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FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES
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(Communicated by B. Opic)

Abstract. We present some characterizations for the boundedness of the generalized fractional
integral operators on Morrey spaces. The characterizations follow from two key estimates, one
for the norm of some functions in Morrey spaces, and another for the values of the corresponding
fractional integrals. We prove three theorems about necessary and sufficient conditions. We show
that these theorems are independent by giving some examples. We also obtain counterparts for
the weak generalized Morrey spaces.

1. Introduction

In this paper, for a measurable function ρ : (0,∞) → (0,∞) , we are interested in
the generalized fractional integral operator Iρ given by the formula

Iρ f (x) :=
∫

Rd

ρ(|x− y|)
|x− y|d f (y)dy, x ∈ R

d ,

for any suitable function f on R
d . This generalized fractional integral operator was

initilally investigated in [27]. Nowadays many authors have been culminating important
observations about Iρ especially in connection with Morrey spaces. These spaces cover
Lebesgue spaces as special cases and seem to describe the behavior of Iρ well. In order
to highlight what we shall prove in this paper, we take up the works [3, 6, 7, 18, 22,
25, 28, 35], where we formulated sufficient conditions on ρ for Iρ to be bounded on
Morrey spaces Lp,φ with 1 � p < ∞ and φ a function from (0,∞) to itself. We aim to
show that these conditions are necessary as well. We characterize the boundedness by
estimating the norm of the characteristic functions of balls and the function φ(| · |) , as
well as the value of the corresponding fractional integrals.

Hereafter, we assume that

∫ 1

0

ρ(s)
s

ds < ∞,
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so that the fractional integrals Iρ f are well-defined, at least for characteristic functions
of balls. In addition, we shall also assume that ρ satisfies the growth condition: there
exist constants C1 > 0 and 0 < 2k1 < k2 < ∞ such that

sup
r/2<s�r

ρ(s) � C1

∫ k2r

k1r

ρ(s)
s

ds, r > 0. (1.1)

This condition is weaker than the usual doubling condition: there exists a constant
C2 > 0 such that

1
C2

� ρ(r)
ρ(s)

� C2

whenever r and s satisfy

r,s > 0 and
1
2

� r
s

� 2.

See [40] for some examples and more explanation about these two conditions.
In the present paper we work on generalized Morrey spaces. For a certain function

φ : (0,∞) → (0,∞) , we say that a function f belongs to the generalized Morrey space
Lp,φ = Lp,φ (Rd) , where 1 � p < ∞ , if

‖ f : Lp,φ‖ := sup
a∈Rd ,r>0

1
φ(r)

[
1

|B(a,r)|
∫

B(a,r)
| f (x)|pdx

]1/p

< ∞.

Note that if φ(r) := r(λ−d)/p for some 1 � p < ∞ and 0 � λ < d , then Lp,φ (Rd) =
Lp,λ (Rd) , see (1.8) below. In [26, p. 446] we justified that φ is a nonincreasing function
such that t �→ φ(t)ptd is a nondecreasing for Lp,φ (Rd) �= {0} . We refer to [25, 29, 32]
and [40, Section 1] for more information about these spaces.

Here we shall assume that φ : (0,∞) → (0,∞) is almost decreasing [that is, if
r � s , then φ(r) �C3φ(s)], and that rdφ p(r) is almost increasing, [that is, if r � s , then
rdφ(r)p � C′

3s
dφ(s)p ]. These two conditions implies that φ also satisfies the doubling

condition. Denote by Gp the set of all functions φ : (0,∞) → (0,∞) such that φ is
almost decreasing and that r �→ rd/pφ(r) is almost increasing. Now we present three

different criteria for the boundedness of Iρ . For covenience, write ρ̃(r) :=
∫ r
0

ρ(t)
t dt .

We prove the following theorems about the boundedness of Iρ on generalized Morrey
spaces.

THEOREM 1.1. Let 1 < p < q < ∞ and φ ∈ Gp . Assume

∫ ∞

r

φ(s)ρ(s)
s

ds � Cφ(r)ρ(r) (r > 0) (1.2)

for some constant C > 0 . Then Iρ is bounded from Lp,φ (Rd) to Lq,φ p/q(Rd) if and only
if there exists a constant C′ > 0 such that

ρ̃(r) � C′ φ(r)p/q−1 (r > 0). (1.3)
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THEOREM 1.2. Let 1 < p < q < ∞ and let φ ∈ Gp . Assume

∫ r

0

φ(s)sd/p

s
ds � Cφ(r)rd/p (r > 0) (1.4)

for some constant C > 0 . Then Iρ is bounded from Lp,φ (Rd) to Lq,φ p/q(Rd) if and only
if there exists a constant C′ > 0 such that

φ(r)
∫ r

0

ρ(t)
t

dt +
∫ ∞

r

φ(t)ρ(t)
t

dt � C′φ(r)p/q (r > 0). (1.5)

THEOREM 1.3. Let φ ,ψ ∈ G1 . Assume that

∫ r

0

φ(s)sd

s
ds � Cφ(r)rd (r > 0) (1.6)

for some constant C > 0 . Then Iρ is bounded from L1,φ (Rd) to L1,ψ(Rd) if and only
if there exists a constant C′ > 0 such that

φ(r)
∫ r

0

ρ(t)
t

dt +
∫ ∞

r

φ(t)ρ(t)
t

dt � C′ψ(r) (r > 0). (1.7)

Note that the integral operators such as (1−Δ)−α and L−α , where L is a suitable
elliptic differential operator and α > 0, fall under this scope. Also, if a measurable
function V : R

d → (0,∞) satisfies the reverse Hölder inequality, that is, there exist some

constants C > 0, q � 1 such that, for all balls B ,
(∫

BV (x)q dx
|B|
)1/q

� C
∫
BV (x) dx

|B| ,

then the operators V γ (−Δ +V )−β with 0 � γ � β � 1 and V γ ∂ j(−Δ +V )−β with
0 � γ � 1

2 � β � 1, β − γ � 1
2 and j = 1,2, · · · ,d also fall under this scope [20]. We

refer to [13, Sections 3 and 4] for a detailed description of these facts.
A few remarks concerning the conditions on the theorems may be in order.

REMARK 1.4.

(i) Theorems 1.1-1.3 extend those obtained in [7] where the authors considered the
classical Riesz potential.

(ii) In Theorem 1.2, to prove the sufficiency, there is no need to assume (1.4).

(iii) The condition (1.5) appeared in [18] originally and it later appeared in a bilinear
estimate of the form g · Iα f (see [39, Theorem 1.6]).

(iv) In Theorem 1.3, to prove the sufficiency, there is no need to assume (1.6).

(v) It follows immediately that the right-hand side of (1.7) equals

φ(r)
∫ r

0

ρ(t)
t

dt +
∫ ∞

r

φ(t)ρ(t)
t

dt =
∫ ∞

0

φ(max(r,t))ρ(t)
t

dt.

(vi) The condition (1.7) is known to be sufficient in [28, Theorem 3.2].
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Our results can be readily transplanted into those for Morrey spaces and Lebesgue
spaces. For 1 � p < ∞ and 0 � λ < d , recall that the Morrey space Lp,λ = Lp,λ (Rd)
consists of all locally integrable functions f on R

d for which

‖ f : Lp,λ‖ := sup
a∈Rd ,r>0

[
1

rλ

∫
B(a,r)

| f (x)|pdx

] 1
p

< ∞. (1.8)

See [33] for more information about these spaces. Observe that, with norm coincidence,
Lp,0(Rd) = Lp(Rd) for 1 � p < ∞ . We note that if ρ(r) = rα , with 0 < α < d , then
Iρ = Iα is the classical fractional integral operator, also known as the Riesz potential,
which is bounded from Lp(Rd) to Lq(Rd) if and only if 1

p − 1
q = α

d , where 1 < p, q <
∞ [43]. The necessary part is usually proved by using the scaling arguments. See
[6, 18, 19, 46] for some recent results on the boundedness properties of Iρ .

Theorems 1.1–1.2 both characterize the kernel function ρ for which Iρ is bounded
from Lp(Rd) to Lq(Rd) for 1 < p < q < ∞ .

COROLLARY 1.5. Let 1 < p < q < ∞ . The operator Iρ is bounded from Lp(Rd)
to Lq(Rd) if and only if ρ(r) � Crd(1/p−1/q) for all r > 0 .

For ρ(r) = rα , Corollary 1.5 reads that the operator Iρ is bounded from Lp(Rd)
to Lq(Rd) if and only if α

d = 1
p − 1

q , where 1 < p < q < ∞ .
With Theorems 1.1–1.3 we can characterize the function ρ for which Iρ is bounded

from one Morrey space to another.
The next corollary generalizes the previous characterization in Corollary 1.5.

COROLLARY 1.6. Let 1 < p < q < ∞ and 0 � λ < d . Assume that ρ satisfies
(1.1) . Then the operator Iρ is bounded from Lp,λ (Rd) to Lq,λ (Rd) precisely when one
of the following equivalent conditions holds.

(a) ρ(r) � Cr(d−λ )(1/p−1/q) for all r > 0 .

(b) ρ̃(r) =
∫ r
0

ρ(s)
s ds � Cr(d−λ )(1/p−1/q) for all r > 0 .

In Sugano’s modified setting, these conditions corresponds to [45, the formula (18)],
for example.

Generalized Morrey spaces occur naturally. We give a proposition, which im-
proves [41, Theorem 5.1]. We write

�−1,0(r) :=

{
log 1

r (0 < r < e−1),
1 (e−1 � r).

PROPOSITION 1.7. Let s ∈ (0,d) . Define

ψ(r) :=
rd�−1,0(r)
(1+ r)s (r > 0).
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Then there exists a constant Cs > 0 such that

‖ f : L1,ψ‖ � Cs‖(1−Δ)s/2 f : L1,d−s‖

holds for all f ∈ L1,d−s(Rd) with (1−Δ)s/2 f ∈ L1,d−s(Rd) .

The proof will be given by Example 5 below. Note that we cannot delete �−1,0 because
it is a necessary condition for this estimate as Example 5 shows.

A passage of Theorems 1.1, 1.2 and 1.3 from generalized Morrey spaces to weak
generalized Morrey spaces can be readily done. For p ∈ [1,∞) and φ : (0,∞)→ (0,∞) ,
recall that Lp,φ ,weak = Lp,φ ,weak(Rd) is the set of all functions such that

‖ f : Lp,φ ,weak‖ := sup
a∈Rn,r>0

1
φ(r)

(
supt>0 t pm(B(a,r), f ,t)

|B(a,r)|
)1/p

< ∞, (1.9)

where
m(B(a,r), f ,t) := |{x ∈ B(a,r) : | f (x)| > t}|.

We remark that some prefer to use Mp,φ (Rn) instead of Lp,φ (Rn) and that, likewise,
some prefer to use WMp,φ (Rn) instead of Lp,φ ,weak(Rn) .

We have counterparts of three theorems above.

THEOREM 1.8. Let 1 � p < q < ∞ and let φ ∈ Gp . Assume (1.2) . Then Iρ is
bounded from Lp,φ (Rd) to Lq,φ p/q,weak(R

d) if and only if (1.3) holds.

THEOREM 1.9. Let 1 � p < q < ∞ and let φ ∈ Gp . Assume (1.4) . Then Iρ is
bounded from Lp,φ (Rd) to Lq,φ p/q,weak(R

d) if and only if (1.5) holds.

THEOREM 1.10. Let φ ,ψ ∈ G1 . Assume that (1.6) . Then Iρ is bounded from
L1,φ (Rd) to L1,ψ,weak(Rd) if and only if (1.7) holds.

Here we will recall some works related to generalized fractional integral operators
and generalized Morrey spaces.

In [17, 25, 31, 35], the authors generalized Morrey spaces to various directions.
In [25], generalized Morrey spaces with variable growth condition are defined. The
work [35] is a passage from [25] to the metric measure space whose underlying mea-
sure does not satisfy the doubling condition. The paper [34] is a counterpart to the
weak type spaces. A further generalization is done in [17] and some related examples
can be found in [21, 36]. As another generalization, in [31], Morrey spaces are gen-
eralized to martingale Morrey spaces. In [23], the authors applied generalized Morrey
spaces to grasp the limiting case. In [33] Peetre proved there the boundedness of sin-
gular integral operator on generalized Morrey-Campanato spaces. The weak variants
of the boundedness of the maximal operators, fractional integral operators and singular
integral operators in generalized Morrey spaces were also investigated in the papers
[11, 12].

In [2, 10, 14, 15, 24, 37, 42, 45] generalized fractional integral operators are in-
vestigated. The works [14, 15] are oriented to the boundedness of Iρ and Guliyev and
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Mustafayev used (1.2), (1.5) and (1.6) as a sufficient condition. In [42], the author
placed themselves in the setting of non-doubling measure spaces and in [42, Theo-
rem 2.1] the condition (1.6) showed up. In [24], the author extended the Gagliardo-
Nirenberg inequality for Iα , the case when ρ(t) = tα , to the one for Iρ . An inter-
section of two classical Morrey spaces with the same parameter p can be regarded as
a generalized Morrey space. Sugano investigated the boundedness of fractional inte-
gral operators on intersections of Morrey spaces [45], where she postulated conditions
stronger than (1.2) and (1.5).

Other operators such as commutators are taken up in [12, 37]. In [12, (5.1)]
Guliyev, Karaman, Seymur and Shukurov essentially considered (1.5) in order to show
the boundedness of the fractional maximal operator of order α .

In order to show the boundedness of commutators generated by BMO functions
and Iα , in [37], the authors postulated φ on (1.2) and (1.5).

Hereafter, the letter C denotes a positive constant whose value may differ from
line to line, which may depend on d , ρ , p and q , but not on the functions f and the
variables x .

This paper is organized as follows: In Section 2, we shall give the norm estimates
of the characteristic functions of balls and the function φ(| · |) , and calculate the image
by Iρ of these functions. Based upon these preliminary results, we shall prove Theo-
rems 1.1–1.3 and 1.8–1.10, the main results in Section 3. Some examples are presented
in Section 4 and they will show that Theorems 1.1–1.3 and 1.8–1.10 are independent.

2. Some norm and integral estimates

Let us first consider the characteristic functions of balls. For every R > 0, let
BR := B(0,R) be the ball centered at 0 with radius R , and χBR be the characteristic

function of BR . Recall ρ̃(r) =
∫ r
0

ρ(s)
s ds . Also we write B(x,R) = {y ∈ R

d : |x− y| <
R} .

The following lemmas will be used several times in this paper.

LEMMA 2.1. There exists a constant C > 0 such that the inequality ρ̃(R/2) �
CIρ χBR(x) holds whenever x ∈ BR/2 and R > 0 .

Proof. Take x ∈ BR/2 . We write the integral in full:

Iρ χBR(x) =
∫

Rd

ρ(|x− y|)
|x− y|d χBR(y)dy =

∫
BR

ρ(|x− y|)
|x− y|d dy.

A geometric observation shows that B(x,R/2) ⊆ B(0,R) . Hence, we have

Iρ χBR(x) �
∫

B(x,R/2)

ρ(|x− y|)
|x− y|d dy = C

∫ R/2

0

ρ(s)
s

ds.

Note that we only use the spherical coordinates to obtain the last integral. �
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LEMMA 2.2. For every R > 0 and a measurable function φ : (0,∞) → (0,∞)
satisfying the doubling condition

1
C

� φ(s)
φ(r)

� C (0 < r/2 � s � 2r), (2.1)

the inequality

C−1
∫ ∞

2R

φ(t)ρ(t)
t

dt � IρgR(x) � C
∫ ∞

2R/3

φ(t)ρ(t)
t

dt

holds whenever x ∈ BR/3 , where gR(x) := φ(|x|)χBc
R
(x) .

Proof. We prove the right-hand inequality, the left-hand inequality being similar.
A geometric observation shows that |x− y| ∼ |y| for all x ∈ BR/3 and y ∈ R

d \B2R/3
Since φ satisfies (2.1) , then

IρgR(x) =
∫

Rd\BR

φ(|y|)ρ(|x− y|)
|x− y|d dy

�
∫

Rd\B(x,2R/3)
φ(|y|)ρ(|x− y|)

|x− y|d dy

=
∫

Rd\B2R/3

φ(|x− y|)ρ(|y|)
|y|d dy

� C
∫ ∞

2R/3

φ(t)ρ(t)
t

dt for x ∈ BR/3.

It remains to write the most right-hand side in terms of the spherical coordinates. �

The lemma below gives an estimate for the norm of χBR in Lp,φ (Rd) .

LEMMA 2.3. Let 1 � p < ∞ and φ ∈ Gp . There exists a constant C > 0 such that
C−1φ(R)−1 � ‖χBR : Lp,φ‖ � Cφ(R)−1 for all R > 0 .

Lemma 2.3 is proven in [8, Proposition A] and [26, Lemma 3.3]. See [7] as well.

LEMMA 2.4. Let 1 � p < ∞ and φ ∈ Gp . Assume that there exists a constant
C > 0 such that ∫ R

0
φ(t)td/p−1 dt � Cφ(R)Rd/p (R > 0). (2.2)

Then the function x �→ φ(|x|) belongs to Lp,φ (Rd) .

Proof. First note that (2.2) is equivalent to

1
rd

∫ r

0
φ(t)ptd−1 dt � Cφ(r)p (r > 0) (2.3)
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in view of [30, Lemma 7.1]. Let φ1(r) = inft�r φ(t) . Then, φ1(r) is a non-increasing
function such that Lp,φ (Rd) and Lp,φ1(R

d) are isomorphic [26, p. 446]. Hence, we can
assume that φ itself is decreasing. In this case x �→ φ(|x|) is radial decreasing, so that[

1
|B(a,r)|

∫
B(a,r)

φ(|x|)pdx

]1/p

�
[

1
|Br|

∫
Br

φ(|x|)pdx

]1/p

(a ∈ R
d). (2.4)

Combining (2.3) and (2.4) and using the spherical coordinate, we obtain the desired
result. �

3. Proofs of main results

In this section we prove our main results, six theorems in Section 1. We prove
their sufficiency in Subsection 3.1 and then prove their necessity in Subsection 3.2.

3.1. Proof of sufficiency

We remark that (1.5) includes (1.3) . We prove the estimate (3.1) . Once we prove
(3.1) , the estimate (3.1) gives us the boundedness of Iρ from Lp,φ (Rd) to Lq,φ p/q(Rd)
as we shall see below. Here we use the fact that the Hardy-Littlewood maximal operator
M is bounded on Lp,φ (Rd) , if p > 1 and φ is almost decreasing [29, 35]. See [25, 43,
44] for more information about M on the space Lp,φ (Rd) .

LEMMA 3.1. Let 1 � p < q < ∞ and let φ ∈ Gp . We assume (1.2) and (1.3), or
we assume (1.5). If we normalize the norm of f by ‖ f : Lp,φ‖ = 1 , then we have

|Iρ f (x)| � C

(
[M f (x)]p/q + inf

r>0
φ(r)p/q

)
, x ∈ R

d . (3.1)

Proof. First we may assume that φ is continuous and strictly decreasing (see [29,
Proposition 3.4]). Recall that k1 and k2 appeared in the condition (1.1) of ρ . Let

ρ∗(r) =
∫ k2r
k1r

ρ(s)
s ds . We have

|Iρ f (x)| � C

[
−1

∑
j=−∞

+
∞

∑
j=0

ρ∗(2 jr)
(2 jr)d

∫
|x−y|<2 j r

| f (y)|dy

]

for given x ∈ R
d and r > 0. Let ΣI and ΣII be the first and second summations above.

Now we invoke the overlapping property in [40]:

−1

∑
j=−∞

ρ∗(2 jr) �
−1

∑
j=−∞

∫ 2 jk2r

2 jk1r

ρ(s)
s

ds

=
∫ k2r

0

( −1

∑
j=−∞

χ[2 jk1r,2 jk2r](s)

)
ρ(s)

s
ds

� C
∫ k2r

0

ρ(s)
s

ds

� Cρ̃(k2r)
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and

∞

∑
j=0

ρ∗(2 jr)φ(2 jr) =
∫ ∞

k1r

(
∞

∑
j=0

χ[2 jk1r,2 jk2r](s)
ρ(s)

s
φ(2 jr)

)
ds

� C
∫ ∞

k1r

(
∞

∑
j=0

χ[2 jk1r,2 jk2r](s)

)
ρ(s)

s
φ(s)ds

� C
∫ ∞

k1r

ρ(s)
s

φ(s)ds.

Then, we have

ΣI � C
−1

∑
j=−∞

ρ∗(2 jr)M f (x) � C ρ̃(k2r)M f (x) � Cφ(r)p/q−1M f (x),

ΣII � C
∞

∑
j=0

ρ∗(2 jr)φ(2 jr)‖ f : Lp,φ‖ � C
∫ ∞

k1r

ρ(s)φ(s)
s

ds.

We use (1.2) or (1.5) now. By the doubling property of φ , we obtain ΣII � Cφ(r)p/q.
Hence,

|Iρ f (x)| � Cφ(r)p/q−1[M f (x)+ φ(r)
]

(for all r > 0). (3.2)

First assume M f (x) � infr>0 φ(r) . Then, (3.1) is immediate from (3.2) .
Next, we assume M f (x) > infr>0 φ(r) . Since ‖ f : Lp,φ‖ = 1, we have

1 � 1
φ(r)

(
1

B(x,r)

∫
B(x,r)

| f (y)|p dy

)1/p

� 1
φ(r)

· 1
B(x,r)

∫
B(x,r)

| f (y)|dy.

Hence
1

|B(x,r)|
∫

B(x,r)
| f (y)|dy � φ(r)

for all r > 0. This implies

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy � sup
R>0

φ(R)

for all r > 0. Since r > 0 and x∈R
d are arbitrary, it follows that M f (x) � supr>0 φ(r) .

We can thus find R > 0 such that M f (x) ∼ 2φ(R) and, with this R , we can obtain
(3.1). �

Proof of Theorems 1.1 and 1.2 (Sufficiency) . Let ‖ f : Lp,φ‖= 1. Let B = B(z,s)
be an arbitrary ball. If we integrate (3.1), then we have

1
|B|
∫

B
|Iρ f (x)|q dx � C

(
1
|B|
∫

B
[M f (x)]p dx+ inf

r>0
φ(r)p

)
, x ∈ R

d .

If we devide both sides by φ(s)p , then we have

1
φ(s)p|B|

∫
B
|Iρ f (x)|q dx � C

(
1

φ(s)p|B|
∫

B
[M f (x)]p dx+1

)
� C
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by virtue of the boundedness of the maximal operator M on Lp,φ (Rn) . The ball B
being arbitrary, we obtain the desired result. �

Proof of Theorem 1.3(Sufficiency) . Let ‖ f : Lp,φ‖ = 1. For a ball B(z,r) , let
f1 = f χB(z,2r) and f2 = f − f1 . Then a geometric observation shows B(z,r) ⊂ B(y,3r)
for all y ∈ B(z,2r) . Hence by the Fubini theorem and the normalization,∫

B(z,r)
|Iρ f1(x)|dx �

∫
B(z,r)

(∫
B(z,2r)

| f (y)|ρ(|x− y|)
|x− y|d dy

)
dx

�
∫

B(z,2r)

(∫
B(y,3r)

| f (y)|ρ(|x− y|)
|x− y|d dx

)
dy

� Cρ̃(3r)φ(3r)rd

� Cψ(r)rd .

Here for the last inequality we used (1.7) and the doubling condition of ψ . Thus, the
estimate for f1 is valid. As for f2 , we let x ∈ B(z,r) . Then we have

|Iρ f2(x)| �
∫

B(z,2r)c
| f (y)|ρ(|x− y|)

|x− y|d dy �
∫

B(x,r)c
| f (y)|ρ(|x− y|)

|x− y|d dy

and decomposing the right-hand side dyadically as we did in the proof of Theorem 1.1
for ∑II , we obtain

|Iρ f2(x)| �
∞

∑
j=1

∫
B(x,2 jr)\B(x,2 j−1r)

| f (y)|ρ(|x− y|)
|x− y|d dy � C

∫ ∞

2k1r

φ(t)ρ(t)
t

dt.

If we use (1.7) and the doubling condition of ψ , then we obtain |Iρ f2(x)| � Cψ(r) .
Thus, the estimate for f2 is valid as well. �

Proof of Theorems 1.8 and 1.9 (Sufficiency) . We normalize f so that we have
‖ f : Lp,φ‖ = 1. By virtue of (3.1), we have

1

φ(r)p/q

(
tqm(B(a,r), |Iρ f |,t)

|B(a,r)|
)1/q

� C
1

φ(r)p/q

(
tqm(B(a,r), [M f ]p/q,t/2)

|B(a,r)|

)1/q

+C
1

φ(r)p/q

(
tqm(B(a,r), infr′>0 φ(r′)p/q, t/2)

|B(a,r)|

)1/q

� C
1

φ(r)p/q

(
tqm(B(a,r), [M f ]p/q,t/2)

|B(a,r)|

)1/q

+C
1

φ(r)p/q
inf
r′>0

φ(r′)p/q

� C (‖M f‖p,φ ,weak)p/q +C

� C.
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Here for the second to the last inequality, we have used [29, Theorem 6.1]. Theorem
1.9 can be proved in the same way. �

Proof of Theorem 1.10(Sufficiency) . Under the condition (1.7), in the proof of
the sufficiency of Theorem 1.3 we already established that Iρ is bounded from L1,φ (Rd)
to L1,ψ (Rd) , which is stronger than the boundedness from L1,φ (Rd) to L1,ψ,weak(Rd) .

�

REMARK 3.2. The proof of the sufficient part is similar to, but not the same as,
that in [18, 28]. In this paper, we do not assume that ρ satisfies the doubling condition
nor that φ is surjective, as we did in [18].

3.2. Proof of necessity

Proof of Theorem 1.1(Necessity) . Note that

ρ̃(R/2) � C

[
1

|BR/2|
∫

BR/2

|Iρ χBR(x)|qdx

]1/q

(3.3)

by virtue of a pointwise estimate in Lemma 2.1. Notice also that

‖Iρ χBR : Lq,φ p/q‖ � C‖χBR : Lp,φ‖ (3.4)

since Iρ is assumed bounded. If we combine (3.3), (3.4), Lemma 2.3, and the doubling
property of φ , we have

ρ̃(R/2) � C φ(R/2)p/q φ(R/2)−p/q

[
1

|BR/2|
∫

BR/2

|Iρ χBR(x)|qdx

]1/q

� Cφ(R/2)p/q‖Iρ χBR : Lq,φ p/q‖
� Cφ(R/2)p/q φ(R)−1

� Cφ(R/2)p/q−1,

for all R > 0. This completes the proof. �

Proof of Theorem 1.2(Necessity) . The exactly same argument as we did for The-
orem 1.1 works and we conclude∫ r

0

ρ(t)
t

dt � Cφ(r)p/q−1

for r > 0.
Meanwhile, by virtue of Lemma 2.2, we obtain

∫ ∞

2R

φ(t)ρ(t)
t

dt ∼
(

1
Rd

∫
BR/3

Iρg(x)q dx

)1/q

� Cφ(R)p/q‖IρgR : Lq,φ p/q‖.
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Since Iρ is bounded, we obtain

∫ ∞

2R

φ(t)ρ(t)
t

dt � Cφ(R)p/q‖gR : Lp,φ‖.

Now we invoke Lemma 2.4 to conclude∫ ∞

2R

φ(t)ρ(t)
t

dt � Cφ(R)p/q � Cφ(2R)p/q.

Thus, Theorem 1.2 is proven. �

Proof of Theorem 1.3(Necessity) . Assume that Iρ is bounded from L1,φ (Rd) to
L1,ψ(Rd) . By Lemma 2.1, we obtain

ρ̃(r) ∼ r−d
∫

Br/2

Iρ χBr(x)dx � ψ
( r

2

)
‖Iρ χBr : L1,ψ‖.

Since ψ ∈ G1 and Iρ is assumed bounded from L1,φ (Rd) to L1,ψ(Rd) , it follows that

ρ̃(r) � Cψ (r)‖χBr : L1,φ‖. Since ‖χBr : L1,φ‖ ∼ φ(r)−1 , we conclude ρ̃(r) � C ψ(r)
φ(r) .

Meanwhile, by Lemma 2.2, we have∫ ∞

r

ρ(t)φ(t)
t

dt � Cψ
( r

6

)
‖Iρgr : L1,ψ‖ � Cψ(r)‖gr : L1,φ‖ � Cψ(r).

Thus, Theorem 1.3 is proved. �

Proof of Theorem 1.8 (Necessity). Choose C > 0 from Lemma 2.1 and write it for
C0 . By Lemma 2.1 we have

sup
t>0

tqm(BR/2, Iρ χBR(x),t) �
(

ρ̃(R/2)
C0

)q

m

(
BR/2, Iρ χBR ,

ρ̃(R/2)
C0

)

�
(

ρ̃(R/2)
C0

)q

|BR/2|.

If we arrange this inequality, then we have

ρ̃(R/2) � C

[
supt>0 tqm(BR/2, Iρ χBR,t)

|BR/2|
]1/q

. (3.5)

Therefore

ρ̃(R/2) � C φ(R/2)p/q φ(R/2)−p/q
[
supt>0 tqm(BR/2, Iρ χBR , t)

|BR/2|
]1/q

� Cφ(R/2)p/q‖Iρ χBR : Lq,φ p/q,weak‖
� Cφ(R/2)p/q φ(R)−1

� Cφ(R/2)p/q−1,
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for all R > 0. This completes the proof. �

Proof of Theorem 1.9 (Necessity). The exactly same argument as we did for The-
orem 1.8 works and we conclude∫ r

0

ρ(t)
t

dt � Cφ(r)p/q−1

for r > 0. Meanwhile, by virtue of Lemma 2.2, we obtain

sup
t>0

tqm(BR/3, IρgBR ,t)

�
(

1
C

∫ ∞

2R

φ(t)ρ(t)
t

dt

)q

m

(
BR/3, IρgBR,

1
C

∫ ∞

2R

φ(t)ρ(t)
t

dt

)

�
(

1
C

∫ ∞

2R

φ(t)ρ(t)
t

dt

)q

|BR/3|.

Hence it follows that

∫ ∞

2R

φ(t)ρ(t)
t

dt � C

[
supt>0 tqm(BR/3, IρgBR,t)

|BR/3|
]1/q

� Cφ(R/3)p/q‖IρgR : Lq,φ p/q,weak‖
� Cφ(R/3)p/q‖gR : Lp,φ‖ � Cφ(R/3)p/q � Cφ(2R)p/q.

Thus, Theorem 1.9 is proven. �

Proof of Theorem 1.10 (Necessity). Assume that Iρ is bounded from L1,φ (Rd) to
L1,ψ,weak(Rd) . By Lemma 2.1, we obtain

ρ̃(R/2) � C
supt>0 tm(BR/2, Iρ χBR(x),t)

|BR/2|
� ψ

(
R
2

)
‖Iρ χBR : L1,ψ,weak‖.

Since ψ ∈ G1 and Iρ is assumed bounded from L1,φ (Rd) to L1,ψ,weak(Rd) , it follows
that

ρ̃(r) � Cψ (r)‖χB2r : L1,φ‖ ∼ ψ (r)
φ(r)

.

Meanwhile, by Lemma 2.2, we have

∫ ∞

r

ρ(t)φ(t)
t

dt � Cψ
( r

6

)
‖Iρgr : L1,ψ,weak‖

� Cψ(r)‖gr : L1,φ‖
� Cψ(r).

Thus, Theorem 1.10 is proved. �
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4. Examples showing Theorems 1.1–1.3 are independent

In this section, we show by examples that Theorems 1.1–1.3 are of independent
interest. Here and below we write

�β1,β2
(r) :=

⎧⎪⎨
⎪⎩
(
log 1

r

)−β1 (0 < r < e−1),
1 (e−1 � r � e),
(logr)β2 (e < r).

This function is used to describe the “log”-growth and “log”-decay properties. Also,
we fix p and q so that 1 < p < q < ∞ .

EXAMPLE 1. Let μ1,μ2 satisfy μ1,μ2 � 0. Set α := d
p − d

q and βi :=
(

p
q −1

)
μi

for i = 1,2. Define ρ(r) := rα�β1,β2
(r), φ(r) := r−

d
p �μ1,μ2(r) for r > 0. Then this

pair (ρ ,φ) fulfills the assumptions (1.2) and (1.3) in Theorem 1.1 but fails (1.4) in

Theorem 1.2. More precisely, since α > 0, we have ρ̃(r) ∼ ρ(r) and
∫ ∞
r

φ(t)ρ(t)
t dt ∼

φ(r)ρ(r).

Example 1 is an endpoint case of the next example.

EXAMPLE 2. Let λ satisfy 0 <
(

p
q −1

)
λ < d and − d

p < λ < 0. Take μ1,μ2

arbitrarily. Set α :=
(

p
q −1

)
λ and βi :=

(
p
q −1

)
μi for i = 1,2. Define ρ(r) :=

rα�β1,β2
(r) and φ(r) := rλ �μ1,μ2(r) for r > 0. Then this pair (ρ ,φ) fulfills the assump-

tions (1.2)–(1.4) in Theorems 1.1 and 1.2. Indeed, ρ̃(r) ∼ ρ(r),
∫ ∞
r

φ(t)ρ(t)
t dt ∼

φ(r)ρ(r).

The next example concerns the case when the spaces are close to L∞(Rd) and the
smoothing order of Iρ is “almost 0”.

EXAMPLE 3. Let μ1,μ2 < 0. Set β1 :=
(

p
q −1

)
μ1 + 1 ∈ (1,∞) and β2 :=(

p
q −1

)
μ2 − 1 ∈ (−1,∞). Define ρ(r) := �β1,β2

(r) and φ(r) := �μ1,μ2(r) for r > 0.

Then this pair (ρ ,φ) fulfills the assumptions (1.4) and (1.5) in Theorem 1.2 but fails
(1.2) in Theorem 1.1. More precisely, for all r > 0, we have ρ̃(r)∼ �β1−1,β2+1(r) , and∫ ∞
r

φ(t)ρ(t)
t dt ∼ �μ1+β1−1,μ2+β2+1(r).

We consider a case when the target space is close to L∞(Rd) .

EXAMPLE 4. Let α , β1 , μ1 , μ2 satisfy 0 < α < d
p , μ1 + β1 < 1, μ2 < 0.

Set β2 :=
(

p
q −1

)
μ2 − 1 ∈ (−1,∞). Define ρ(r) := min(1,rα)�β1,β2

(r) and φ(r) :=

max(1,r−α)�μ1,μ2(r) for r > 0. Then this pair (ρ ,φ) fulfills the assumptions (1.4)
and (1.5) in Theorem 1.2 but fails (1.2) in Theorem 1.1. More precisely, φ(r)ρ̃(r) ∼
�μ1+β1,μ2+β2+1(r) and

∫ ∞
r

φ(t)ρ(t)
t dt ∼ �μ1+β1−1,μ2+β2+1(r) for r > 0.
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We conclude this paper by proving Proposition 1.7.

EXAMPLE 5. Let 0 < s < d . Define φ(r) := r−s and ψ(r) := (1+ r)−s�−1,0(r)
for r > 0. Let ρ(r) := rdGs(r) , where Gs denotes the Bessel kernel, the kernel of (1−
Δ)s/2 . Observe that ρ̃(r) ∼ min(rs,1) and hence φ(r)ρ̃(r) ∼ min(1,r−s). Note also

that
∫ ∞
r

φ(t)ρ(t)
t dt ∼

{
log(e/r) (r < 1),
rd−sGs(r) (r � 1).

Then we have φ(r)ρ̃(r)+
∫ ∞
r

φ(t)ρ(t)
t dt ∼

ψ(r) . Hence it follows from Theorem 1.3 that ‖Iρ f : L1,ψ‖ � C‖ f : L1,φ‖ , extend-
ing Proposition 1.7. This triple (ρ ,φ ,ψ) fulfills the assumptions (1.7) and (1.6) in
Thoerem 1.3 but it fails (1.2) in Theorem 1.1 and (1.5) in Theorem 1.2.
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