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LOCATION OF THE ZEROS OF TRINOMIALS AND QUADRINOMIALS

A. AZIZ AND N. A. RATHER

(Communicated by H. M. Srivastava)

Abstract. In this paper, we prove certain results concerning the location of the zeros of quadri-
nomials, which in particular considerably improves a result due to Landau. We also present a
very simple proof of a known result for trinomials, which provides a refinement of another result
of Landau.

1. Introduction

Quite a few results giving bound for all the zeros of a polynomial P(z) = ∑n
j=0 a jz j

were expressed (see [7,8]) as functions of all the coefficients. It seems natural to ask
whether, there exist some bounds for the k zeros of smallest modulus, k < n , which
would be independent of certain coefficients a j . Landau first, raised this question in
connection with his study of the Picard’s Theorem. In [5] and [6] Landau proved that
every trinomial

a0 +a1z+anz
n, a1an �= 0, n � 2,

has at least one zero in the circle

|z| � 2|a0/a1| (1)

and every quadrinomial

a0 +a1z+amzm +anz
n, a1aman �= 0, 0 � m < n,

has at least one zero in the circle

|z| � 17
3

∣∣∣∣a0

a1

∣∣∣∣ . (2)

For every n � 2, as a refinement of (1), the trinomial

a0 +a1z+anz
n, a1an �= 0,

is known [2] to have a zero in both the regions∣∣∣∣z+
a0

a1

∣∣∣∣ �
∣∣∣∣a0

a1

∣∣∣∣ and

∣∣∣∣z+
a0

a1

∣∣∣∣ �
∣∣∣∣a0

a1

∣∣∣∣ . (3)
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Joyal, Labelle and Rahman [4] gave an alternative proof of this fact by using Gauss-
Lucas theorem. In literature, there exist several results about zero distribution of trino-
mials equations, for example see [1] and [3].

Here, in this paper, we present certain results for quadrinomials and also give a
very simple proof of (3), independent of Gauss-Lucas theorem, which is perhaps the
simplest one can think of. We start by proving the following result which considerably
improves (2) due to Landau.

THEOREM 1. At least one zero of the quadrinomial

a0 +a1z+amzm +anz
n, a1aman �= 0, 2 � m < n,

lie in the circle

|z| � 2n
n−1

∣∣∣∣a0

a1

∣∣∣∣ � 3

∣∣∣∣a0

a1

∣∣∣∣ . (4)

Applying this result to the polynomial znP(1/z) where P(z)= a0+apzp+an−1zn−1

+ zn, we get the following:

COROLLARY 1. At least one zero of the quadrinomial

a0 +apz
p +an−1z

n−1 + zn, a0apan−1 �= 0, 1 � p � n−2,

lie in the circle

|z| � n−1
2n

|an−1| . (5)

Next we prove the following result for quadrinomials.

THEOREM 2. For every n � 3 , the quadrinomial

a0 +a1z+a2z
2 +anz

n, a2an �= 0,

has at least one zero in both the regions,

|z| �
{

n
n−2

∣∣∣∣a0

a2

∣∣∣∣
}1/2

(6)

and ∣∣∣∣z+
a1

2a2

∣∣∣∣ �
∣∣∣∣ a1

2a2

∣∣∣∣ . (7)

For the proofs of the theorems, we shall make use of the following Lemma.

LEMMA. Let P(z) = a0 + · · ·+ apzp + · · ·+ anzn , apan �= 0 , 1 � p � n, be a
polynomial of degree n. Then at least one zero of P(z) lies in each of the n circles

|z| �
{

C(n, p)
∣∣∣∣a0

ap

∣∣∣∣
}1/p

, p = 1,2, · · · ,n, (8)
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where

C(n, p) =
n!

p!(n− p)!
.

Proof. If a0 = 0, then z = 0 is a zero of P(z) and the Lemma follows in this case.
So we suppose that a0 �= 0. We take

Q(z) = znP(1/z) = a0z
n + · · ·+apz

n−p + · · ·+an.

Let z1,z2, · · · ,zn be the zeros of Q(z) such that

|z1| � |z2| � · · · � |zn|. (9)

Then

a0z
n + · · ·+apz

n−p + · · ·+an = Q(z) = a0

n

∏
j=1

(z− z j). (10)

Equating the coefficients of the like powers of z on the two sides of (10), we get

|ap| = |a0|
∣∣{z1z2 · · ·zp + z2z3 · · · zp+1 + · · ·}∣∣ ,

where the number of terms inside the brackets is C(n, p) = C(n,n− p) . Therefore, by
(9), we have

|ap| � |a0|C(n, p)|zn|p, p = 1,2, · · ·n,

which gives,

|zn| �
{

1
C(n, p)

∣∣∣∣ap

a0

∣∣∣∣
}1/p

, p = 1,2, · · · ,n.

This shows that the polynomial Q(z) has at least one zero in

|z| �
{

1
C(n, p)

∣∣∣∣ap

a0

∣∣∣∣
}1/p

, p = 1,2, · · · ,n.

Since P(z) = znQ(1/z) , it follows that P(z) has at least one zero in each of the n circles
defined by (8) and the proof of the Lemma is complete. �

2. The proofs

Proof of Theorem 1. If a0 = 0, the assertion is obviously true, so we assume that
a0 �= 0. We write

S(z) = a0 +a1z+amzm +anz
n.

If possible, suppose all the zeros of S(z) lie in

|z| > 2n
n−1

∣∣∣∣a0

a1

∣∣∣∣ .
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Then all the zeros of

T (z) = znS(1/z) = an +amzn−m +a1z
n−1 +a0z

n

lie in

|z| < n−1
2n

|a1/a0|.
By Gauss-Lucas theorem, all the zeros of the derived polynomial

T ′(z) = (n−m)amzn−m−1 +(n−1)a1z
n−2 +na0z

n−1

also lie in

|z| < n−1
2n

|a1/a0|.
This shows that all the zeros of the trinomial

zn−1T ′(1/z) = (n−m)amzm +(n−1)a1z+na0

lie in

|z| > 2n
n−1

|a0/a1|.

But this is a contradiction, because by (1), the trinomial zn−1T ′(1/z) has at least one
zero in

|z| � 2n
n−1

|a0/a1|.

Thus the quadrinomial S(z) has at least one zero in the circle defined by (4) and the
proof of Theorem 1 is complete. �

Proof of Theorem 2. We write

F(z) = a0 +a1z+a2z
2 +anz

n.

The case a0 = 0 is trivial, so to prove (6), we suppose that all the zeros of F(z) lie in

|z| >
{

n
n−2

∣∣∣∣a0

a2

∣∣∣∣
}1/2

.

Then all the zeros of quadrinomial

G(z) = znF(1/z) = a0z
n +a1z

n−1 +a2z
n−2 +an

lie in

|z| <
{

n−2
n

∣∣∣∣a2

a0

∣∣∣∣
}1/2

.

By the Gauss-Lucas theorem all the zeros of the derived polynomial

G′(z) = na0z
n−1 +(n−1)a1z

n−2 +(n−2)a2z
n−3
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also lie in

|z| <
{

n−2
n

∣∣∣∣a2

a0

∣∣∣∣
}1/2

.

This implies that all the zeros of quadratic

H(z) = na0z
2 +(n−1)a1z+(n−2)a2

lie in

|z| <
{

n−2
n

∣∣∣∣a2

a0

∣∣∣∣
}1/2

.

Equivalently, all the zeros of the quadratic

z2H(1/z) = (n−2)a2z
2 +(n−1)a1z+na0, a2 �= 0,

lie in

|z| >
{

n
n−2

∣∣∣∣a0

a2

∣∣∣∣
}1/2

.

But by the Lemma above (with p = n = 2), it follows that the quadratic z2H(1/z) has
at least one in

|z| �
{

n
n−2

∣∣∣∣a0

a2

∣∣∣∣
}1/2

.

Hence we arrived at a contradiction and therefore F(z) must have at least one zero in
the circle defined by (6).

Now to prove (7), suppose that all the zeros of F(z) lie in
∣∣∣∣z+

a1

2a2

∣∣∣∣ <

∣∣∣∣ a1

2a2

∣∣∣∣ .
Then by the Gauss-Lucas theorem all the zeros of

F ′(z) = a1 +2a2z+nanz
n−1

lie in ∣∣∣∣z+
a1

2a2

∣∣∣∣ <

∣∣∣∣ a1

2a2

∣∣∣∣ .
But by (3), the trinomial F ′(z) has at least one zero in the region

∣∣∣∣z+
a1

2a2

∣∣∣∣ �
∣∣∣∣ a1

2a2

∣∣∣∣ .
Thus we again get a contradiction and therefore, F(z) must have at least one zero in
the region defined by (7). This completes the proof of Theorem 2. �
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Proof of (3). We write

R(z) = a0 +a1z+anz
n.

The case a0 = 0 is trivial. Hence suppose a0 �= 0. In order to prove that R(z) has a

zero in both the regions defined by (3), we show that F(z) = R
(

z−a0
a1

)
has a zero in

both the regions |z| � |a0| and |z| � |a0|. Now,

F(z) = R

(
z−a0

a1

)

= z+an

(
z−a0

a1

)n

= z+
an

an
1
(zn−·· · +(−1)nan

0) .

Applying the Lemma above with p = n , it follows that at least one zero of F(z) =
R

(
z−a0
a1

)
lie in |z| � |a0|.

Now to show that F(z) = R
(

z−a0
a1

)
has a zero in |z|� |a0|, we show that znF(1/z)

has a zero in |z| � (1/|a0|) . Since

znF(1/z) = zn−1 +
an

an
1
(1−·· ·+(−1)nan

0z
n),

an application of the Lemma above with p = n shows that the polynomial znF(1/z) has
a zero in |z|� (1/|a0|) . Replacing z by a1z+a0 in F(z) and noting that F(a1z+a0)≡
R(z) , it follows that R(z) has at least one zero in both the regions

|a1z+a0| � |a0| and |a1z+a0| � |a0| ,
which readily implies (3). This completes the proof of (3). �
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