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WEAK FORMS OF SUPERCYCLITY AND
A CLASS OF PARANORMAL OPERATORS

SUNGEUN JUNG, INSOOK KIM AND EUNGIL KO

(Communicated by J.-C. Bourin)

Abstract. In this paper, we give several properties of class A operators, an interesting subclass
of paranormal operators. In particular, we consider the operators 7' € .£(5¢) such that T — 4
is a class A operator for every A € C. We also provide some cases for class A operators to
have a nontrivial invariant subspace. Finally, we prove that there are no N -supercyclic class
A operators with trivial kernel for any positive integer N and that weakly supercyclic class A
operators with trivial kernel must be normal.

1. Introduction

Let s be a complex separable Hilbert space and let £ (.%¢°) denote the algebra
of all bounded linear operators on 7. If T € (¢, we write p(T), o(T), 0,(T),
0.(T), and r(T) for the resolvent set, the spectrum, the point spectrum, the essential
spectrum, and the spectral radius of T', respectively.

An arbitrary operator T € .Z(.5°) has a unique polar decomposition T = U|T|,
where |T| = (T*T)% and U is the appropriate partial isometry satisfying ker(U) =
ker(|T|) = ker(T) and ker(U*) = ker(T*). Associated with T is a related operator
|T\%U \T\% called the Aluthge transform of T, and denoted throughout this paper by
T. For an arbitrary operator T € .% (), the sequence {T(")} of Aluthge iterates of

T is defined by TO =7 and T"+D) =T for every nonnegative integer n (see [2]
and [23]).

Anoperator T € £ () is said to be p-hyponormal if (TT*)? < (T*T)P, where
0 < p < e. In particular, 1-hyponormal operators and %-hyponormal operators are
called hyponormal operators and semi-hyponormal operators, respectively. An operator
T € () is said to be w-hyponormal if |T| > |T| > |(T)*| (see [2]), and an operator
T € () is said to be paranormal if | Tx||> < ||T?x| ||x]|| for all x € 5. We say that
an operator T € £ (5¢) is called totally paranormal if T — A is paranormal for every
A € C. An operator T € Z(°) with ||T|| = r(T) is called normaloid. Furuta-Ito-
Yamazaki first introduced class A operators in [18]. An operator T € £ () is said
to be a class A operator (or belong to class A) if it satisfies the condition |T?| > |T|?.
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There are a lot of consequences concerning class A operators ([18], [20], [21], [22],
[28], [33], etc). It is well-known from [18] that

Hyponormal = p-Hyponormal (0 < p < 1) = w-Hyponormal
= Class A = Paranormal = Normaloid.

For T € () and x € 5, {T"x};_,, is called the orbit of x under 7', and is
denoted by O(x,T). When the linear span of the orbit O(x,T) is norm dense in ¢, x
is called a cyclic vector for T and T is said to be a cyclic operator. If O(x,T) is norm
dense in .77, then x is called a hypercyclic vector for T. An operator T € L ()
is called hypercyclic if there is at least one hypercyclic vector for 7. An operator
T € £ () is said to be hypertransitive if every nonzero vector in ¢ is hypercyclic
for T. Denote the set of all nonhypertransitive operators in . (.¢’) by (NHT). The
hypertransitive operator problem is the open question whether (NHT ) = £ (). We
note that 7 € (NHT) if and only if it has a nontrivial invariant closed set.

We say that an operator T € £ () is supercyclic if there exists a vector x €
¢ such that CO(x,T) := {AT"x: A € C,n=0,1,2,---} is norm dense in J#. An
operator T € £ () is said to be weakly supercyclic if there exists a vector x € S
such that CO(x,T) is weakly dense in .#°. For a positive integer N, an operator
T € L(A) is called N-supercyclic if there exists an N-dimensional subspace .#
such that J,_oT"(.#) is norm dense in .7#. An operator T € .Z () is said to be
N -multicyclic if there exist N vectors xj,xp,---,xy in 22 such that the linear span of
{P(T)xp:m=1,2,--- N and P € Rat(c(T))} is norm dense in .7# where Rat(c(T))
is the algebra of complex-valued rational functions with poles off o (7). It is evident
that supercyclic operators are 1-supercyclic and the relations between the properties
above are as follows:

Hypercyclic = Weakly hypercyclic

I I
Supercyclic = Weakly supercyclic
U I
N-Supercyclic Cyclic
I

N-Multicyclic

It is known from [6] that any hyponormal operator is not N -supercyclic, while every
weakly supercyclic hyponormal operator is a scalar multiple of a unitary operator.

In this paper, we give several properties of class A operators, an interesting sub-
class of paranormal operators. In particular, we consider the operators T € £ ()
such that T — A is a class A operator for every A € C. We also provide some cases for
class A operators to have a nontrivial invariant subspace. Finally, we prove that there
are no N-supercyclic class A operators with trivial kernel for any positive integer N
and that weakly supercyclic class A operators with trivial kernel must be normal.
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2. Preliminaries

An operator T € £ () is called left semi-Fredholm if its range is closed and
dim(ker(T)) < oo, while T is called right semi-Fredholm if its range is closed and
dim(s7 /ran(T)) < . When T is left semi-Fredholm or right semi-Fredholm, T is
said to be semi-Fredholm. In this case, the Fredholm index of T is defined by ind(T') :=
dim(ker(7)) — dim(.# /ran(T)). Note that ind(7") is an integer or eo. We define
psr(T) :={A € C: T — A is not semi-Fredholm} and oyr(T) := C\ psr(T). We say
that T is Fredholm if it is both left and right semi-Fredholm. In particular, an operator
T € L(H) is said to be Weyl if it is Fredholm of index zero. The Weyl spectrum of T
is given by 0,,(T) :={A € C: T — A4 is not Weyl}.

An operator T € £ () is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any analytic function f: G — ¢ such
that (T —z)f(z) =0 on G, it results f(z) =0 on G. For an operator T € .Z ()
and x € J, we consider the set pr(x) of elements zy in C such that there exists
an analytic function f(z) defined in a neighborhood of zy, with values in .5, which
verifies (T —z)f(z) = x. The local spectrum of T at x, with notation or(x), is given
by the complement of pr(x), that is, or(x) = C\ pr(x). Using local spectra, we
define the local spectral subspace for T by Hr(F) = {x € 5 : or(x) C F} where F
is a subset of C. An operator T € £ () is said to have Dunford’s property (C) if
Hr(F) is closed for each closed subset F of C. An operator T € .Z () is said to
have property (B) if for every open subset G of C and every sequence f, : G — 5 of
¢ -valued analytic functions such that (T —z) f,,(z) converges uniformly to 0 in norm
on compact subsets of G, f,(z) converges uniformly to 0 in norm on compact subsets
of G. Itis well known from [25] that

Property () = Dunford’s property (C) = SVEP.

It is shown in [22] that every class A operator has property ().

3. Some properties

In this section, we give several properties of class A operators. We first examine
some invariant properties of such operators. It is clear that every scalar multiple of a
class A operator is also a class A operator, and the collection of all class A operators is
closed under unitary equivalence relation. However, we remark that it is not translation-
invariant, i.e., there is a class A operator T € £ (%) such that T — A does not belong
to class A for some A € C; indeed, setting T := 452 4+ §*2 4+ 28S* +2 where S €
Z () is the unilateral shift on 7, we get that T is semi-hyponormal but 7 — 4 is
not paranormal from [8], and hence T is a class A operator but 7 — 4 is not.

In the following theorem, we give an inequality for an operator T € £ (.¢’) such
that T — A is a class A operator for each A € C.

THEOREM 3.1. Let T € £ (). If T — A is aclass A operator for each A € C,
then

1
ITx]| = [(T?x,x)|2 (D
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forall x € 7.

Proof. Since T — A is aclass A operator for each A € C, it follows from [17] that

(T* =T —=A)?=2r(T* = 2)(T—A)+r> >0 2)

forall >0 and A € C. Set A = pe'® where 0 < 0 <27 and p > 0. Putting r = p?

in (2), we have
0 < (T*—pe ) (T —pe®)? —2p*(T* — pe ) (T — pe'®) + p*
— 272 _ 2pe 0T T2 — ZpeieT*zT 4 pz(ezieT*z e 2072 4 27T,
Dividing both sides by p? and then letting p — oo, we get that
POT2 | o202 L oT* T > )
for every 0 < 6 < 2x. Thus it holds that
2| Tx|]? = —(e 20T %x,x) — (e 20T2x,x) = —2Re(<e72"eT2x,x>)

for every 0 < 6 < 27 and x € 7. Taking 6 so that Re(({e 2°T?x,x)) = —|(T%x,x)|,
we obtain that

ITx]* = [(T2x,x)|
forall xe 2. O

REMARK. The converse of Theorem 3.1 does nothold. If T € . () is nilpotent
of order 2, then (1) is clearly satisfied for each x € J#. However, since every class A
operator is normaloid by [17], the only nilpotent class A operator is the zero operator,
but 7 #£ 0. Hence T does not belong to class A.

EXAMPLE 3.2. Since every hyponormal operator is translation invariant, it is ob-
vious that if 7 € £ () is hyponormal, then it satisfies inequalities (1) by Theo-
rem 3.1. For example, consider a weighted shift W, given by Wye, = o,e,+1 where
{en}_; is an orthonormal basis for 7 and {a,};_, is a bounded sequence of C.
Since it is easy to see that W, is a class A operator if and only if the weight sequence
{0y} is increasing, we get that Wy, is a class A operator if and only if it is hyponormal.
Hence every weighted shift W, with increasing weight sequence {o,} satisfies that
Wy — A is aclass A operator for each A € C and so (1) holds for such a weighted shift.

From the next proposition, we consider a special case. Recall that an operator
T € L(H) is called k-quasihyponormal if T**(T*T —TT*)T* > 0, where k is a
positive integer. In particular, if k = 1, then we say that T is quasihyponormal.

PROPOSITION 3.3. For T € .Z(s¢), the following assertions hold.

() If T is k-quasihyponormal and ran(T*~!) is norm dense in .7, then T be-
longs to class A, where k is a positive integer. In particular, every quasihyponormal
operator belongs to class A.

(ii) T — A is quasihyponormal for all A € C if and only if T is hyponormal.
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Proof. (1) Since T is k-quasihyponormal, we have
0< T*k(T*T _ TT*)Tk _ T*k_l(‘T2|2 _ |T‘4)Tk_l.

Let x € J be given. Since ran(Tk~1) = J#, there exists a sequence {x,} in # such

that lim,—_... T 'x, = x in norm. Then it holds that

(TP = 1T [Nxx) = lim (|77 = |TH T, T )
Nn—oo
= lim (T (|12 = |TH T 0 x0) =0

Thus |72|> > |T|*, which implies the inequality |72| > |T|*> by Lowner’s inequality.
(ii) Suppose that T — A is quasihyponormal for all A € C. Then we have

(T" =2 (T = A = [(T* = 2)(T = A)P?

forall A € C. Expanding the left side of this inequality, we obtain that

1 1 1
~T*T*+ =T*TT*+ —TT*T
PR 7

1
TT* —T*T < T22 —|T|Y — =TT —
Wz(l “=1T|") 7

for all nonzero A € C. Therefore we get that

1

(TT* =T"T)x,x) < IM ST =T [M)x, x| + (T Tx )

2]

1 1
+ T*T?x,x)| + — [(T*TT*x,x)| + — |(TT*Tx,x

forall x € 7 and all nonzero A € C. Letting |A| — oo, we conclude that TT* < T*T,
i.e., T is hyponormal. The converse statement is trivial. [

It is easy to show that the set of all class A operators in .Z(.) is norm closed.

PROPOSITION 3.4. If {T,}:"_, is a sequence of class A operatorsin £ () such

that limy,—e. || T, — T|| = 0 for some T € L(H), then T is a class A operator.

COROLLARY 3.5. Under the same hypotheses as in Proposition 3.4, we have

lim r(T;,) = r(T).

n—00

Proof. By Proposition 3.4, T is a class A operator. Hence 7 is normaloid, i.e.,
r(T)=||T|. Since |r(T,,) = r(T)| = ||| T,|| = IT||| < | T — T ||, the equality limy .. ~(T,)
=r(T) holds. O

Recall that an operator X € £ (s, %) is said to be a quasiaffinity if it has trivial

kernel and dense range. An operator S € .£(J7) is said to be a quasiaffine transform
of an operator T € £ (%) if there is a quasiaffinity X € £ (5, %) such that XS =
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TX. Also, we say that S € £() and T € L (X*) are quasisimilar if there are
quasiaffinities X € (¢, %) and Y € L (¥ ,7) suchthat XS=TX and SY =YT.

REMARK. Let T € .Z (/) be aclass A operator. If (i) T*" is a class A operator
for some positive integer n or (ii) T is quasisimilar to a normal operator and ker(7") C
ker(7T*), then
or(x) = op(x) Uoe(x) U[—oc(x)]

for every vector x € ¢, and
Hy(F) =Hp(F) ® Hc(F) ® He(—F)

for any closed subset F of C, where B and C are normal and —F :={—A1: 1 € F}.
Indeed, if T*" belongs to class A for some positive integer n, then 7" is a class
A operator from [20], and so 7" is normal by [20]. Since T is paranormal, it is normal
from [3]. If T is quasisimilar to a normal operator, then T2 is also quasisimilar to
a normal operator. Since 72 is w-hyponormal from [20] and ker(7?) = ker(T) C
ker(T*) C ker(Tz*) by [21], T? is normal by [27]. Hence T is normal from [3]. Since
T is normal in both the cases (i) and (i), T2 is also normal. Hence from [30] we get

that
C D
1o (S 2)

where B and C are normal and D is an operator commuting with C. Since T is normal,
D must be the zero operator, i.e., T = B&®C@ (—C). Then we obtain from [25] that

or(x) = op(x) Uoc(x) Uo_c(x)
Hy(F) = Hp(F) & Hc(F) & H-c(F).

Since the equalities 0_¢(x) = —0¢(x) and H_¢(F) = Hc(—F) hold from [25], we get
our results.

An operator T € .Z () is called quasitriangular if there is a sequence {B,} of
finite rank orthogonal projections on ¢ converging strongly to the identity operator /
on # such that lim, . ||({ — P,)TP,|| =0. When both T and T* are quasitriangular,
we say that T is biquasitriangular. From the following theorem, we provide a sufficient
condition for a class A operator to have a nontrivial invariant subspace.

THEOREM 3.6. Let T € £(H°) be a class A operator that is not a scalar mul-
tiple of the identity operator. If o(T) is not the closure of the union of all singleton
components of 6(T), then T has a nontrivial invariant subspace.

Proof. Suppose that T has no nontrivial invariant subspaces. Provided that there
exists A € 6(T)\ 0,(T), then T — A is Fredholm but not invertible. Since ker(7 —
A) =ker(T* — ) = {0}, we get that ran(T — A) = ker(T* — )= = ¢, which is a
contradiction. So, it holds that 6(T') = 6.(T'). Since 0,(T*) = 0, it is easy to show
that T* has the single-valued extension property. In addition, 7' has the single-valued

extension property from [22]. Hence

0(T) = 0e(T) = 0u(T) = 05 (T)
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by [1, Corollary 3.53]. Then it is clear that ind(T — 1) =0 for all A € pg(T). Fur-
thermore, we obtain from [24, Theorem 2.3.21] that T is biquasitriangular. Since o is
continuous at 7 by [12] and T is biquasitriangular, it follows from [5, Thoerem 14.15]
and [19, Theorem 6.15] that o(T) = T'o(T) where T'p(T) is the union of all singleton
components of

o(T) U [Ine(p% () \ pip(T)]

and p%.(T) stands for the set of all A € C such that T — A is semi-Fredholm with
ind(T — 1) = 0. Since p%(T) = C\ 6,,(T) = p(T), we have that T'o(T) is the union
of all singleton components of the set ¢(7) U [Int(p(T))\ p(T)] . Since

o(T) U [Int(p(T))\ p(T)] € o(T)U(9p(T)) = o(T)UIa(T) = o(T),

['o(T) is the union of all singleton components of ¢(7). O

COROLLARY 3.7. Let T € .L() be a class A operator whose spectrum is a
line segment or a circle. Then T has a nontrivial invariant subspace.

Proof. Since a line segment or a circle is a connected set that is not singleton,
o(T) is not the closure of the union of all singleton components of ¢ (7). Hence T
has a nontrivial invariant subspace from Theorem 3.6. [

Next we have the following results from some applications of [32].

THEOREM 3.8. Let T € L(H) be a class A operator with T # Al for any A €

C. If there is a nonzero vector x € # such that (i) or(x) ;Cé o(T) or(ii) || T"x|| < CF"

nontrivial hyperinvariant subspace.

Proof. (i) If there exists a nonzero vector x € 7 such that or(x) S o(T), set

M = Hr(or(x)), ie., # ={yec H# :or(y) Cor(x)}.

Since T has Dunford’s property (C) by [22], .# is a T -hyperinvariant subspace from
[9] or [25]. Since x € .# , we get that .4 # {0}. Suppose that .# = 77 . Since T has
the single-valued extension property, it follows from [25] that

=Ulory):y e #} Cor(x) S o(T).

So we have a contradiction. Hence .# is a nontrivial 7 -hyperinvariant subspace.
(ii) Assume that there is a nonzero vector x € 7 such that

IT"x|| < Cr"

for all positive integers n and some constants C > 0 and 0 < r < ||T||. Put f(z) :=
— ¥ oz "FUT"x, which is analytic for |z| > r; in fact, if we set @ =z ! for |z > r,
then f(w) = —Y; (" T for 0 < |®| < L. Since the hypothesis implies that
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. 1 . . o
limsup,,_... || 7"x|| < r, the radius of convergence for the power series Y7 @" 1 T"x
. 1 . . . . 1 . .
is at le.ast +. Setting f(O) =0, we get that f(w) is analytic for @] < 1, i.e., f(z) is
analytic for |z| > r. Since

oo

(T—-2)f() =~ Dty Y 2 "T'x=x
n=0 n=0

forall z € C with |z] > r, we have pr(x) D {z€ C:|z| > r},ie.,
or(x) C{zeC:lz| <r}.

Since r < ||T|| and T is normaloid by [21], it holds that o7 (x) & o(T). By (i), we
conclude that 7' has a nontrivial hyperinvariant subspace. [

COROLLARY 3.9. Let T € £ () be a class A operator. If T has a nonzero
invariant subspace M such that o(T|.4) G o(T), then T has a nontrivial hyperin-
variant subspace.

Proof. For any nonzero x € .4 , we have
or(x) Cor ,(x) Co(T|.z) S o(T).

Hence T has a nontrivial hyperinvariant subspace by Theorem 3.8. [J

4. Weak forms of supercyclicity

In this section we consider weak forms of supercyclicity for class A operators and
provide several properties of such operators. The results in Theorem 4.2 are general-
izations of F. Bayart and E. Matheron’s results in [6]. For this we need the following
lemma.

LEMMA 4.1. Any p-hyponormal operator for 0 < p <1 is not N -supercyclic for
any positive integer N.

Proof. Suppose that T € £ () is p-hyponormal and N -supercyclic for some
positive integer N. Let g be any positive integer and let wi,wy,---,w, be pairwise
distinct complex numbers on the unit circle that are of the form w; = €™ for some
rational numbers r;. We set S =w1T@---@w,T. Then S is N-multicyclic by [6].
Since T is p-hyponormal, § is also p-hyponormal. Therefore, by [33] we have

a((SP? ~15°P)7) < u(a(s)

1
where p denotes the planar Lebesgue measure. We note that tr((|S|?” — [S*[*7)7) =
1
qur((|T[*? = |T*|*")7) . Moreover since 6(S) = U%_, o(w,;T) C{zc C: [z <||T|},
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we get that
1 1 1
w(ITP7 = |T)7) = (= )e((ISP2 = 1s°)7)
q

2
(3)%u(osy < I

N

1
for all positive integers ¢, and so tr((|T|*” —|T*|*")?) < 0. Since T is p-hyponormal,
1 1
(|T|? —|T*|*")7 is a positive operator and hence tr((|T|*” — |T*|*?)7) > 0. So we
1 1
have tr((|T|? — |T*[*’)») = 0. Thus (|T|*” — |T*|?’)» =0 and this implies that
|T|?> =|T*|?,i.e., T is normal. But there is no normal operator that is N -supercyclic,
and so we have a contradiction. Hence 7T is not N -supercyclic. [J

Using Lemma 4.1, we obtain the following theorem.

THEOREM 4.2. If T € L () is a class A operator with ker(T) = {0}, then the
following statements hold.

(1) If T is weakly supercyclic, then it is a scalar multiple of a unitary operator.

(i) T is not N -supercyclic for any positive integer N.

Proof. (i) Assume that T is weakly supercyclic. Then there is x € 7 such that
CO(x,T) is weakly dense in .7#. If S = T2, then S is w-hyponormal by [20]. More-
over, S is weakly supercyclic by an application of [4]. Since S|S|% = \S\%S , it holds
that

CO(|S|2x,8) = [S|2CO(x, ).
Similarly, we obtain that
CO(I3]|s]2x,5%)) = S|3CO(IS|2x,5) = [S]3S|2CO(x,S).

Since CO(x,S) is weakly dense in 7 and ker(|§|%) = ker(\S|%) = ker(S) = {0}, it
follows that |§\%\S \%(CO(x, S) is also weakly dense in .. This means that S?) is
weakly supercyclic. Since S@ s hyponormal from [2] and [20], it is a scalar multiple
of a unitary operator by [6]. Since ker(S) = {0}, S =§ =S by applying [2]. In
particular, S = T? is normal. Hence T is normal from [3]. Therefore T is a scalar
multiple of a unitary operator by [6].

(ii) If T is N-supercyclic, then there exists an N -dimensional subspace .# such
that U,,—o 7" (.#) is norm dense in ¢ . Let .4 = span{.#,T(.#)}. Then ./ is a
subspace of .7 with dim.# < 2N. We claim that T? is K-supercyclic where K =
dim.# . Indeed, for any x € .#, x and Tx belong to .#". So we obtain that (72)"x,
(T?)(Tx) € (T?)"(4) for all n > 0. Therefore, it holds that

= oo

O () = \J{U(T?)" () O (TP)N(T ()} € | J(T?)(A)
n=0

n=0 n=0
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and the inclusion implies that (J;_o(T?)"(.#") is norm dense in . Hence T is
K -supercyclic with K -dimensional subspace .#". Since T? is one-to-one, |T2\% is
one-to-one and hence |T7?| 5 (4) is a K-dimensional subspace of J# . Furthermore,
U (T2 (T2 (A7) = |T2|2 (U (T2)*(A)) is norm dense in 7. So T2 is K-
supercyclic with K -dimensional subspace \T2|% (/). But this contradicts to Lemma
4.1, since T2 is semi-hyponormal. Therefore T is not N-supercyclic. [l

COROLLARY 4.3. Let T € £ (H) be a p-hyponormal operator for 0 < p < 1. If
T is weakly supercyclic, then T is a scalar multiple of a unitary operator.

Proof. Since T is a p-hyponormal operator for 0 < p < 1, itis aclass A operator.
If T is weakly supercyclic, we know that 6,(T*) =0 or o,(T*) = {A} for some
A # 0 by a result of [29]. So T* is one-to-one. Since T is p-hyponormal, we have
ker(T) C ker(T*) = {0} and hence ker(7T) = {0}. Thus by Theorem 4.2, T is a scalar
multiple of a unitary operator. [J

From applications of Theorem 4.2, we obtain hypertransitivity for the product of
aclass A operator and an algebraic operator which are commuting.

COROLLARY 4.4. If R = TA is an operator in .Z () where T is a class A
operator, A is algebraic, and TA = AT , then R is nonhypertransitive.

Proof. If ker(R) # {0}, then R is clearly nonhypertransitive. Suppose that ker(R) =
{0}. Let x €  be any nonzero vector. If A is algebraic of order k, then A" can be
written as a linear combination of {I,A,A? --- A¥=!1 for each positive integer n. Set
M = span{x,Ax,---,A¥"1x}. Then .# is a subspace of 7 with dim.# < k, and we
obtain that

CO(x,R) ={AT"A"x:A €C,n=0,1,2,---} C | JT"4.
n=0

Since T is a class A operator with ker(7) = {0}, Theorem 4.2 ensures that T is not
N -supercyclic for any positive integer N. Hence we get that |J;,_oT".# is not norm
dense in 77, which implies that CO(x,R) is not norm dense in .57, that is, R is not
supercyclic. Thus R is nonhypertransitive. [

COROLLARY 4.5. Let T € £ () be a class A operator with ker(T) = {0}.
Then given p > 0, there exists € > 0 such that neither span{ker(T — 1) : p < |A] <
p+e} nor span{ker(T —A):p —e <|A| < p} is dense in H.

Proof. The proof follows from Theorem 4.2 and [15]. O

We denote the direct sum of n copies of T € Z() by T™, where n is a
cardinal number with 1 < n < X(. For two operators T and S in £ (), we say
that T is ampliation quasisimilar to S if there exist cardinal numbers n; and n, with
1 <ny,ny < Rg such that T(") g quasisimilar to sn)
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COROLLARY 4.6. Let T € £ () be a class A operator. If T is weakly or
N -supercyclic for some positive integer N, then T has a nontrivial hyperinvariant
subspace. Moreover, if S € £() is ampliation quasisimilar to T, then S has a
nontrivial hyperinvariant subspace.

Proof. If T is weakly supercyclic and ker(7) # {0}, then ker(7') is a nontrivial
T -hyperinvariant subspace. Otherwise, T is normal from Theorem 4.2. Therefore T
has a nontrivial hyperinvariant subspace by [31]. If T is N -supercyclic, then ker(T") #
{0} by Theorem 4.2. So the result follows.

Suppose that stm) js quasisimilar to T(™) for some cardinal numbers n; and n»
with 1 < ny,ny < Xg. Since T has a nontrivial hyperinvariant subspace, we obtain
from [16] that there exists a nontrivial hyperinvariant subspace for 7("2) . Then S("1)
has a nontrivial hyperinvariant subspace from [31], and so does S by [16]. [
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