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Abstract. In this paper, we give several properties of class A operators, an interesting subclass
of paranormal operators. In particular, we consider the operators T ∈ L (H ) such that T −λ
is a class A operator for every λ ∈ C . We also provide some cases for class A operators to
have a nontrivial invariant subspace. Finally, we prove that there are no N -supercyclic class
A operators with trivial kernel for any positive integer N and that weakly supercyclic class A
operators with trivial kernel must be normal.

1. Introduction

Let H be a complex separable Hilbert space and let L (H ) denote the algebra
of all bounded linear operators on H . If T ∈ L (H ) , we write ρ(T ) , σ(T ) , σp(T ) ,
σe(T ) , and r(T ) for the resolvent set, the spectrum, the point spectrum, the essential
spectrum, and the spectral radius of T , respectively.

An arbitrary operator T ∈ L (H ) has a unique polar decomposition T = U |T | ,
where |T | = (T ∗T )

1
2 and U is the appropriate partial isometry satisfying ker(U) =

ker(|T |) = ker(T ) and ker(U∗) = ker(T ∗) . Associated with T is a related operator

|T | 1
2U |T | 1

2 called the Aluthge transform of T , and denoted throughout this paper by
T̃ . For an arbitrary operator T ∈ L (H ) , the sequence {T̃ (n)} of Aluthge iterates of

T is defined by T̃ (0) = T and T̃ (n+1) = ˜̃T (n) for every nonnegative integer n (see [2]
and [23]).

An operator T ∈L (H ) is said to be p-hyponormal if (TT ∗)p � (T ∗T )p , where
0 < p < ∞ . In particular, 1-hyponormal operators and 1

2 -hyponormal operators are
called hyponormal operators and semi-hyponormal operators, respectively. An operator
T ∈L (H ) is said to be w-hyponormal if |T̃ |� |T |� |(T̃ )∗| (see [2]), and an operator
T ∈L (H ) is said to be paranormal if ‖Tx‖2 � ‖T 2x‖‖x‖ for all x∈H . We say that
an operator T ∈ L (H ) is called totally paranormal if T −λ is paranormal for every
λ ∈ C . An operator T ∈ L (H ) with ‖T‖ = r(T ) is called normaloid. Furuta-Ito-
Yamazaki first introduced class A operators in [18]. An operator T ∈ L (H ) is said
to be a class A operator (or belong to class A) if it satisfies the condition |T 2| � |T |2 .
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There are a lot of consequences concerning class A operators ([18], [20], [21], [22],
[28], [33], etc). It is well-known from [18] that

Hyponormal⇒ p-Hyponormal (0 < p � 1) ⇒ w-Hyponormal

⇒ Class A ⇒ Paranormal⇒ Normaloid.

For T ∈ L (H ) and x ∈ H , {Tnx}∞
n=0 is called the orbit of x under T , and is

denoted by O(x,T ) . When the linear span of the orbit O(x,T ) is norm dense in H , x
is called a cyclic vector for T and T is said to be a cyclic operator. If O(x,T ) is norm
dense in H , then x is called a hypercyclic vector for T . An operator T ∈ L (H )
is called hypercyclic if there is at least one hypercyclic vector for T . An operator
T ∈ L (H ) is said to be hypertransitive if every nonzero vector in H is hypercyclic
for T . Denote the set of all nonhypertransitive operators in L (H ) by (NHT ) . The
hypertransitive operator problem is the open question whether (NHT ) = L (H ) . We
note that T ∈ (NHT ) if and only if it has a nontrivial invariant closed set.

We say that an operator T ∈ L (H ) is supercyclic if there exists a vector x ∈
H such that CO(x,T ) := {λTnx : λ ∈ C,n = 0,1,2, · · ·} is norm dense in H . An
operator T ∈ L (H ) is said to be weakly supercyclic if there exists a vector x ∈ H
such that CO(x,T ) is weakly dense in H . For a positive integer N , an operator
T ∈ L (H ) is called N -supercyclic if there exists an N -dimensional subspace M
such that

⋃∞
n=0 Tn(M ) is norm dense in H . An operator T ∈ L (H ) is said to be

N -multicyclic if there exist N vectors x1,x2, · · · ,xN in H such that the linear span of
{P(T )xm : m = 1,2, · · · ,N and P ∈ Rat(σ(T ))} is norm dense in H where Rat(σ(T ))
is the algebra of complex-valued rational functions with poles off σ(T ) . It is evident
that supercyclic operators are 1-supercyclic and the relations between the properties
above are as follows:

Hypercyclic ⇒ Weakly hypercyclic
⇓ ⇓

Supercyclic ⇒ Weakly supercyclic
⇓ ⇓

N-Supercyclic Cyclic
⇓

N-Multicyclic

It is known from [6] that any hyponormal operator is not N -supercyclic, while every
weakly supercyclic hyponormal operator is a scalar multiple of a unitary operator.

In this paper, we give several properties of class A operators, an interesting sub-
class of paranormal operators. In particular, we consider the operators T ∈ L (H )
such that T −λ is a class A operator for every λ ∈ C . We also provide some cases for
class A operators to have a nontrivial invariant subspace. Finally, we prove that there
are no N -supercyclic class A operators with trivial kernel for any positive integer N
and that weakly supercyclic class A operators with trivial kernel must be normal.
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2. Preliminaries

An operator T ∈ L (H ) is called left semi-Fredholm if its range is closed and
dim(ker(T )) < ∞ , while T is called right semi-Fredholm if its range is closed and
dim(H /ran(T )) < ∞ . When T is left semi-Fredholm or right semi-Fredholm, T is
said to be semi-Fredholm. In this case, the Fredholm index of T is defined by ind(T ) :=
dim(ker(T ))− dim(H /ran(T )) . Note that ind(T ) is an integer or ±∞ . We define
ρsF(T ) := {λ ∈ C : T −λ is not semi-Fredholm} and σsF(T ) := C \ρsF(T ) . We say
that T is Fredholm if it is both left and right semi-Fredholm. In particular, an operator
T ∈ L (H ) is said to be Weyl if it is Fredholm of index zero. The Weyl spectrum of T
is given by σw(T ) := {λ ∈ C : T −λ is not Weyl} .

An operator T ∈ L (H ) is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any analytic function f : G → H such
that (T − z) f (z) ≡ 0 on G , it results f (z) ≡ 0 on G . For an operator T ∈ L (H )
and x ∈ H , we consider the set ρT (x) of elements z0 in C such that there exists
an analytic function f (z) defined in a neighborhood of z0 , with values in H , which
verifies (T − z) f (z) ≡ x . The local spectrum of T at x , with notation σT (x) , is given
by the complement of ρT (x) , that is, σT (x) = C \ ρT (x) . Using local spectra, we
define the local spectral subspace for T by HT (F) = {x ∈ H : σT (x) ⊆ F} where F
is a subset of C . An operator T ∈ L (H ) is said to have Dunford’s property (C ) if
HT (F) is closed for each closed subset F of C. An operator T ∈ L (H ) is said to
have property (β ) if for every open subset G of C and every sequence fn : G→H of
H -valued analytic functions such that (T − z) fn(z) converges uniformly to 0 in norm
on compact subsets of G , fn(z) converges uniformly to 0 in norm on compact subsets
of G . It is well known from [25] that

Property (β ) ⇒ Dunford’s property (C) ⇒ SVEP.

It is shown in [22] that every class A operator has property (β ) .

3. Some properties

In this section, we give several properties of class A operators. We first examine
some invariant properties of such operators. It is clear that every scalar multiple of a
class A operator is also a class A operator, and the collection of all class A operators is
closed under unitary equivalence relation. However, we remark that it is not translation-
invariant, i.e., there is a class A operator T ∈ L (H ) such that T −λ does not belong
to class A for some λ ∈ C ; indeed, setting T := 4S2 + S∗2 + 2SS∗ + 2 where S ∈
L (H ) is the unilateral shift on H , we get that T is semi-hyponormal but T − 4 is
not paranormal from [8], and hence T is a class A operator but T −4 is not.

In the following theorem, we give an inequality for an operator T ∈ L (H ) such
that T −λ is a class A operator for each λ ∈ C .

THEOREM 3.1. Let T ∈ L (H ) . If T −λ is a class A operator for each λ ∈ C ,
then

‖Tx‖ � |〈T 2x,x〉| 1
2 (1)
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for all x ∈ H .

Proof. Since T −λ is a class A operator for each λ ∈ C , it follows from [17] that

(T ∗ −λ)2(T −λ )2−2r(T ∗ −λ)(T −λ )+ r2 � 0 (2)

for all r > 0 and λ ∈ C . Set λ = ρeiθ where 0 � θ < 2π and ρ > 0. Putting r = ρ2

in (2), we have

0 � (T ∗ −ρe−iθ)2(T −ρeiθ )2−2ρ2(T ∗ −ρe−iθ )(T −ρeiθ)+ ρ4

= T ∗2T 2−2ρe−iθT ∗T 2 −2ρeiθT ∗2T + ρ2(e2iθ T ∗2 + e−2iθT 2 +2T∗T ).

Dividing both sides by ρ2 and then letting ρ → ∞ , we get that

e2iθ T ∗2 + e−2iθT 2 +2T∗T � 0

for every 0 � θ < 2π . Thus it holds that

2‖Tx‖2 � −〈e−2iθT 2x,x〉− 〈e−2iθT 2x,x〉 = −2Re
(〈e−2iθ T 2x,x〉)

for every 0 � θ < 2π and x ∈ H . Taking θ so that Re
(〈e−2iθT 2x,x〉) = −|〈T 2x,x〉| ,

we obtain that

‖Tx‖2 � |〈T 2x,x〉|
for all x ∈ H . �

REMARK. The converse of Theorem 3.1 does not hold. If T ∈L (H ) is nilpotent
of order 2, then (1) is clearly satisfied for each x ∈ H . However, since every class A
operator is normaloid by [17], the only nilpotent class A operator is the zero operator,
but T �= 0. Hence T does not belong to class A .

EXAMPLE 3.2. Since every hyponormal operator is translation invariant, it is ob-
vious that if T ∈ L (H ) is hyponormal, then it satisfies inequalities (1) by Theo-
rem 3.1. For example, consider a weighted shift Wα given by Wαen = αnen+1 where
{en}∞

n=1 is an orthonormal basis for H and {αn}∞
n=1 is a bounded sequence of C .

Since it is easy to see that Wα is a class A operator if and only if the weight sequence
{αn} is increasing, we get that Wα is a class A operator if and only if it is hyponormal.
Hence every weighted shift Wα with increasing weight sequence {αn} satisfies that
Wα −λ is a class A operator for each λ ∈ C and so (1) holds for such a weighted shift.

From the next proposition, we consider a special case. Recall that an operator
T ∈ L (H ) is called k -quasihyponormal if T ∗k(T ∗T − TT ∗)Tk � 0, where k is a
positive integer. In particular, if k = 1, then we say that T is quasihyponormal.

PROPOSITION 3.3. For T ∈ L (H ) , the following assertions hold.
(i) If T is k -quasihyponormal and ran(Tk−1) is norm dense in H , then T be-

longs to class A , where k is a positive integer. In particular, every quasihyponormal
operator belongs to class A .

(ii) T −λ is quasihyponormal for all λ ∈ C if and only if T is hyponormal.
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Proof. (i) Since T is k -quasihyponormal, we have

0 � T ∗k(T ∗T −TT ∗)Tk = T ∗k−1(|T 2|2−|T |4)Tk−1.

Let x ∈ H be given. Since ran(Tk−1) = H , there exists a sequence {xn} in H such
that limn→∞ Tk−1xn = x in norm. Then it holds that

〈(|T 2|2−|T |4)x,x〉 = lim
n→∞

〈(|T 2|2−|T |4)Tk−1xn,T
k−1xn〉

= lim
n→∞

〈T ∗k−1(|T 2|2 −|T |4)Tk−1xn,xn〉 � 0

Thus |T 2|2 � |T |4 , which implies the inequality |T 2| � |T |2 by Löwner’s inequality.
(ii) Suppose that T −λ is quasihyponormal for all λ ∈ C . Then we have

(T ∗ −λ)2(T −λ )2− [(T ∗ −λ)(T −λ )]2 � 0

for all λ ∈ C . Expanding the left side of this inequality, we obtain that

TT ∗ −T∗T � 1
|λ |2 (|T 2|2−|T |4)− 1

λ
T ∗2T − 1

λ
T ∗T 2 +

1

λ
T ∗TT ∗ +

1
λ

TT ∗T

for all nonzero λ ∈ C . Therefore we get that

〈(TT ∗ −T∗T )x,x〉 � 1
|λ |2 |〈(|T

2|2−|T |4)x,x〉|+ 1
|λ | |〈T

∗2Tx,x〉|

+
1
|λ | |〈T

∗T 2x,x〉|+ 1
|λ | |〈T

∗TT ∗x,x〉|+ 1
|λ | |〈TT ∗Tx,x〉|

for all x ∈H and all nonzero λ ∈C . Letting |λ | → ∞ , we conclude that TT ∗ � T ∗T ,
i.e., T is hyponormal. The converse statement is trivial. �

It is easy to show that the set of all class A operators in L (H ) is norm closed.

PROPOSITION 3.4. If {Tn}∞
n=1 is a sequence of class A operators in L (H ) such

that limn→∞ ‖Tn−T‖ = 0 for some T ∈ L (H ) , then T is a class A operator.

COROLLARY 3.5. Under the same hypotheses as in Proposition 3.4, we have

lim
n→∞

r(Tn) = r(T ).

Proof. By Proposition 3.4, T is a class A operator. Hence T is normaloid, i.e.,
r(T )= ‖T‖ . Since |r(Tn)−r(T )|= ∣∣‖Tn‖−‖T‖∣∣� ‖Tn−T‖, the equality limn→∞ r(Tn)
= r(T ) holds. �

Recall that an operator X ∈ L (H ,K ) is said to be a quasiaffinity if it has trivial
kernel and dense range. An operator S ∈ L (H ) is said to be a quasiaffine transform
of an operator T ∈ L (K ) if there is a quasiaffinity X ∈ L (H ,K ) such that XS =
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TX . Also, we say that S ∈ L (H ) and T ∈ L (K ) are quasisimilar if there are
quasiaffinities X ∈L (H ,K ) and Y ∈L (K ,H ) such that XS = TX and SY =YT .

REMARK. Let T ∈ L (H ) be a class A operator. If (i) T ∗n is a class A operator
for some positive integer n or (ii) T is quasisimilar to a normal operator and ker(T ) ⊆
ker(T ∗) , then

σT (x) = σB(x)∪σC(x)∪ [−σC(x)]

for every vector x ∈ H , and

HT (F) = HB(F)⊕HC(F)⊕HC(−F)

for any closed subset F of C , where B and C are normal and −F := {−λ : λ ∈ F} .
Indeed, if T ∗n belongs to class A for some positive integer n , then Tn is a class

A operator from [20], and so Tn is normal by [20]. Since T is paranormal, it is normal
from [3]. If T is quasisimilar to a normal operator, then T 2 is also quasisimilar to
a normal operator. Since T 2 is w-hyponormal from [20] and ker(T 2) = ker(T ) ⊆
ker(T ∗) ⊆ ker(T 2∗) by [21], T 2 is normal by [27]. Hence T is normal from [3]. Since
T is normal in both the cases (i) and (ii), T 2 is also normal. Hence from [30] we get
that

T = B⊕
(

C D
0 −C

)
where B and C are normal and D is an operator commuting with C . Since T is normal,
D must be the zero operator, i.e., T = B⊕C⊕ (−C) . Then we obtain from [25] that{

σT (x) = σB(x)∪σC(x)∪σ−C(x)
HT (F) = HB(F)⊕HC(F)⊕H−C(F).

Since the equalities σ−C(x) = −σC(x) and H−C(F) = HC(−F) hold from [25], we get
our results.

An operator T ∈ L (H ) is called quasitriangular if there is a sequence {Pn} of
finite rank orthogonal projections on H converging strongly to the identity operator I
on H such that limn→∞ ‖(I−Pn)TPn‖ = 0. When both T and T ∗ are quasitriangular,
we say that T is biquasitriangular. From the following theorem, we provide a sufficient
condition for a class A operator to have a nontrivial invariant subspace.

THEOREM 3.6. Let T ∈ L (H ) be a class A operator that is not a scalar mul-
tiple of the identity operator. If σ(T ) is not the closure of the union of all singleton
components of σ(T ) , then T has a nontrivial invariant subspace.

Proof. Suppose that T has no nontrivial invariant subspaces. Provided that there
exists λ ∈ σ(T ) \σe(T ) , then T −λ is Fredholm but not invertible. Since ker(T −
λ ) = ker(T ∗ −λ ) = {0} , we get that ran(T −λ ) = ker(T ∗ −λ )⊥ = H , which is a
contradiction. So, it holds that σ(T ) = σe(T ) . Since σp(T ∗) = /0 , it is easy to show
that T ∗ has the single-valued extension property. In addition, T has the single-valued
extension property from [22]. Hence

σ(T ) = σe(T ) = σw(T ) = σsF(T )
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by [1, Corollary 3.53]. Then it is clear that ind(T −λ ) = 0 for all λ ∈ ρsF(T ) . Fur-
thermore, we obtain from [24, Theorem 2.3.21] that T is biquasitriangular. Since σ is
continuous at T by [12] and T is biquasitriangular, it follows from [5, Thoerem 14.15]
and [19, Theorem 6.15] that σ(T ) = Γ0(T ) where Γ0(T ) is the union of all singleton
components of

σ(T )∪ [
Int(ρ0

sF(T ))\ρ0
sF(T )

]
and ρ0

sF(T ) stands for the set of all λ ∈ C such that T − λ is semi-Fredholm with
ind(T −λ ) = 0. Since ρ0

sF(T ) = C\σw(T ) = ρ(T ) , we have that Γ0(T ) is the union
of all singleton components of the set σ(T )∪ [

Int(ρ(T ))\ρ(T)
]
. Since

σ(T )∪ [
Int(ρ(T ))\ρ(T )

] ⊆ σ(T )∪ (∂ρ(T )) = σ(T )∪∂σ(T ) = σ(T ),

Γ0(T ) is the union of all singleton components of σ(T ) . �

COROLLARY 3.7. Let T ∈ L (H ) be a class A operator whose spectrum is a
line segment or a circle. Then T has a nontrivial invariant subspace.

Proof. Since a line segment or a circle is a connected set that is not singleton,
σ(T ) is not the closure of the union of all singleton components of σ(T ) . Hence T
has a nontrivial invariant subspace from Theorem 3.6. �

Next we have the following results from some applications of [32].

THEOREM 3.8. Let T ∈ L (H ) be a class A operator with T �= λ I for any λ ∈
C . If there is a nonzero vector x ∈ H such that (i) σT (x) � σ(T ) or (ii) ‖Tnx‖ �Crn

for all positive integers n and some constants C > 0 and 0 < r < ‖T‖ , then T has a
nontrivial hyperinvariant subspace.

Proof. (i) If there exists a nonzero vector x ∈ H such that σT (x) � σ(T ) , set

M := HT (σT (x)), i.e., M = {y ∈ H : σT (y) ⊆ σT (x)}.

Since T has Dunford’s property (C) by [22], M is a T -hyperinvariant subspace from
[9] or [25]. Since x ∈ M , we get that M �= {0} . Suppose that M = H . Since T has
the single-valued extension property, it follows from [25] that

σ(T ) =
⋃
{σT (y) : y ∈ H } ⊆ σT (x) � σ(T ).

So we have a contradiction. Hence M is a nontrivial T -hyperinvariant subspace.
(ii) Assume that there is a nonzero vector x ∈ H such that

‖Tnx‖ � Crn

for all positive integers n and some constants C > 0 and 0 < r < ‖T‖ . Put f (z) :=
−∑∞

n=0 z−(n+1)Tnx , which is analytic for |z| > r ; in fact, if we set ω = z−1 for |z| > r ,
then f (ω) = −∑∞

n=0 ωn+1Tnx for 0 < |ω | < 1
r . Since the hypothesis implies that
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limsupn→∞ ‖Tnx‖ 1
n � r, the radius of convergence for the power series ∑∞

n=0 ωn+1Tnx
is at least 1

r . Setting f (0) := 0, we get that f (ω) is analytic for |ω | < 1
r , i.e., f (z) is

analytic for |z| > r . Since

(T − z) f (z) = −
∞

∑
n=0

z−(n+1)Tn+1x+
∞

∑
n=0

z−nT nx = x

for all z ∈ C with |z| > r , we have ρT (x) ⊇ {z ∈ C : |z| > r} , i.e.,

σT (x) ⊆ {z ∈ C : |z| � r}.

Since r < ‖T‖ and T is normaloid by [21], it holds that σT (x) � σ(T ) . By (i), we
conclude that T has a nontrivial hyperinvariant subspace. �

COROLLARY 3.9. Let T ∈ L (H ) be a class A operator. If T has a nonzero
invariant subspace M such that σ(T |M ) � σ(T ) , then T has a nontrivial hyperin-
variant subspace.

Proof. For any nonzero x ∈ M , we have

σT (x) ⊆ σT |M (x) ⊆ σ(T |M ) � σ(T ).

Hence T has a nontrivial hyperinvariant subspace by Theorem 3.8. �

4. Weak forms of supercyclicity

In this section we consider weak forms of supercyclicity for class A operators and
provide several properties of such operators. The results in Theorem 4.2 are general-
izations of F. Bayart and E. Matheron’s results in [6]. For this we need the following
lemma.

LEMMA 4.1. Any p-hyponormal operator for 0 < p < 1 is not N -supercyclic for
any positive integer N .

Proof. Suppose that T ∈ L (H ) is p -hyponormal and N -supercyclic for some
positive integer N . Let q be any positive integer and let w1,w1, · · · ,wq be pairwise
distinct complex numbers on the unit circle that are of the form wj = ei2πr j for some
rational numbers r j . We set S = w1T

⊕ · · ·⊕wqT . Then S is N -multicyclic by [6].
Since T is p -hyponormal, S is also p -hyponormal. Therefore, by [33] we have

tr
(
(|S|2p−|S∗|2p)

1
p
)

� N
π

μ(σ(S))

where μ denotes the planar Lebesgue measure. We note that tr
(
(|S|2p − |S∗|2p)

1
p
)

=

q tr
(
(|T |2p −|T ∗|2p)

1
p
)
. Moreover since σ(S) =

⋃q
j=1 σ(wjT ) ⊆ {z ∈ C : |z| � ‖T‖} ,
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we get that

tr
(
(|T |2p−|T ∗|2p)

1
p
)

=
(1

q

)
tr
(
(|S|2p−|S∗|2p)

1
p
)

�
(1

q

)N
π

μ(σ(S)) � N‖T‖2

q

for all positive integers q , and so tr
(
(|T |2p−|T ∗|2p)

1
p
)
� 0. Since T is p -hyponormal,

(|T |2p − |T ∗|2p)
1
p is a positive operator and hence tr

(
(|T |2p − |T ∗|2p)

1
p
)

� 0. So we

have tr
(
(|T |2p − |T ∗|2p)

1
p
)

= 0. Thus (|T |2p − |T ∗|2p)
1
p = 0 and this implies that

|T |2 = |T ∗|2 , i.e., T is normal. But there is no normal operator that is N -supercyclic,
and so we have a contradiction. Hence T is not N -supercyclic. �

Using Lemma 4.1, we obtain the following theorem.

THEOREM 4.2. If T ∈L (H ) is a class A operator with ker(T ) = {0} , then the
following statements hold.

(i) If T is weakly supercyclic, then it is a scalar multiple of a unitary operator.
(ii) T is not N -supercyclic for any positive integer N .

Proof. (i) Assume that T is weakly supercyclic. Then there is x ∈ H such that
CO(x,T ) is weakly dense in H . If S = T 2 , then S is w-hyponormal by [20]. More-

over, S is weakly supercyclic by an application of [4]. Since S̃|S| 1
2 = |S| 1

2 S , it holds
that

CO(|S| 1
2 x, S̃) = |S| 1

2 CO(x,S).

Similarly, we obtain that

CO(|S̃| 1
2 |S| 1

2 x, S̃(2)) = |S̃| 1
2 CO(|S| 1

2 x, S̃) = |S̃| 1
2 |S| 1

2 CO(x,S).

Since CO(x,S) is weakly dense in H and ker(|S̃| 1
2 ) = ker(|S| 1

2 ) = ker(S) = {0} , it

follows that |S̃| 1
2 |S| 1

2 CO(x,S) is also weakly dense in H . This means that S̃(2) is
weakly supercyclic. Since S̃(2) is hyponormal from [2] and [20], it is a scalar multiple
of a unitary operator by [6]. Since ker(S) = {0} , S̃(2) = S̃ = S by applying [2]. In
particular, S = T 2 is normal. Hence T is normal from [3]. Therefore T is a scalar
multiple of a unitary operator by [6].

(ii) If T is N -supercyclic, then there exists an N -dimensional subspace M such
that

⋃∞
n=0 Tn(M ) is norm dense in H . Let N = span{M ,T (M )} . Then N is a

subspace of H with dimN � 2N . We claim that T 2 is K -supercyclic where K =
dimN . Indeed, for any x ∈ M , x and Tx belong to N . So we obtain that (T 2)nx ,
(T 2)n(Tx) ∈ (T 2)n(N ) for all n � 0. Therefore, it holds that

∞⋃
n=0

Tn(M ) =
∞⋃

n=0

{(T 2)n(M )∪ (T 2)n(T (M ))} ⊆
∞⋃

n=0

(T 2)n(N )
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and the inclusion implies that
⋃∞

n=0(T
2)n(N ) is norm dense in H . Hence T 2 is

K -supercyclic with K -dimensional subspace N . Since T 2 is one-to-one, |T 2| 1
2 is

one-to-one and hence |T 2| 1
2 (N ) is a K -dimensional subspace of H . Furthermore,⋃∞

n=0(T̃ 2)n(|T 2| 1
2 (N )) = |T 2| 1

2 (
⋃∞

n=0(T
2)n(N )) is norm dense in H . So T̃ 2 is K -

supercyclic with K -dimensional subspace |T 2| 1
2 (N ) . But this contradicts to Lemma

4.1, since T̃ 2 is semi-hyponormal. Therefore T is not N -supercyclic. �

COROLLARY 4.3. Let T ∈ L (H) be a p-hyponormal operator for 0 < p < 1 . If
T is weakly supercyclic, then T is a scalar multiple of a unitary operator.

Proof. Since T is a p -hyponormal operator for 0 < p < 1, it is a class A operator.
If T is weakly supercyclic, we know that σp(T ∗) = /0 or σp(T ∗) = {λ} for some
λ �= 0 by a result of [29]. So T ∗ is one-to-one. Since T is p -hyponormal, we have
ker(T ) ⊆ ker(T ∗) = {0} and hence ker(T ) = {0} . Thus by Theorem 4.2, T is a scalar
multiple of a unitary operator. �

From applications of Theorem 4.2, we obtain hypertransitivity for the product of
a class A operator and an algebraic operator which are commuting.

COROLLARY 4.4. If R = TA is an operator in L (H ) where T is a class A
operator, A is algebraic, and TA = AT , then R is nonhypertransitive.

Proof. If ker(R) �= {0} , then R is clearly nonhypertransitive. Suppose that ker(R)=
{0} . Let x ∈ H be any nonzero vector. If A is algebraic of order k , then An can be
written as a linear combination of {I,A,A2, · · · ,Ak−1} for each positive integer n . Set
M := span{x,Ax, · · · ,Ak−1x} . Then M is a subspace of H with dimM � k , and we
obtain that

CO(x,R) = {λTnAnx : λ ∈ C,n = 0,1,2, · · ·} ⊆
∞⋃

n=0

TnM .

Since T is a class A operator with ker(T ) = {0} , Theorem 4.2 ensures that T is not
N -supercyclic for any positive integer N . Hence we get that

⋃∞
n=0 TnM is not norm

dense in H , which implies that CO(x,R) is not norm dense in H , that is, R is not
supercyclic. Thus R is nonhypertransitive. �

COROLLARY 4.5. Let T ∈ L (H ) be a class A operator with ker(T ) = {0} .
Then given ρ > 0 , there exists ε > 0 such that neither span{ker(T −λ ) : ρ < |λ | <
ρ + ε} nor span{ker(T −λ ) : ρ − ε < |λ | < ρ} is dense in H .

Proof. The proof follows from Theorem 4.2 and [15]. �
We denote the direct sum of n copies of T ∈ L (H ) by T (n) , where n is a

cardinal number with 1 � n � ℵ0 . For two operators T and S in L (H ) , we say
that T is ampliation quasisimilar to S if there exist cardinal numbers n1 and n2 with
1 � n1,n2 � ℵ0 such that T (n1) is quasisimilar to S(n2) .
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COROLLARY 4.6. Let T ∈ L (H ) be a class A operator. If T is weakly or
N -supercyclic for some positive integer N , then T has a nontrivial hyperinvariant
subspace. Moreover, if S ∈ L (H ) is ampliation quasisimilar to T , then S has a
nontrivial hyperinvariant subspace.

Proof. If T is weakly supercyclic and ker(T ) �= {0} , then ker(T ) is a nontrivial
T -hyperinvariant subspace. Otherwise, T is normal from Theorem 4.2. Therefore T
has a nontrivial hyperinvariant subspace by [31]. If T is N -supercyclic, then ker(T ) �=
{0} by Theorem 4.2. So the result follows.

Suppose that S(n1) is quasisimilar to T (n2) for some cardinal numbers n1 and n2

with 1 � n1,n2 � ℵ0 . Since T has a nontrivial hyperinvariant subspace, we obtain
from [16] that there exists a nontrivial hyperinvariant subspace for T (n2) . Then S(n1)

has a nontrivial hyperinvariant subspace from [31], and so does S by [16]. �
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