which are compact, open and closed
subgroups of G . Further, the index of Gn in G is mn and since the Haar mea-
sure is translation invariant with m(G) = 1, one has m(Gn) = 1/mn . In [16, Sec-
tion 3.2] Vilenkin proved that for each n � 0 there exists xn ∈ Gn \Gn+1 such that
χmn(xn) = exp(2π i/pn+1) and observed that each x ∈ G has a unique representation
x = ∑∞

i=0 bixi, with 0 � bi < pi+1 for all i � 0. This representation of the elements of
G enables one to order them by means of the lexicographic ordering of the correspond-
ing sequence {bn} and one observes that for each n = 1,2, . . . ,

Gn =
{

x ∈ G : x =
∞

∑
i=0

bixi, b0 = · · · = bn−1 = 0

}
.

Consequently, each coset of Gn in G has a representation of the form z+Gn, where
z = ∑n−1

i=0 bixi for some choice of the bi with 0 � bi < pi+1 . These z , ordered lexico-

graphically, are denoted by
{
z(n)

α
}

(0 � α < mn) .
It may be noted that the choice of ϕn ∈ Xn+1 \Xn and of the xn ∈ Gn \Gn+1 is

not uniquely determined by the groups X and G . In the following, it is assumed that a
particular choice has been made.

Let f be a complex function defined on G , let p � 1 be a real number, let Λ =
{λn} be a non-decreasing sequence of positive real numbers such that ∑∞

n=1(1/λn)
diverges, and let φ : [0,∞) → [0,∞) be a strictly increasing function. Customarily φ is
considered to be a convex function such that

φ(0) = 0,
φ(x)

x
→ 0 (x → 0+),

φ(x)
x

→ ∞ (x → ∞).

Such a function is called an N -function. It is necessarily continuous and strictly in-
creasing on [0,∞) . For H ⊂ G , the oscillation of f on H is defined as

osc( f ;H) = sup{| f (x1)− f (x2)| : x1,x2 ∈ H}.
We need the following definitions.

DEFINITION 1. For n ∈ N∪{0} , the n-th modulus of continuity [5, Definition 2]
of f on G is defined as

ωn( f ) = sup{|(Th f − f )(x)| : x ∈ G,h ∈ Gn},
where (Th f )(x) = f (x+h) , for all x ∈ G .

DEFINITION 2. For α > 0 the function f is said to satisfy the Lipschitz condition
of order α on G (written as f ∈ Lipα ) [5, Definition 3] if ωn( f ) = O(m−α

n ) .
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DEFINITION 3. For n ∈ N∪{0} and 1 � p < ∞ , the n-th integral modulus of
continuity of order p for a function f in Lp(G) [6, Defintion 1] is defined as

ω(p)( f ,n) = sup{||Th f − f ||p : h ∈ Gn}.

When p = ∞ we put, ω(∞)( f ,n) = ωn( f ) , where ωn( f ) is as in Definition 1.

DEFINITION 4. We say f is of
(a) p-Λ-bounded fluctuation ( f ∈ ΛBF(p)) if the total p-Λ-fluctuation of f on

G , given by

FpΛ( f ;G) = sup

⎧⎨
⎩
(

∞

∑
n=1

(osc( f ; In))
p

λn

)1/p
⎫⎬
⎭

is finite, where the supremum is taken over all sequences {In} of disjoint cosets in G ;
(b) φ -Λ-bounded fluctuation ( f ∈ φΛBF) if the total φ -Λ-fluctuation of f on

G, given by

FφΛ( f ;G) = sup

{
∞

∑
n=1

φ(osc( f ; In))
λn

}

is finite, where the supremum is taken over all sequences {In} of disjoint cosets in G .

DEFINITION 5. We say f is of
(a) p-Λ-generalized bounded fluctuation ( f ∈ ΛGBF(p)) if the total generalized

p-Λ-fluctuation of f on G , given by

ΛGFp( f ;G) = sup
n

sup
α

⎛
⎝mn−1

∑
j=0

(
osc( f ;z(n)

α +Gn)
)p

λ j+1

⎞
⎠

1/p

is finite, where supα denotes the supremum over all permutations of {0,1, ...,mn−1} ;
(b) φ -Λ-generalized bounded fluctuation ( f ∈ φΛGBF) if the total generalized

φ -Λ-fluctuation of f on G , given by

ΛGFφ ( f ;G) = sup
n

sup
α

mn−1

∑
j=0

φ
(
osc( f ;z(n)

α +Gn)
)

λ j+1

is finite, where supα is as in (a) above.

We observe that when p = 1, the class ΛBF(p) is same as the class ΛBF of func-
tions of Λ-boundedfluctuation on G (see [7, Definition 2]). Also, if φ(x) = xp ( p � 1),
then φΛBF = ΛBF(p) and φΛGBF = ΛGBF(p) ; we shall omit writing the superscript
(p) when p = 1. Further, from definitions it is clear that ΛBF(p) ⊂ ΛGBF(p) and
φΛBF ⊂ φΛGBF.
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3. Statements of Results

Let G be bounded and f ∈ L1(G) . We prove the following results.

THEOREM 1. If f ∈ ΛGBF(p) , 1 � p < 2r , 1 � r < ∞ and

∞

∑
n=0

⎡
⎢⎣(mn)2/β−1

(
ω(p+(2−p)s)( f ,n)

)2−p/r

(
∑mn

j=1
1
λ j

)1/r

⎤
⎥⎦

β/2

< ∞,

in which 1
r + 1

s = 1 , then f ∈ A(β ) for 0 < β � 2 .

REMARK 1. Since ΛBF(p) ⊂ΛGBF(p) , Theorem 1 holds for functions in ΛBF(p)

also. Taking β = 1 in Theorem 1 we obtain

COROLLARY 1. Let f ∈ ΛGBF(p) , 1 � r < ∞ , 1
r + 1

s = 1 and 1 � p < 2r . Then
f ∈ A if

∞

∑
n=0

(mn)1/2
(

ω(p+(2−p)s)( f ,n)
)1−p/2r

(
∑mn

j=1
1
λ j

)1/2r
< ∞. (1)

REMARK 2. Corollary 1 is a result equivalent to a result of Yoshikazu Uno [15]
for a bounded Vilenkin group.

COROLLARY 2. If f ∈ GBF(p) with 1 � p < 2 and if f ∈ Lipα for some α > 0
then f ∈ A .

COROLLARY 3. If f ∈Lipα for some α > 0 and if f ∈ΛGBF for some sequence
Λ = {λn} such that λmn = O(mγ

n) , with 0 � γ < α then f ∈ A .

REMARK 3. Corollaries 2 and 3 are results of Onneweer [5, Corollary 3 and
Corollary 4]. Thus our Theorem 1 generalizes these results of Onneweer.

THEOREM 2. If f ∈ φΛGBF , 1 � p < 2r , 1 � r < ∞ and

∞

∑
n=0

⎡
⎢⎢⎣(mn)2/β−1

⎧⎪⎨
⎪⎩φ−1

⎛
⎜⎝
(

ω(p+(2−p)s)( f ,n)
)2r−p

∑mn
j=1

1
λ j

⎞
⎟⎠
⎫⎪⎬
⎪⎭

1/r
⎤
⎥⎥⎦

β/2

< ∞,

then f ∈ A(β ) for 0 < β � 2 , in which 1
r + 1

s = 1 and φ is a Δ2− function (that is,
there is a constant d � 2 such that φ(2x) � dφ(x), ∀x � 0 ).

REMARK 4. Since φΛBF ⊂ φΛGBF, Theorem 2 holds for functions in φΛBF
also. With β = 1, Theorems 1 and 2 are bounded Vilenkin group analogues of the
corresponding circle group results of Schramm and Waterman [11].
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4. Proof of the Results

The following lemmas are needed.

LEMMA 1. ([17, p. 5]) For each N = 0,1,2, . . . and k � mN we have

(a)
∫
GN

χk(h)dh = 0 ;

(b)
∫
GN

|χk(h)−1|2dh = 2
∫
GN

[1−Reχk(h)]dh = 2|GN | = 2
mN

.

LEMMA 2. ([12, Lemma 2]) If un � 0 for n ∈ N , un �≡ 0 and a function F(u) is
concave, increasing, and F(0) = 0 , then

∞

∑
n=1

F(un) � 2
∞

∑
n=1

F

(
1
n

∞

∑
k=n

uk

)
.

LEMMA 3. ([11]) If a1 � a2 � . . . � an > 0 ,
n
∑
i=1

ai = 1 and b1 � b2 � . . . � bn ,

then
n

∑
i=1

bi � n
n

∑
i=1

aibi.

Proof of Theorem 1. Let M ∈ N be fixed and let N ∈ N be the integer such that
mN � M < mN+1 . For each α = 0,1, . . . ,mN −1 and h ∈ GN put

fα (x) = f
(
x+ z(N)

α +h
)
− f
(
x+ z(N)

α

)
, ∀x ∈ G.

Then for each n � 0 we have

f̂α (n) = f̂ (n)χn

(
z(N)

α +h
)
− f̂ (n)χn

(
z(N)

α

)
= f̂ (n)χn

(
z(N)

α

)
(χn(h)−1).

Since f ∈ ΛGBF(p) for any x ∈ G = G0 we see that

| f (x)|p = | f (0)+ f (x)− f (0)|p
� 2p| f (0)|p +2p| f (x)− f (0)|p

� 2p| f (0)|p +2p
(
osc
(

f ;z(0)
0 +G0

))p

= 2p| f (0)|p +2pλ1

(
osc
(

f ;z(0)
0 +G0

))p

λ1

� 2p| f (0)|p +2pλ1 (ΛGFp( f ;G))p .

Thus f is bounded on G and hence f ∈ L2(G) . As a result each fα ∈ L2(G) and so by

Parseval’s equality (since |χn(z
(N)
α )| = 1) we have

B(h) ≡
∞

∑
n=0

| f̂ (n)|2|χn(h)−1|2 = || fα ||22, for all α. (2)
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Now, suppose r > 1 and set 2 = p+(2−p)s
s + p

r ; then using the Hölder’s inequality we
get

|| fα ||22 =
∫

G
| fα(x)|2dx

=
∫

G
| fα(x)|( p+(2−p)s

s + p
r )dx

=
∫

G

(
| fα (x)|(p+(2−p)s)

)1/s
(| fα (x)|p)1/r dx

�
{∫

G
| fα(x)|(p+(2−p)s)dx

}1/s{∫
G
| fα(x)|pdx

}1/r

� (ΩN)1/r
(∫

G
| fα(x)|pdx

)1/r

,

since h ∈ GN , where ΩN =
(

ω(p+(2−p)s)( f ,N)
)2r−p

. This together with (2) implies

(B(h))r � ΩN

∫
G
| fα (x)|pdx, (3)

for all α = 0,1, . . . ,mN −1. Since the left hand side of (3) is independent of α , multi-
plying both the sides of it by (1/λα+1) and taking summation over α , we get

(B(h))rθmN � ΩN

∫
G

(
mN−1

∑
α=0

| fα(x)|p
λα+1

)
dx,

where θν = ∑ν
j=1(1/λ j) = ∑ν−1

j=0 (1/λ j+1) , for all ν ∈ N ; and hence

B(h) �
(

ΩN

θmN

)1/r
{∫

G

(
mN−1

∑
α=0

| fα (x)|p
λα+1

)
dx

}1/r

.

Integrating both sides of this inequality over GN with respect to h we get

∫
GN

B(h)dh �
(

ΩN

θmN

)1/r ∫
GN

{∫
G

mN−1

∑
α=0

| fα(x)|p
λα+1

dx

}1/r

dh. (4)

Now, for any h∈GN and any x ∈G the points x+ z(N)
α +h and x+ z(N)

α lie in the coset

x+ z(N)
α +GN of GN in G and hence

| fα(x)| = | f (x+ z(N)
α +h)− f (x+ z(N)

α )| � osc( f ,x+ z(N)
α +GN). (5)

Since f ∈ ΛGBF(p) , for any h ∈ GN and x ∈ G , in view of (5), we have

mN−1

∑
α=0

| fα (x)|p
λα+1

�
mN−1

∑
α=0

(
osc( f ;x+ z(N)

α +GN)
)p

λα+1
� (ΛGFp( f ;G))p , (6)
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because for any x∈G , the finite sequence of cosets {x+z(N)
α +GN : α = 0,1, . . . ,mN −

1} is a permutation of the sequence {z(N)
α +GN : α = 0,1, . . . ,mN −1} . Further, from

(2), ∫
GN

B(h)dh �
∞

∑
k=M

| f̂ (k)|2
∫

GN

|χk(h)−1|2dh =
(

2
mN

) ∞

∑
k=M

| f̂ (k)|2, (7)

in view of Lemma 1, because k � M implies k � mN . Using (6) and (7) in (4) we get

RM ≡
∞

∑
k=M

| f̂ (k)|2 = O

[(
ΩN

θmN

)1/r
]

. (8)

Applying Lemma 2 with uk = | f̂ (k)|2 and F(u) = uβ/2 we get

∞

∑
k=1

| f̂ (k)|β =
∞

∑
k=1

F(uk) � 2
∞

∑
k=1

F

(
1
k

∞

∑
j=k

| f̂ ( j)|2
)

= 2
∞

∑
k=1

F

(
Rk

k

)
. (9)

Thus in view of (8) we get

∞

∑
k=1

| f̂ (k)|β = O(1)
∞

∑
k=1

(
Rk

k

)β/2

= O(1)
∞

∑
n=0

mn+1−1

∑
k=mn

(
Rk

k

)β/2

= O(1)
∞

∑
n=0

mn+1−1

∑
k=mn

[
(Ωn)1/r

mn(θmn)1/r

]β/2

= O(1)
∞

∑
n=0

[
(Ωn)1/r

mn(θmn)1/r

]β/2

(mn+1−mn)

= O(1)
∞

∑
n=0

⎡
⎢⎣(mn)2/β−1

(
ω(p+(2−p)s)( f ,n)

)2−p/r

(
∑mn

j=1
1
λ j

)1/r

⎤
⎥⎦

β/2

< ∞,

because G is bounded and by the assumption of theorem. Thus Theorem 1 is proved
for r > 1.

For the case r = 1, s = ∞ , simply note that

| fα(x)|2 = | fα (x)|2−p| fα (x)|p � (ωN( f ))2−p| fα (x)|p,

because
| fα (x)| = | f (x+ z(N)

α +h)− f (x+ z(N)
α )| � ωN( f )

since h ∈ GN ; and proceed as above. �
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Proof of Corollary 2. If we put r = 1, s = ∞ and Λ = {1} in Corollary 1, then
Condition (1) becomes

∞

∑
n=0

(mn)1/2(ωn( f ))1−p/2

(mn)1/2
< ∞,

which is same as ∑∞
n=0(ωn( f ))1−p/2 < ∞ . Now, if f ∈ Lipα (α > 0) , then ωn( f ) =

O(m−α
n ) so that

∞

∑
n=0

(ωn( f ))1−p/2 = O(1)
∞

∑
n=0

(mn)−α(1−p/2) < ∞,

because α(1− p/2) > 0. Further, in this case, ΛGBF(p) = GBF(p) . Therefore, Corol-
lary 2 follows from Corollary 1. �

Proof of Corollary 3. If we put r = 1, s = ∞ and p = 1 in Corollary 1, then
Condition (1) becomes

∞

∑
n=0

(mn)1/2(ωn( f ))1/2(
∑mn

j=1
1
λ j

)1/2
< ∞.

Since {λ j} is non-decreasing we have ∑mn
j=1(1/λ j) � mn/λmn . Now, if λmn = O(mγ

n) ,
with 0 � γ < α , and f ∈ Lipα (α > 0) so that ωn( f ) = O(m−α

n ) , then

∞

∑
n=0

(mn)1/2(ωn( f ))1/2(
∑mn

j=1
1
λ j

)1/2
= O(1)

∞

∑
n=0

(mn)1/2(ωn( f ))1/2
(

λmn

mn

)1/2

= O(1)
∞

∑
n=0

(
m−α

n

)1/2 (mγ
n)

1/2

= O(1)
∞

∑
n=0

m
− 1

2 (α−γ)
n < ∞.

Further, in this case, ΛGBF(p) = ΛGBF (1) = ΛGBF . Therefore, Corollary 3 follows
from Corollary 1. �

Proof of Theorem 2. Since φ is convex on [0,∞) and φ(0) = 0, for any 0 < α < 1
and x > 0 we have

φ(αx) = φ(α · x+(1−α) ·0) � αφ(x)+ (1−α)φ(0) = αφ(x). (10)

Further, as φ(2x) � dφ(x) , for all x � 0, we get

φ(ax) � dlog2 a+1φ(x), for all x � 0 and for all a � 1. (11)
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For, using induction on n we get

φ(2nx) � dnφ(x), for all x � 0 and for all n ∈ N.

Next, if a � 1 is any real number, choosing n ∈ N such that 2n−1 � a < 2n we get
0 < a

2n < 1. Therefore for all x � 0 we have

φ(ax) = φ
( a

2n ·2nx
)

� a
2n φ(2nx) � a

2n dnφ(x) < dnφ(x) � dlog2 a+1φ(x).

Now, as f ∈ φΛGBF , for any x ∈ G we have

| f (x)| � | f (0)|+ | f (x)− f (0)|
� | f (0)|+osc

(
f ;z(0)

0 +G0

)

= | f (0)|+ φ−1

⎡
⎣λ1 ·

φ
{

osc
(

f ;z(0)
0 +G0

)}
λ1

⎤
⎦

� | f (0)|+ φ−1 [λ1 ·ΛGFφ ( f ;G)
]
.

Therefore f is bounded on G and hence f ∈ L2(G) . For r > 1, proceeding as in
the proof of Theorem 1 we get (3). Since multiplying f by a positive constant alters
ω(p)( f ,n) by the same constant, and φ is Δ2 , we may assume that | f (x)| � 1

2 for all
x . But then from (3) we get

(B(h))r � ΩN

∫
G
| fα (x)|dx (α = 0,1, . . . ,mN −1).

Since ΩN � 0, if ΩN < 1 then from (10) we get

φ((B(h))r) � φ
(

ΩN

∫
G
| fα (x)|dx

)
� ΩNφ

(∫
G
| fα (x)|dx

)
.

Further when ΩN � 1, in view of (11), we have

φ((B(h))r) � φ
(

ΩN

∫
G
| fα (x)|dx

)

� dlog2 ΩN+1φ
(∫

G
| fα (x)|dx

)

= d(ΩN)log2 dφ
(∫

G
| fα (x)|dx

)

= d(ΩN)log2 d−1ΩNφ
(∫

G
| fα (x)|dx

)

� dΩNφ
(∫

G
| fα (x)|dx

)
,
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because of the fact that (ΩN)log2 d−1 � 1, as | f (x)| � 1
2 , for all x and log2 d− 1 � 0.

Since d � 2, in either case,

φ ((B(h))r) � dΩNφ
(∫

G
| fα (x)|dx

)
� dΩN

∫
G

φ(| fα (x)|)dx,

in view of the Jensen’s inequality. Now multiplying both the sides of this inequality by
(1/λα+1) and taking summation over α = 0,1, . . . ,mN −1 we get

φ ((B(h))r) � d

(
ΩN

θmN

)∫
G

(
mN−1

∑
α=0

φ(| fα (x)|)
λα+1

)
dx. (12)

Since f ∈ φΛGBF and φ is increasing, for all h ∈ GN and x ∈ G we have

mN−1

∑
α=0

φ(| fα (x)|)
λα+1

�
mN−1

∑
α=0

φ
(
osc( f ;x+ z(N)

α +GN)
)

λα+1
� ΛGFφ ( f ;G). (13)

Using (13) in (12) we get φ ((B(h))r) � C
(

ΩN
θmN

)
, where C is a constant such that

C � 1. Thus

(B(h))r � φ−1
{

C

(
ΩN

θmN

)}
� Cφ−1

(
ΩN

θmN

)
and therefore

B(h) = O

[{
φ−1
(

ΩN

θmN

)}1/r
]

.

Integrating both sides of this inequality over GN with respect to h , in view of (7) we
get

RM ≡
∞

∑
k=M

| f̂ (k)|2 �
(mN

2

)∫
GN

B(h)dh = O

[{
φ−1
(

ΩN

θmN

)}1/r
]

.

Thus in view of (9) we get

∞

∑
k=1

| f̂ (k)|β = O(1)
∞

∑
k=1

(
Rk

k

)β/2

= O(1)
∞

∑
n=0

mn+1−1

∑
k=mn

(
Rk

k

)β/2

= O(1)
∞

∑
n=0

mn+1−1

∑
k=mn

[
1
mn

{
φ−1
(

Ωn

θmn

)}1/r
]β/2

= O(1)
∞

∑
n=0

[
1
mn

{
φ−1
(

Ωn

θmn

)}1/r
]β/2

(mn+1−mn)

= O(1)
∞

∑
n=0

[
(mn)2/β−1

{
φ−1
(

Ωn

θmn

)}1/r
]β/2

< ∞,
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since G is bounded and in view of the assumption of the theorem. This completes the
proof of Theorem 2 for r > 1. For the case r = 1, s = ∞ , the proof is similar as that of
Theorem 1. �
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