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A HALANAY-TYPE INEQUALITY ON TIME
SCALES IN HIGHER DIMENSIONAL SPACES

BAOGUO JIA, LYNN ERBE AND RAZIYE MERT

(Communicated by I. Franjic)

Abstract. In this paper, we investigate a certain class of Halanay-type inequalities on time scales
in higher dimensional spaces. By means of the obtained inequality, we derive some new global
stability conditions for linear delay dynamic systems on time scales. An example is given to
illustrate the results.

1. Introduction

The analysis of the stability of dynamic systems using differential and difference
inequalities has attracted a great deal of attention in the literature. One of the main
motivations arises from some results due to Halanay, [4]. In the investigation of the
stability of the delay differential equation

X(t)=—px(t)+qx(t—71), 7>0,
Halanay proved the following result (see [4]).

LEMMA 1.1. If

f@)<—af(t)+B sup f(s), for t=1

s€ft—11]
where o. > 3 > 0, then there exist ¥ >0 and K > 0 such that
f(t) < Ke Y=10) fort > 1.

In 2000, Mohamad and Gopalsamy obtained a generalized discrete Halanay inequality
(see [7]). A very detailed discussion of the application of Halanay’s lemma and its
generalizations may be found in [3].

In this paper, we derive an analog of the Halanay-type inequality on time scales in
higher dimensional spaces. By means of this inequality, we obtain new global stability
conditions for linear delay dynamic systems on time scales.
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For completeness, we recall some basic results for dynamic equations and the cal-
culus on time scales, (see [8] and [9] for elementary results for the time scale calculus).
Let T be a time scale (i.e., a closed nonempty subset of R) with supT = co. The
forward jump operator is defined by

o(t):=inf{se€T:s>1t},
and the backward jump operator is defined by
p(t):=sup{seT:s<t},

where sup @ :=infT, where @ denotes the empty set. If o(¢) > ¢, we say ¢ is right-
scattered, while if p(r) <r we say ¢ is left-scattered. If o(r) =1, we say that t is right-
dense, while if p(z) =t and 7 # infT we say ¢ is left-dense. Given a time scale interval
[e;dlp:=={reT:c<t<d} in T the notation [c,d|*1 denotes the interval [c,d]r
in case p(d) = d and denotes the interval [c,d)T in case p(d) < d. The graininess
function u for a time scale T is defined by u(r) := o(¢) —t, and for any function
f: T — R the notation f°(¢) denotes f(o(r)). We also recall that the notation C,y
denotes the set of all functions which are continuous at all right-dense points and have
finite left-sided limits at left-dense points. We say that x : T — R is differentiable at
t € T provided
A1) = lim)w7
st r—s

exists when o () =1 (here by s — 1 it is understood that s approaches ¢ in the time
scale) and when x is continuous at ¢ and o(r) > ¢

Note that if T =R , then the delta derivative is just the standard derivative, and when
T = Z the delta derivative is just the forward difference operator. Hence our results
contain the discrete and continuous cases as special cases and generalizes these results
to time scales with bounded graininess.

2. Main Theorems
LEMMA 2.1. Let
P(t) = (Pi(1),P2(2),--+, Pe(1)), Q1) == (Q1(1), 0a(t),--+, Or(1))

be r dimensional vector functions defined on [ty,>)r, where P(t),0(t) € C,y. Let
7> 0, t9g € T. Suppose the following dynamic inequalities hold:

M-~

PA(t) < Y [aiPi(t) + biP(t,7)], (i=1,2,---,r), t>19 2.1)

1

~.
Il
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>
J

alJQJ +bl/Q/(t T)} (i:1727"'7r)7 1>1p (22)

r
j=1

and
P(r) < Q(r), t€lto— 1,00t (2.3)
where a;; <0, 14+ u(t)a; >0, (i=1,2,---,r), t =19,
aij>oa (17&]7 ivj:l727"'7r)7 bij>07 (i7j=1,2,---,7‘),
Pi(t,t)= sup Pj(0+1), Q;(t,1)= sup Q;(0+1), t=>10.
—7<0<0 —7<0<0

Then
P(t) < O(t), to<t<eo.

Proof. Let & =sup{t: P(t) < Q(t)} > ty. We will show & = e. Suppose that
& < eo. Clearly we have P(&) < Q(&). Then we have two cases:
Case (1). There exist ip € {1,2,---,r} such that

Py(&)=0i(§), P)<O(r), nn—t<r<é.

So

sup P(6)< sup Q(6).
&—1<0<E &—1<0<E

M\

Py(&) < 3 laigjPi(&) + biyiPi(&, 7)) (2.4)

~.
I
iR

N
M-

[aiy;jQ;(8) + biy;Q;(&,7)]
(&)

When 79 <t <&, P(1) < Q) and Py(§) = 0;y(§), so PA(&) = Q4 (&), which con-
tradicts (2.4).

Case (2). P(&) < Q(&). In this case, & must be right-scattered, for otherwise if
& is right-dense, then we have P(r) < Q(t), for t € [tg — T,&]r. Therefore, there exists
0 sufficiently small so that P(¢) < Q(z), for ¢ € [to — 7,& + &]r. This contradicts the
definition of &, using the fact that P(¢), Q(¢) are rd-continuous. Hence, since & is right-
scattered, we have P(t) < Q(t), for ¢ € [tp — 7,&] and there exists iy € {1,2,---,r}
such that

A

Py(0(8)) = Qi (a(8)). (2.5

Noticing 1+ u(t)a; > 0 and

_ Py(a(8) — Py (E) (2.6)
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Arey - Qi(9(8) —0iy(8)
Qio(é)_ ,LL(%) )

from (2.1), (2.6), (2.7), (2.2), and 1+ u(t)a;y, > 0, we get that

2.7)

Po(0(8) < &) + (&) Sl (E) + by 6.7
j=1
[1 +.u(§)alolo}P (g) + H(g)bioiopio(gaf)]
+,LL(€) 2 [aloj (§)+blojp (g T)}

J=Lj#io

< 1+ (&) aigiy] Qig (&) + 1 (8)bigiy Qi (€, T)

@) S T Qi(E) + biQi(E. )]
Jj=1,j#ig
- Qlo Z,l aloJQJ +bi0ij(§vT)}
< Qi()( (g))a

which contradicts (2.5).
This completes the proof. [l

The following lemmas may be found in [8] and [10], respectively.

LEMMA 2.2. If p € R, then the semigroup property
ep(t,r)ep(r,s) =ey(t,s), forall rsteT
is satisfied.

LEMMA 2.3. For a nonnegative @ with —@ € R*, we have the inequalities

1 !
l—/ ¢(u)Au<e_¢(t,s)<exp{—/ qo(u)Au}, forall t>s.

If @ is rd-continuous and nonnegative, then

1—|—/(p o(t,s) exp{/(p }7 forall t>s.

We now present the main result of the paper.

THEOREM 2.4. Let P(t) = (Py(¢),P(t),---,P:(t)) be an r dimensional C,4 (non-
negative) vector function defined on [ty,+oo)r, (T > 0,10 € T), with t — 1 € T for all
t € to,+oo)r. If

M\

PA(r) <

1

[alj ( )+leP (t T)} (l: 1,2,"',7’), t>t0a (28)
1

~.
I
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where
ai <0, 14+put)a;>0, (i=12,---,r), =1,
aij =0, (i#j,i,j=12,---,r), bjj=0, (I,j=12,---,r),
ReA(aij+Dbij)rxr <0
and

Pj(t7T): sup Pj(e+t)7 j:1a2a"'7ra = 1.
—7<0<0

Then there exist K > 1, o; > 0 and o > 0 such that

r

Pi(t)gKaiEPj(tmT)e—a(tvtO)v (i:l727"'7r)7 t>t0~ (29)
J=1

Proof. From ReA (a;jj+bij)rxr <0 and [5], it follows that the matrix (a;;+b;;)rxr
is quasi negative diagonally dominant. So there exist o; >0, (i=1,2,---,r) such that

p
Z aij+bij)o <0, (i=1,2,---r).
From the continuity, there exists a small o > 0 such that

-
oo+ Z[LlijOCj—FbijOCj(l—OCT)*l} <0. (2.10)
J=1
Using Lemma 2.3, there exists a large K such that for 7 € [t) — 7,%], we have

KOCiefa(l,to)ZK(X,‘[I—OC(I—I())]ZKOC,'> 1. (2.11)

In the first place, we will prove that for any € > 0,

1) < Koy 2 (to,T)+ €| e_a(tity), (i=1,2,---,r), t=1. (2.12)
Since €2, (t,1)) = —0te_q(t,t9) < 0, for ¢ > ty, using Lemma 2.2, we have
sup  e_q(0,10) = e_q(t — T,10) (2.13)

1—T<O<!r
=e_q(t—1,t)e_qlt,1p).

From Lemma 2.3, we have e_q(t — 7,t) = e_L(t,t —7) < (1 —at)~'. So from (2.13),

we get that

_all. 1
sup u:(&toKM, 1> 1. (2.14)

—1<0<t I-at
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Let
-
=Ko Z (t0,T) +e|e_alt,tn), (i=1,2,---,r), tE€lto—T,+oo)T.
- (2.15)
Using (2.10), we have that for 7 >
r
= Ko; 2 tO: 06)670(([,[0)
K Y [aijor + bijo(1 [ZP (to,T) + €| e—alt,10).
j:
From (2.14) and (2.15), we get that
r
Z [@;jQj(1) +bi; sup Q;(0)], =1 (2.16)
j=1 —T<O<r
From (2.11) and (2.15), it is easy to see that
P(t) < Qi(t), for 1€ tp—T,io|T. (2.17)

From (2.8), (2.16), (2.17) and Lemma 2.1, we get that (2.12) holds.
Letting € — 0T, we obtain that (2.9) holds. [

3. Examples

EXAMPLE 3.1. Consider the delay dynamic system with n > 1
i t): Zainj(t)+2binj(l—T)7 (l: 1727"'7}’1)7 (S [t07+°°)T7 (31)
=1 =1

where
a;; <0, 1+[.1(t)ai,->0,

(i=
aij>oa (17&]7 ivj:l727"'7n)7 b > 5 (17]:1727)7
Re?L(aij—i—b,-j)nX,, < 0.

We equivalently rewrite (3.1) as

(1+ w(t)ai) x> (1) = aix? (1) + z aijx;j(t —|—ib,~jxj(t—1), (3.2)
J=Lj#i J=1

xi(t) = xVe,, (1,10) +/ea” (r,0(s l 2 aijxj(s)+ Y, bijxj(s— 1) | As,

J=L1j#i =1
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(i=1,2,-.n).
Let the functions y;(¢), (i = 1,2,---,n) be defined as follows:

yi(t) = |xi(z)], for t € [tg—T,10]T

and
n
0) = Wlea, )+ [ eat.00) | 3 alro)l+ Dby s @)
J=Lj# j=1  s7TsOss
for t > t9. Then we have |x;(¢)| <yi(¢), (i=1,2,---,n) forall ¢ € [fo — T,°°)T.
By [8, Theorem 1.117], we get that
i)
=a;i | |} lea;; (1,10 +/ eq;(t,0(s Z ajjlx;(s |+Zbu sup [x;(0)[| As
j=1,j#i j=1 s—T<OLs
+ D aijlx()|+ X by sup |xi(6)]
J=L# j=1 SOt
< aiyi(t) + Z aijy;(t Zbij sup y;(0)
J=Lj# j=1 1mTses

for all 7 € [ry,e0)T. Therefore, it follows from Theorem 2.4 that there exists a constant
M > 1 and o > 0 such that

Ixi(6)] <yi(t) < Me_q(t,80), for ¢ € fy,)r.

In the following, we let T = Z and choose some explicit values for a;;, b;;, (i,j =
1,2,---,n). Let

1—-2n%1 1 1
1 1-2n%1 el
(i) _ 111 1 1—2n% -1
al]nxn—znz
1 1 1 ce 1 =202
1
1 !
=5z | 111
1111
‘We have
1—n%1 1 1
1 1-n21 1

1 2
(aij+bij)nxn:n_2 1 1 l=n-1
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The k —th order leading principal minor of (a;j + b;j)nxn is

nt—-1n?2 n2 -2
n2 nt-1n? n2
-2 -2 -2 -2
Ay = | n n<—1---n
n2 n2 n2 |

(k=1,2,---,n). In the following, using induction we will prove that

k
A= (=1 (1=3). (3.3)
When k = 1, it is easy to see that (3.3) holds.
Suppos that k =m — 1, (3.3) holds. Then when k =m,
1-n?1 1 |
1 1-n1 .|
A, =n 2|1 1 1—n*. 1

mxm
1—n%1 1 1 1
1 1—n%1 1 1
1 1 1—n?--1 1
:n72m -
1 1 1 e 1=n?1
1 1 1 1 .
1—n%1 1 1 0
1 1—n%1 1 0
1 1 1—n?-- 1 0
+n—2m - -
1 1 1 -1-n%0
1 1 1 1 _n2 mxXm
-n20 0 0 0
0 -n20 -0 0
|00 P00
= B
0 0 0 —n20
1 1 1 1
mxm

So
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So (3.3) holds. Therefore ReA (a;;j+ bij)nxn < 0.
When T =7 and « is constant, then we have e_q(¢,19) = (1 — o)’ ~'0. Therefore
we can find M > 1 and a sufficiently small 0 < o < 1 such that

xi(n)| <M(1—0)" ™, n>ng, (i=1,2,---,n).
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